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Optimal control problems with a fixed terminal time
in linear fractional-order systems

M.I. GOMOYUNOV

The paper deals with an optimal control problem in a dynamical system described by a linear
differential equation with the Caputo fractional derivative. The goal of control is to minimize
a Bolza-type cost functional, which consists of two terms: the first one evaluates the state of
the system at a fixed terminal time, and the second one is an integral evaluation of the control
on the whole time interval. In order to solve this problem, we propose to reduce it to some
auxiliary optimal control problem in a dynamical system described by a first-order ordinary
differential equation. The reduction is based on the representation formula for solutions to linear
fractional differential equations and is performed by some linear transformation, which is called
the informational image of a position of the original system and can be treated as a special
prediction of a motion of this system at the terminal time. A connection between the original
and auxiliary problems is established for both open-loop and feedback (closed-loop) controls.
The results obtained in the paper are illustrated by examples.

Key words: optimal control, fractional derivatives, linear systems, open-loop control, feed-
back control, reduction

1. Introduction

We consider an optimal control problem in a dynamical system which motion
is described by a linear differential equation with the Caputo fractional derivative
of an order α ∈ (0, 1). The goal of control is to minimize a given Bolza-type cost
functional, which consists of two terms. One of them evaluates the state vector
of the system realized at a fixed terminal time ϑ, and the other is an integral
evaluation of a control on the whole time interval [t0, ϑ]. We are interested in
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finding optimal, or, at least, ε-optimal, open-loop controls, as well as in con-
structing optimal feedback (closed-loop) controls, which are formalized within
the framework of positional strategies [18, 20] (see also [7]).

In order to solve the problem, we propose an approach based on its reduction
to some auxiliary optimal control problem in a dynamical system described by a
first-order ordinary differential equation and further application of the methods
and results of the optimal control theory widely developed for such systems.
The reduction relies on a suitable notion of a finite-dimensional informational
image of an infinite-dimensional position of the original fractional-order system,
which can be treated as a special prediction of a motion of this system at the
time ϑ.

This approach is closely related to a functional interpretation of control pro-
cesses [19] (see also [23] and the references therein) and was previously devel-
oped for linear functional differential systems of retarded [12,24] and neutral [11]
types and also for linear systems with control delays [10]. However, in contrast to
these studies, the auxiliary dynamical system obtained in the present paper may
not satisfy the assumptions that are usually made in the optimal control theory.
More precisely, the right-hand side of the corresponding differential equation, in
general, has a singularity at the time ϑ and, therefore, is unbounded. This circum-
stance is explained by some special properties of the fundamental matrix solution
of linear fractional-order differential equations (see, e.g., [3, 8, 13]). In order to
overcome this difficulty, we propose to introduce a small parameter η ∈ (0, ϑ−t0)
and shift the terminal time in the auxiliary optimal control problem from ϑ to
ϑη = ϑ − η. After such a modification, the auxiliary problem, on the one hand,
can still be used to solve, at least approximately, the original problem, and, on
the other hand, it already meets the typical assumptions from the optimal control
theory.

Let us note that various optimal control problems in linear fractional-order
systems with the Caputo derivatives are studied, e.g., in [1, 14–16, 21, 25] (see
also the references therein for possible applications), where suitable variants
of the maximum principle, methods of variational calculus and convex anal-
ysis, and methods related to the problem of moments are applied to find a
solution. Moreover, in [9], a reduction scheme close to that proposed in the
paper is developed on the basis of an approximation of fractional-order differ-
ential equations with the Caputo derivatives by first-order functional differen-
tial equations of a retarded type. However, the present paper follows a differ-
ent approach that relies on the representation formula for solutions to linear
fractional-order differential equations with the Caputo derivatives [8], does not
require any approximation as an auxiliary intermediate step, and is more straight-
forward.

The rest of the paper is organized as follows. In Sec. 2, we formulate the
optimal control problem and study the question of finding optimal and ε-optimal
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open-loop controls. We introduce the notions of a position of the system and
its informational image, derive the auxiliary optimal control problem, and pro-
vide a connection between the original and auxiliary problems. After that, we
consider the auxiliary optimal control problem with the shifted terminal time
ϑη and establish its connection with the original problem. Sect. 3 is devoted to
constructing optimal feedback controls. We introduce the notion of a positional
control strategy and show how to obtain an optimal positional control strategy
on the basis of optimal positional strategies in the auxiliary problems with the
shifted terminal times ϑη . Both sections contain illustrative examples. Conclud-
ing remarks are given in Sec. 4. The proofs of the statements are presented in
Appendix A.

2. Optimal control problem

2.1. Preliminaries

Let n ∈ N, α ∈ (0, 1), and t0, ϑ ∈ R such that t0 < ϑ be fixed throughout
the paper. Let Rn and Rn×n be the spaces of n-dimensional vectors and (n × n)-
matrices, and let Idn ∈ Rn×n stand for the identity matrix. By ∥ · ∥ and ⟨·, ·⟩, we
denote the Euclidean norm and the inner product in Rn. The corresponding norm
in Rn×n is also denoted by ∥ · ∥.

Let t∗ ∈ [t0, ϑ]. Let us consider a function x : [t0, t∗] → Rn, for which we
also use the notation x(·). The (left-sided) Riemann–Liouville fractional integral
(Iαx)(t) and Caputo fractional derivative (C Dαx)(t) of the order α of x(·) at
t ∈ [t0, t∗] are defined respectively by

(Iαx)(t) =
1
Γ(α)

t∫
t0

x(τ)
(t − τ)1−α dτ,

(
C Dαx

)
(t) =

d
dt

(
I1−α (x(·) − x(t0))

)
(t) =

1
Γ(1 − α)

d
dt

t∫
t0

x(τ) − x(t0)
(t − τ)α

dτ,

where Γ is the gamma-function. The basic properties of integrals and deriva-
tives of fractional order can be found, e.g., in [4, 17, 26]. We say that x(·) ∈
ACα ([t0, t∗],Rn), if there exists a (Lebesgue) measurable and essentially bounded
function φ : [t0, t∗] → Rn such that x(t) = x(t0) + (Iαφ)(t), t ∈ [t0, t∗]. Let us
note that, in the case when t∗ = t0, the set ACα ([t0, t∗],Rn) can be identified
with Rn.
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2.2. Problem statement

We consider a dynamical system which motion is described by the linear
fractional differential equation(

C Dαx
)

(t) = A(t)x(t) + f (t, u(t)), x(t) ∈ Rn, u(t) ∈ U, t ∈ [t0, ϑ]. (1)

Here, t is the time; x(t) and u(t) are respectively the current values of the state
and control vectors; the set U ⊂ Rr is compact, r ∈ N; t0 and ϑ are the initial and
terminal times. We assume that the right-hand side of the differential equation in
(1) satisfies the following conditions:

(A.1) The function A : [t0, ϑ]→ Rn×n is measurable and essentially bounded.

(A.2) The function f : [t0, ϑ] × U→ Rn is continuous.

Let Rx > 0 be fixed. We suppose that, at the initial time t0, an initial value
x0 ∈ B(Rx) = {y ∈ Rn : ∥y∥ ¬ Rx } of the state vector of system (1) is given.
As the set U (t0, ϑ) of admissible controls u(·) on the time interval [t0, ϑ), we
consider the set of all measurable functions u : [t0, ϑ) → U. By a motion of the
system that corresponds to the initial value x0 and a control u(·) ∈ U (t0, ϑ), we
mean a function x(·) ∈ ACα ([t0, ϑ],Rn) that satisfies the initial condition

x(t0) = x0 (2)

and, together with u(·), satisfies the differential equation in (1) for almost every
t ∈ [t0, ϑ]. Due to conditions (A.1) and (A.2), such a motion x(·) exists and is
unique (see, e.g., [5, Theorem 3.1]), and we denote it by x(· | t0, x0, ϑ, u(·)).

The goal of control is to minimize the cost functional

J (t0, x0, u(·)) = σ(x(ϑ)) +

ϑ∫
t0

χ(t, u(t)) dt, u(·) ∈ U (t0, ϑ), (3)

where x(·) = x(· | t0, x0, ϑ, u(·)). We assume that the conditions below hold:

(A.3) The function σ : Rn → R is continuous.

(A.4) The function χ : [t0, ϑ] × U→ R is continuous.

The value of the optimal result in the control problem for system (1) with
initial condition (2) and cost functional (3) is defined by

ρ(t0, x0) = inf
u(·)∈U (t0,ϑ)

J (t0, x0, u(·)). (4)



OPTIMAL CONTROL PROBLEMS WITH A FIXED TERMINAL TIME
IN LINEAR FRACTIONAL-ORDER SYSTEMS 725

A control u◦(·) ∈ U (t0, ϑ) is called optimal in this problem, if the equality
J (t0, x0, u◦(·)) = ρ(t0, x0) holds.

In order to find such an optimal control u◦(·), we propose to reduce the problem
(1)–(3) to some auxiliary optimal control problem in a dynamical system which
motion is described by a first-order ordinary differential equation. This reduction
is based on some linear transformation, which is called the information image of
a position of system (1).

2.3. Positions of the system

By a position of system (1), we mean a pair (t,w(·)) consisting of a time
t ∈ [t0, ϑ] and a function w(·) ∈ ACα ([t0, t],Rn), ∥w(t0)∥ ¬ Rx , which is treated
as a history of a motion of the system on the time interval [t0, t]. The set of all
such positions is denoted by G. Respectively, for every x0 ∈ B(Rx), the pair
(t0, x0) ∈ G is regarded as an initial position.

By analogy with Sect. 2.2, let us give a definition of motions of the system
starting from an arbitrary position (t∗,w∗(·)) ∈ G and evolving on some time
interval [t∗, t∗], where t∗ ∈ [t∗, ϑ]. Let us suppose that t∗ < t∗. Then, as the
set U (t∗, t∗) of admissible controls u(·) on [t∗, t∗), we consider the set of all
measurable functions u : [t∗, t∗) → U. A motion of the system generated from
the position (t∗,w∗(·)) by a control u(·) ∈ U (t∗, t∗) is defined as a function
x(·) ∈ ACα ([t0, t∗],Rn) that satisfies the equality

x(t) = w∗(t), t ∈ [t0, t∗], (5)

and, together with u(·), satisfies the differential equation in (1) for almost every
t ∈ [t∗, t∗]. By the scheme from [6, Proposition 2], one can prove that, owing
to conditions (A.1) and (A.2), such a motion x(·) = x(· | t∗,w∗(·), t∗, u(·))
exists and is unique. In the degenerate case when t∗ = t∗, the motion x(·)
is completely determined by (5), and there is no need in considering controls
u(·) and determining the set U (t∗, t∗). However, it is convenient to formally
say that this motion x(·) = x(· | t∗,w∗(·), t∗, u(·)) is generated from (t∗,w∗(·))
by u(·) ∈ U (t∗, t∗). Further, for the motion x(·) and a time t ∈ [t0, t∗], we
denote the corresponding position of the system by (t, xt (·)), where the function
xt : [t0, t]→ Rn is defined by

xt (τ) = x(τ), τ ∈ [t0, t]. (6)

Let us note that the inclusion (t, xt (·)) ∈ G is valid.
Following [8] (see also [3]), let us consider the fundamental solution matrix

of the differential equation in (1), which is a continuous function

Ω ∋ (t, τ) 7→ F (t, τ) ∈ Rn×n, Ω = {(t, τ) ∈ [t0, ϑ] × [t0, ϑ] : t ­ τ}, (7)
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such that, for every fixed τ ∈ [t0, ϑ], the function [τ, ϑ] ∋ t 7→ F (t, τ) ∈ Rn×n is
a unique continuous solution to the integral equation

F (t, τ) =
Idn

Γ(α)
+

(t − τ)1−α

Γ(α)

t∫
τ

A(ξ)F (ξ, τ)
(t − ξ)1−α (ξ − τ)1−α dξ, t ∈ [τ, ϑ].

Due to [8, Theorem 5.2], for every motion x(·) = x(· | t∗,w∗(·), t∗, u(·)) of system
(1), where (t∗,w∗(·)) ∈ G, t∗ ∈ [t∗, ϑ], and u(·) ∈ U (t∗, t∗), the representation
formula below holds:

x(t) =
*..,Idn +

t∫
t∗

F (t, τ) A(τ)
(t − τ)1−α dτ

+//-w∗(t∗)
+

1
Γ(1 − α)

t∫
t∗

F (t, τ)
(t − τ)1−α

*..,α
t∗∫

t0

w∗(ξ) − w∗(t0)
(τ − ξ)1+α dξ − w∗(t∗) − w∗(t0)

(τ − t∗)α
+//- dτ

+

t∫
t∗

F (t, τ) f (τ, u(τ))
(t − τ)1−α dτ, t ∈ [t∗, t∗]. (8)

2.4. Informational image

For a position (t∗,w∗(·)) ∈ G, let us define the value I(t∗,w∗(·)) ∈ Rn,
called the informational image of (t∗,w∗(·)), as follows. Let us consider the linear
homogenous fractional differential equation corresponding to (1)(

C Dαy
)

(t) = A(t)y(t), y(t) ∈ Rn, t ∈ [t∗, ϑ], (9)

with the initial condition

y(t) = w∗(t), t ∈ [t0, t∗]. (10)

By analogy with the above, there exists a unique solution to the Cauchy problem
(9) and (10), which is the function y(·) = y(· | t∗,w∗(·), ϑ) ∈ ACα ([t0, ϑ],Rn)
that satisfies the equality in (10) and the differential equation in (9) for almost
every t ∈ [t∗, ϑ]. Then, we put

I(t∗,w∗(·)) = y(ϑ | t∗,w∗(·), ϑ). (11)

Let us note that, owing to representation formula (8), the informational image
I(t∗,w∗(·)) can be defined explicitly:
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I(t∗,w∗(·)) =
*..,Idn +

ϑ∫
t∗

F (ϑ, τ)A(τ)
(ϑ − τ)1−α dτ

+//-w∗(t∗)
+

1
Γ(1−α)

ϑ∫
t∗

F (ϑ, τ)
(ϑ−τ)1−α

*..,α
t∗∫

t0

w∗(ξ)−w∗(t0)
(τ−ξ)1+α dξ−w∗(t∗)−w∗(t0)

(τ−t∗)α
+//- dτ. (12)

Taking the last term in (8) into account, let us introduce the function

f∗(t, u) =
F (ϑ, t) f (t, u)

(ϑ − t)1−α , t ∈ [t0, ϑ), u ∈ U. (13)

Due to continuity of F and f , the function f∗ : [t0, ϑ) × U → Rn is continuous,
and the following estimate is valid:

∥ f∗(t, u)∥ ¬
MF M f

(ϑ − t)1−α , t ∈ [t0, ϑ), u ∈ U, (14)

where we denote

MF = max
t∈[t0,ϑ]

∥F (ϑ, t)∥, M f = max
(t,u)∈[t0,ϑ]×U

∥ f (t, u)∥. (15)

The proposition below describes the dynamics of informational image (11)
along motions of system (1).

Proposition 1 Let x0 ∈ B(Rx), t∗ ∈ [t0, ϑ], and u(·) ∈ U (t0, t∗). Let x(·) =
x(· | t0, x0, t∗, u(·)) be the corresponding motion of system (1). Then, the equality
below holds:

I(t, xt (·)) = I(t0, x0) +

t∫
t0

f∗(τ, u(τ))dτ, t ∈ [t0, t∗], (16)

where xt (·) is defined by x(·) according to (6).

The proof of the proposition is given in Appendix A.

2.5. Auxiliary optimal control problem

Based on Proposition 1, we consider the auxiliary dynamical system which
motion is described by the differential equation

ż(t) = f∗(t, p(t)), z(t) ∈ Rn, p(t) ∈ U, t ∈ [t0, ϑ), (17)
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with the initial condition

z(t0) = z0 = I(t0, x0). (18)

Here, ż(t) = d z/dt; z(t) and p(t) are respectively the current values of the state
and control vectors in the auxiliary system; the set U is the same as in original
system (1); the function f∗ is defined in (13); an initial value z0 is determined by
the informational image I(t0, x0) (see (11)) of an initial position (t0, x0) ∈ G of
system (1).

By a position of auxiliary system (17), we mean a pair (t, z) ∈ [t0, ϑ] × Rn.
Let (t∗, z∗) ∈ [t0, ϑ] × Rn, t∗ ∈ [t∗, ϑ], and p(·) ∈ U (t∗, t∗). A motion z(·) of
this system generated from (t∗, z∗) by p(·) is an absolutely continuous function
z : [t∗, t∗] → Rn that satisfies the equality z(t∗) = z∗ and, together with p(·),
satisfies the differential equation in (17) for almost every t ∈ [t∗, t∗]. In view of
the described above properties of the function f∗, such a motion exists and is
unique, and we denote it by z(· | t∗, z∗, t∗, p(·)).

As a direct consequence of Proposition 1, we derive the following lemma,
giving a connection between motions of the original and auxiliary systems.

Lemma 1 Let x0 ∈ B(Rx), t∗ ∈ [t0, ϑ], and u(·) ∈ U (t0, t∗). Let x(·) = x(· |
t0, x0, t∗, u(·)) be the corresponding motion of system (1) with initial condition
(2). Let z(·) = z(· | t0, z0, t∗, p(·)) be the motion of auxiliary system (17) with
initial condition (18) generated by the same control p(t) = u(t), t ∈ [t0, t∗). Then,
the equality below holds:

I(t, xt (·)) = z(t), t ∈ [t0, t∗].

Further, taking into account that (see (11))

I(ϑ,w∗(·)) = w∗(ϑ), (ϑ,w∗(·)) ∈ G, (19)

we define the auxiliary cost functional to be minimized by p(·) as follows:

J∗(t0, z0, p(·)) = σ(z(ϑ)) +

ϑ∫
t0

χ(t, p(t)) dt, p(·) ∈ U (t0, ϑ), (20)

where z(·) = z(· | t0, z0, ϑ, p(·)), and the functions σ and χ are taken from (3).
The value of the optimal result in the auxiliary control problem for system

(17) with initial condition (18) and cost functional (20) is given by

ρ∗(t0, z0) = inf
p(·)∈U (t0,ϑ)

J∗(t0, z0, p(·)),

and a control p◦(·) ∈ U (t0, ϑ) is called optimal if J∗(t0, z0, p◦(·)) = ρ∗(t0, z0).
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Theorem 1 For any x0 ∈ B(Rx), the following statements are valid:

i) A control u◦(·) ∈ U (t0, ϑ) is optimal in the problem (1)–(3) if and only if it is
optimal in the auxiliary problem (17), (18), and (20).

ii) The optimal results in the original and auxiliary problems coincide, i.e.,
ρ(t0, x0) = ρ∗(t0, z0).

The proof of the theorem is given in Appendix A.
Thus, the original optimal control problem in fractional-order system (1) is

reduced to the auxiliary optimal control problem in first-order system (17).

Remark 1 Let us assume that the function σ from cost functional (3) can be
represented in the following form:

σ(x) = µ(K (x − c)), x ∈ Rn. (21)

Here, K is a (n∗×n)-matrix, n∗ ∈ N, n∗ < n; c ∈ Rn; µ : Rn∗ → R is a continuous
function. In particular, this is the case when σ does not depend on some n − n∗
coordinates of x. Under this additional assumption, we can reduce the dimension
of the state vector in the auxiliary system from n to n∗ and simplify the auxiliary
cost functional. Namely, we consider the system

ż(t) = K f∗(t, p(t)), z(t) ∈ Rn∗, p(t) ∈ U, t ∈ [t0, ϑ),

with the initial condition z(t0) = z0 = K (I(t0, x0) − c) and the cost functional

J∗(t0, z0, p(·)) = µ(z(ϑ)) +

ϑ∫
t0

χ(t, p(t)) dt, p(·) ∈ U (t0, ϑ).

One can show that, for this auxiliary optimal control problem, the result similar
to Theorem 1 takes place.

However, it should be noted that, in general, the right-hand side of the differ-
ential equation in (17) is unbounded, and, therefore, the auxiliary problem does
not satisfy the assumptions that are usually made in the optimal control theory.
This complicates the application of the methods and results developed within this
theory to solving the original optimal control problem. In order to overcome this
difficulty, in Sec. 2.6, we propose to introduce a small parameter η ∈ (0, ϑ − t0)
and consider auxiliary system (17) only up to the shifted terminal time ϑη = ϑ−η.
But before doing this, let us give an example illustrating Theorem 1 and Remark 1.
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Example Following [2, Sect. 4.2], let us consider the optimal control problem
described by the system

(
C Dαx1

)
(t) = x2(t) + cos(u(t)),(

C Dαx2
)

(t) = sin(u(t)),

x(t) = (x1(t), x2(t)) ∈ R2, u(t) ∈ [−π/2, π/2], t ∈ [t0, ϑ],

(22)

with the initial condition x(t0) = x0 = (0, 0) and the cost functional

J (t0, x0, u(·)) = −x1(ϑ), u(·) ∈ U (t0, ϑ).

According to [13, Theorem 4.2] (see also [3, 8]), the fundamental solution
matrix F of the differential equation in (22) is given by

F (t, τ) =
∞∑

i=0

(t − τ)iαAi

Γ((i + 1)α)
=
*...,

1
Γ(α)

(t − τ)α

Γ(2α)

0
1
Γ(α)

+///- , A =
(
0 1
0 0

)
, (23)

where (t, τ) ∈ Ω (see (7)). Further, due to (12), we have

I(t0, x0) = (0, 0). (24)

Thus, denoting

b1(t) =
1

Γ(α)(ϑ − t)1−α , b2(t) =
1

Γ(2α)(ϑ − t)1−2α , t ∈ [t0, ϑ), (25)

we come to the auxiliary optimal control problem for the system

ż(t) = b1(t) cos(p(t)) + b2(t) sin(p(t)),

z(t) ∈ R, p(t) ∈ [−π/2, π/2], t ∈ [t0, ϑ),

with the initial condition z(t0) = z0 = 0 and the cost functional

J∗(t0, z0, p(·)) = −z(ϑ), p(·) ∈ U (t0, ϑ).

By direct calculations, we obtain

ρ∗(t0, z0) = − sup
p(·)∈U (t0,ϑ)

ϑ∫
t0

(
b1(t) cos(p(t)) + b2(t) sin(p(t))

)
dt

= −
ϑ∫

t0

(
b1(t) cos(p◦(t)) + b2(t) sin(p◦(t))

)
dt
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for the control p◦(t) = arctan(Γ(α)(ϑ− t)α/Γ(2α)), t ∈ [t0, ϑ]. Then, this control
p◦(·) is optimal in the auxiliary problem. Hence, by Theorem 1 and Remark 1,
we conclude that p◦(·) is an optimal control in the original problem, too. Let us
note that this result agrees with [2, Sec. 4.2].

2.6. Auxiliary optimal control problem with parameter

Let us fix η ∈ (0, ϑ − t0), put ϑη = ϑ − η ∈ (t0, ϑ), and consider the auxiliary
optimal control problem for the system

ż(t) = f∗(t, pη (t)), z(t) ∈ Rn, pη (t) ∈ U, t ∈ [t0, ϑη], (26)

with the initial condition

z(t0) = z0 = I(t0, x0) (27)

and the cost functional

Jη (t0, z0, pη (·)) = σ(z(ϑη )) +

ϑη∫
t0

χ(t, pη (t)) dt, pη (·) ∈ U (t0, ϑη ). (28)

The value of the optimal result in this problem is defined by

ρη (t0, z0) = inf
pη (·)∈U (t0,ϑη )

Jη (t0, z0, pη (·)), (29)

and a control p◦η (·) ∈ U (t0, ϑη ) is called optimal if Jη (t0, z0, p◦η (·)) = ρη (t0, z0).
Thus, the only difference from the auxiliary optimal control problem (17), (18),
and (20) is that now the time ϑη is treated as the terminal one.

Let us note that, since the function (see (13))

[t0, ϑη] × U ∋ (t, u) 7→ f∗(t, u) ∈ Rn (30)

is continuous (and, therefore, bounded), we obtain that, compared to system (17),
system (26) meets the typical assumptions from the optimal control theory. On the
other hand, in contrast to Theorem 1, due to the presence of the parameter η, one
can not expect that an optimal control p◦η (·) in the auxiliary problem (26)–(28)
determines some optimal control u◦(·) in the original problem (1)–(3).

In this connection, let us consider a notion of ε-optimal controls. Namely,
given a number ε > 0, a control u∗(·) ∈ U (t0, ϑ) is called ε-optimal in the
original problem if J (t0, x0, u∗(·)) ¬ ρ(t0, x0)+ε. Respectively, a control p∗η (·) ∈
U (t0, ϑη ) is ε-optimal in the auxiliary problem if Jη (t0, z0, p∗η (·)) ¬ ρη (t0, z0)+ε.

Theorem 2 For any ε > 0, there exist η∗ = η∗(ε) ∈ (0, ϑ− t0) and ε∗ = ε∗(ε) >
0 such that, for any η ∈ (0, η∗] and any x0 ∈ B(Rx), the following statements
hold:
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i) If a control p∗η (·) is ε∗-optimal in the auxiliary problem (26)–(28) correspond-
ing to the chosen η, then the control

u∗(t) =
{

p∗η (t), if t ∈ [t0, ϑη ),
ū, if t ∈ (ϑη, ϑ),

ū ∈ U, (31)

is ε-optimal in the problem (1)–(3).

ii) The optimal results in the original and auxiliary problems satisfy the inequal-
ity

|ρ(t0, x0) − ρη (t0, z0) | ¬ ε.

The proof of the theorem is given in Appendix A.
Theorem 2 allows us to apply, via the auxiliary problem (26)–(28), the methods

and results of the optimal control theory for first-order systems to finding ε-
optimal controls in the problem (1)–(3). Let us note that a remark similar to
Remark 1 can also be made in relation to Theorem 2. Let us consider an example.

Example Let the optimal control problem be described by the system


(
C Dαx1

)
(t) = x2(t),(

C Dαx2
)

(t) = u(t),

x(t) = (x1(t), x2(t)) ∈ R2, u(t) ∈ [−1, 1], t ∈ [t0, ϑ],

(32)

with the initial condition x(t0) = x0 = (0, 0) and the cost functional

J (t0, x0, u(·)) = (x1(ϑ) − c1)2 +

ϑ∫
t0

u2(t) dt, u(·) ∈ U (t0, ϑ),

where c1 ∈ R is a given number.
For every η ∈ (0, ϑ − t0), taking (23)–(25) into account, we come to the

auxiliary optimal control problem for the system

ż(t) = b2(t)pη (t), z(t) ∈ R, pη (t) ∈ [−1, 1], t ∈ [t0, ϑη], (33)

with the initial condition z(t0) = z0 = −c1 and the cost functional

Jη (t0, z0, pη (·)) = z2(ϑη ) +

ϑη∫
t0

p2
η (t) dt, pη (·) ∈ U (t0, ϑη ).
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Applying the Pontryagin maximum principle to this auxiliary problem, we obtain
(see, e.g., [22, Ch. 3, Theorem 14] and also [27, Statement 1]) that the unique
optimal control is given by p◦η (t) = b2(t)λη/S(b2(t) |λη |), t ∈ [t0, ϑη ), where
S(ζ ) = 2 for ζ ∈ [0, 2] and S(ζ ) = ζ for ζ > 2, and λη ∈ R is the unique solution
to the equation

λ

ϑη∫
t0

b2
2 (t)

S(b2(t) |λ |) dt +
λ

2
= c1.

Consequently, by Theorem 2 and Remark 1, for every ε > 0, on the basis
of the control p◦η (·) for a sufficiently small η ∈ (0, ϑ − t0), we can determine an
ε-optimal in the original problem control u∗(·) according to (31).

3. Optimal feedback controls

In the previous section, we study the question of finding optimal and ε-optimal
(open-loop) controls u(·) ∈ U (t0, ϑ) in the optimal control problem (1)–(3).
However, it is often more convenient to use feedback (closed-loop) controls,
since, in many cases, they are easier to construct, and, moreover, they do not
depend on a particular choice of an initial value x0 ∈ B(Rx). In this section, we
develop the proposed above reduction of the original problem to the auxiliary
problem (26)–(28) for obtaining optimal feedback controls.

3.1. Positional control strategies

We consider a formalization of feedback controls within the framework of
positional control strategies [18, 20] (see also [7]). By a (positional) control
strategy, we mean an arbitrary function

G × (0, ϑ − t0) ∋ (t,w(·), η) 7→ U (t,w(·), η) ∈ U,

where η plays a role of some accuracy parameter.
Let us fix η ∈ (0, ϑ − t0) and a partition ∆ of the time interval [t0, ϑ]:

∆ = {τj }k+1
j=1 , τ1 = t0, τj+1 > τj, j ∈ 1, k, τk+1 = ϑ, k ∈ N. (34)

The triple {U, η,∆} is called a control law. This control law forms in system (1)
a piecewise constant control u(·) ∈ U (t0, ϑ) by the following feedback rule:

u(t) = U (τj, xτj (·), η), t ∈ [τj, τj+1), j ∈ 1, k, (35)

where, as usual, we denote xτj (t) = x(t), t ∈ [t0, τj]. Let us note that, for
every initial value x0 ∈ B(Rx), the control law {U, η,∆} determines the control
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u(·) = u(· | t0, x0, ϑ,U, η,∆) and the corresponding motion x(·) uniquely. Let us
note also that, in accordance with (4), we have

J
(
t0, x0, u(· | t0, x0, ϑ,U, η,∆)

)
­ ρ(t0, x0).

Taking this into account, we call a control strategy U◦ optimal (uniformly
with respect to initial values x0 ∈ B(Rx)), if the following statement holds. For
any ε > 0, there exist

η◦ = η◦(ε) ∈ (0, ϑ − t0), (0, η◦] ∋ η 7→ δ◦(η) = δ◦(ε, η) ∈ (0,∞)

such that, for any η ∈ (0, η◦], any partition ∆ (34) with the diameter

diam(∆) = max
j∈1,k

(τj+1 − τj ) ¬ δ◦(η),

and any x0 ∈ B(Rx), the inequality

J
(
t0, x0, u(· | t0, x0, ϑ,U◦, η,∆)

)
¬ ρ(t0, x0) + ε (36)

is valid, i.e., the control u(· | t0, x0, ϑ,U◦, η,∆) is ε-optimal.
Following the ideas from Sect. 2.6, let us construct such an optimal control

strategy U◦ on the basis of optimal control strategies P◦η in the auxiliary problems
(26)–(28) for η ∈ (0, ϑ − t0).

3.2. Positional control strategies in the auxiliary problem

Let us fix η ∈ (0, ϑ − t0), consider the auxiliary optimal control problem
(26)–(28), and define the set Gη = [t0, ϑη] × Rn of all positions of system (26).
A (positional) control strategy is a function

Gη × (0, ϑ − t0) ∋ (t, z, <) 7→ Pη (t, z, <) ∈ U,

where < is treated as an accuracy parameter.
Let < ∈ (0, ϑ − t0), and let ∆η be a partition of the time interval [t0, ϑη]:

∆η = {τj }k+1
j=1 , τ1 = t0, τj+1 > τj, j ∈ 1, k, τk+1 = ϑη, k ∈ N. (37)

The control law {Pη, <,∆η } forms in the auxiliary system a piecewise constant
control pη (·) ∈ U (t0, ϑη ) by the following feedback rule:

pη (t) = Pη (τj, z(τj ), <), t ∈ [τj, τj+1), j ∈ 1, k . (38)

Let us note that, for every z0 ∈ Rn, the control law {Pη, <,∆η } determines the
control pη (·) = pη (· | t0, z0, ϑη, Pη, <,∆η ) and the corresponding motion z(·)
uniquely.
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In accordance with condition (A.1), taking MF from (15), let us denote

MA = ess sup
t∈[t0,ϑ]

∥A(t)∥, Rz =
(
1 + MF MA(ϑ − t0)α/α

)
Rx . (39)

Then, due to (12), for every initial value x0 ∈ B(Rx) from (2), we have

∥I(t0, x0)∥ =









*..,Idn +

ϑ∫
t0

F (ϑ, τ) A(τ)
(ϑ − τ)1−α dτ

+//- x0









 ¬ Rz . (40)

Therefore, in view of (27), in the auxiliary problem, we can restrict ourselves to
initial values z0 ∈ B(Rz).

Thus, we call a control strategy P◦η optimal (uniformly with respect to z0 ∈
B(Rz)), if the following statement holds. For any ε > 0, there exist

<◦η = <◦η (ε) ∈ (0, ϑ − t0), (0, <◦η] ∋ < 7→ ω◦η (<) = ω◦η (ε, <) ∈ (0,∞) (41)

such that, for any < ∈ (0, <◦η], any partition ∆η (37) with the diameter diam(∆η ) ¬
ω◦η (<), and any z0 ∈ B(Rz), the inequality below is valid:

Jη
(
t0, z0, pη (· | t0, z0, ϑη, P◦η, <,∆η )

)
¬ ρη (t0, z0) + ε, (42)

i.e., pη (· | t0, z0, ϑη, P◦η, <,∆η ) is an ε-optimal control in the auxiliary problem.
Let us note that, due to continuity of f∗ (see (30)) and conditions (A.3) and

(A.4), according to, e.g., [18, Theorems 9.2 and 22.1] (see also [23, Sect. 6] and
the references therein), such an optimal control strategy P◦η exists. Moreover, it
can be constructed, for example, by the method of extremal shift to accompanying
points, which is shortly described below.

In the auxiliary problem, we consider the value function (see (28) and (29))

ρη (t, z) = inf
pη (·)∈U (t,ϑη )

*..,σ(z(ϑη )) +

ϑη∫
t

χ(τ, pη (τ))dτ
+//- , (t, z) ∈ Gη,

where z(·) = z(· | t, z, ϑη, pη (·)). Let < ∈ (0, ϑ − t0) be fixed. For every position
(t, z) ∈ Gη , relying on the value function, we choose the accompanying point

(z◦, z◦n+1) ∈ arg min
( z̄,z̄n+1)

(ρη (t, z̄) + z̄n+1), (43)

where the minimum is calculated over the pairs ( z̄, z̄n+1) ∈ Rn × R such that

∥z − z̄∥2 + z̄2
n+1 ¬ r2(t, <), r2(t, <) = < + (t − t0)<, (44)
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and, after that, we determine

P◦η (t, z, <) ∈ arg min
p∈U

(⟨z − z◦, f∗(t, p)⟩ − z◦n+1 χ(t, p)
)
. (45)

Now, we define a control strategy U∗ in the original problem as follows. For
every η ∈ (0, ϑ−t0), let us consider an optimal control strategy P◦η in the auxiliary
problem and determine the corresponding number <◦η (η) according to (41). Then,
for every (t,w(·)) ∈ G, if t < ϑη , we put

U∗(t,w(·), η) = P◦η
(
t,I(t,w(·)), <◦η (η)

)
, (46)

where I(t,w(·)) is the informational image (see (11) or (12)). If t ∈ [ϑη, ϑ], we
formally define U∗(t,w(·), η) = ū for some fixed ū ∈ U.

Theorem 3 The control strategy U∗ defined by (46) is optimal in the problem
(1)–(3).

The proof of the theorem is given in Appendix A.
Thus, in order to construct an optimal control strategy U◦ in the original

problem in fractional-order system (1), it is sufficient to find for every η ∈
(0, ϑ − t0) an optimal control strategy P◦η in the auxiliary problem in first-order
system (26).

Remark 2 As in Remark 1, let us suppose that the functionσ from cost functional
(3) can be represented as in (21). Then, for every η ∈ (0, ϑ − t0), the auxiliary
optimal control problem is described by the system

ż(t) = K f∗(t, pη (t)), z(t) ∈ Rn∗, pη (t) ∈ U, t ∈ [t0, ϑη],

and the cost functional

Jη (t0, z0, pη (·)) = µ(z(ϑη )) +

ϑη∫
t0

χ(t, pη (t)) dt, pη (·) ∈ U (t0, ϑη ).

Let P◦η be an optimal control strategy in this auxiliary problem. In accordance
with (46), we put

U∗(t,w(·), η) = P◦η
(
t, K (I(t,w(·)) − c), <◦η (η)

)
(47)

for (t,w(·)) ∈ G such that t < ϑη . By analogy with Theorem 3, one can prove
that such a control strategy U∗ is optimal in the original problem.
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The following two examples illustrate Theorem 3 and Remark 2.
Example Let us consider the optimal control problem for system (32) and the
cost functional

J (t0, x0, u(·)) = (x1(ϑ) − c1)2, u(·) ∈ U (t0, ϑ),

where c1 ∈ R is a given number. Then, for every η ∈ (0, ϑ − t0), we come to the
auxiliary optimal control problem for system (33) and the cost functional

J (t0, z0, pη (·)) = z2(ϑη ), pη (·) ∈ U (t0, ϑη ).

Let us associate this auxiliary problem with the Cauchy problem for the corre-
sponding Hamilton–Jacobi–Bellman equation

∂φ(t, z)
∂t

− b2(t)
�����∂φ(t, z)

∂z

����� = 0, (t, z) ∈ (t0, ϑη ) × R,

with the right-end boundary condition φ(ϑη, z) = z2, z ∈ R. Let us define

φη (t, z) =
{

( |z | − ψη (t))2, if |z | > ψη (t),
0, if |z | ¬ ψη (t),

(t, z) ∈ Gη = [t0, ϑη] × R,

where, for the function b2 from (25), we denote

ψη (t) =

ϑη∫
t

b2(τ)dτ =
(ϑ − t)2α − η2α

Γ(2α + 1)
, t ∈ [t0, ϑη].

One can verify that φη is a continuously differentiable solution to the considered
Cauchy problem. Thus, according to, e.g., [20, Theorem 4.1.1], we have ρη (t, z) =
φη (t, z), (t, z) ∈ Gη , and the optimal control strategy in the auxiliary problem is
given by

P◦η (t, z) ∈ arg min
p∈[−1,1]

(
p
∂φη (t, z)

∂z

)
=


{1}, if z < −ψη (t),
[−1, 1], if |z | ¬ ψη (t),
{−1}, if z > ψη (t),

where (t, z) ∈ [t0, ϑη ) × R.
Hence, by Theorem 3 and Remark 2, on the basis of the found optimal control

strategies P◦η , η ∈ (0, ϑ − t0), we can construct an optimal control strategy in the
original problem as follows:

U◦(t,w(·), η) =
{

P◦η
(
t,I1(t,w(·)) − c1

)
, if t < ϑη,

ū, if t ­ ϑη,
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where (t,w(·)) ∈ G and ū ∈ U, and I1(t,w(·)) is the first coordinate of the
informational image I(t,w(·)) defined by (11) or (12).
Example Let us consider the original optimal control problem (1)–(3) in the
case when σ(x) = ∥K (x − c)∥, x ∈ Rn (see Remark 2). Then, in the auxiliary
optimal control problem (26)–(28), the cost functional takes the form

Jη (t0, z0, pη (·)) = ∥z(ϑη )∥ +
ϑη∫

t0

χ(t, pη (t)) dt, pη (·) ∈ U (t0, ϑη ).

Hence, according to, e.g., [18, § 23] (see also [23, Sec. 7.1] and the references
therein), the value function in the auxiliary problem is given by

ρη (t, z) = max
l∈B(1)

(⟨l, z⟩ + νη (t, l)
)
, (t, z) ∈ Gη = [t0, ϑη] × Rn∗,

where B(1) = {l ∈ Rn∗ : ∥l∥ ¬ 1} and

νη (t, l) =

ϑη∫
t

min
p∈U

(⟨l, K f∗(τ, p)⟩ + χ(τ, p)
)
dτ, t ∈ [t0, ϑη], l ∈ B(1).

Moreover, applying the method of extremal shift to accompanying points (43)–
(45), one can construct an optimal control strategy as follows:

P◦η (t, z, <) ∈ arg min
p∈U

(⟨l◦, K f∗(t, p)⟩ + χ(t, p)
)
, (t, z) ∈ Gη, < ∈ (0, ϑ − t0),

where
l◦ ∈ arg max

l∈B(1)

(⟨l, z⟩ + νη (t, l) − r (t, <)
√

1 + ∥l∥2) .
Thus, based on these formulas and (47), we can effectively calculate an optimal
control strategy in the original problem.

4. Conclusion

In the paper, we have considered an optimal control problem with a fixed
terminal time in a dynamical system described by a linear differential equation
with the Caputo fractional derivative of an order α ∈ (0, 1). The goal of control
is to minimize a given Bolza-type cost functional.

Based on a suitable notion of an informational image of a position of the sys-
tem, we have derived an auxiliary optimal control problem in a dynamical system
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described by a differential equation with the first-order derivative. To overcome
possible unboundedness of the right-hand side of the obtained differential equa-
tion, we have shifted the terminal time in the auxiliary problem by a small value.
We have established a connection between the original and auxiliary problems
for both open-loop and feedback controls, which allows us to use the methods
and results of the optimal control theory widely developed for first-order systems
in order to find a solution of the original problem. We have presented a number
of illustrative examples.

Appendix A. Proofs

Proof of Proposition 1. Let us fix x0 ∈ B(Rx), t∗ ∈ [t0, ϑ], and u(·) ∈
U (t0, t∗), and consider the corresponding motion x(·) = x(· | t0, x0, t∗, u(·)) of
system (1). Let us take t∗ ∈ [t0, t∗] and prove the equality in (16) for t = t∗.
According to (11), we have I(t0, x0) = y0(ϑ), where y0(·) = y(· | t0, x0, ϑ) is the
solution to the following Cauchy problem:(

C Dαy0
)

(t) = A(t)y0(t), y0(t) ∈ Rn, t ∈ [t0, ϑ]; y0(t0) = x0.

Respectively, I(t∗, xt∗ (·)) = y∗(ϑ), where y∗(·) = y(· | t∗, xt∗ (·), ϑ) is the solu-
tion to(

C Dαy∗
)

(t) = A(t)y∗(t), y∗(t) ∈ Rn, t ∈ [t∗, ϑ]; y∗(t) = x(t), t ∈ [t0, t∗].

Hence, for the difference s(t) = y∗(t) − y0(t), t ∈ [t0, ϑ], we obtain s(·) ∈
ACα ([t0, ϑ],Rn), s(t0) = 0, and, for almost every t ∈ [t0, ϑ],(

C Dαs
)

(t) =
(
C Dαy∗

)
(t) −

(
C Dαy0

)
(t)

= A(t)(y∗(t) − y0(t)) + g(t) = A(t)s(t) + g(t),

where g(t) = f (t, u(t)) for t ∈ [t0, t∗) and g(t) = 0 for t ∈ [t∗, ϑ]. Then, in view
of representation formula (8) and notation (13), we get

s(ϑ) =

ϑ∫
t0

F (ϑ, τ)g(τ)
(ϑ − τ)1−α dτ =

t∗∫
t0

F (ϑ, τ) f (τ, u(τ))
(ϑ − τ)1−α dτ =

t∗∫
t0

f∗(τ, u(τ))dτ,

wherefrom, since s(ϑ) = I(t∗, xt∗ (·)) − I(t0, x0), we derive the equality in (16)
for t = t∗. □

Proof of Theorem 1. Let x0 ∈ B(Rx) be fixed, and let z0 = I(t0, x0).
For every control u(·) ∈ U (t0, ϑ), let us consider the corresponding motions
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x(·) = x(· | t0, x0, ϑ, u(·)) and z(·) = z(· | t0, z0, ϑ, u(·)) of original (1) and
auxiliary (17) systems, respectively. Then, it follows from Lemma 1 and (19) that
z(ϑ) = I(ϑ, xϑ(·)) = x(ϑ), and, therefore,

J (t0, x0, u(·)) = σ(x(ϑ)) +

ϑ∫
t0

χ(t, u(t))dt

= σ(z(ϑ)) +

ϑ∫
t0

χ(t, u(t))dt = J∗(t0, z0, u(·)). (A.1)

Since this equality holds for every u(·) ∈ U (t0, ϑ), we get the statements of the
theorem. □

Proof of Theorem 2. Let ε > 0 be fixed. Taking MF and M f from (15) and
Rz from (39), we define

Mz = Rz + MF M f (ϑ − t0)α/α.

Due to continuity of σ (see condition (A.3)), there exists ζ > 0 such that, for any
z1, z2 ∈ B(Mz), if ∥z1 − z2∥ ¬ ζ , then |σ(z1) − σ(z2) | ¬ ε/6. Let us choose
η1 > 0 such that MF M f η

α
1 /α ¬ ζ . Further, denoting (see condition (A.4))

Mχ = max
(t,u)∈[t0,ϑ]×U

| χ(t, u) |,

we take η2 > 0 satisfying Mχη2 ¬ ε/6 and η2 < ϑ− t0 and put η∗ = min{η1, η2}.
Let us show that the statements of the theorem are valid for the chosen η∗ and
ε∗ = ε/3.

We fix η ∈ (0, η∗] and x0 ∈ B(Rx) and define z0 = I(t0, x0). Let u(·) ∈
U (t0, ϑ), and let z(·) = z(· | t0, z0, ϑ, u(·)) be the motion of auxiliary system
(17). Due to (14) and (17), we obtain

∥z(t)∥ ¬ ∥z0∥ +
t∫

t0

∥ f∗(τ, u(τ))∥dτ

¬ Rz + MF M f (ϑ − t0)α/α = Mz, t ∈ [t0, ϑ], (A.2)

and

∥z(ϑ) − z(ϑη )∥ ¬
ϑ∫

ϑη

∥ f∗(τ, u(τ))∥dτ ¬ MF M f η
α/α ¬ ζ . (A.3)
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Further, let zη (·) = z(· | t0, z0, ϑη, pη (·)) be the motion of auxiliary system
(26) corresponding to the control pη (t) = u(t), t ∈ [t0, ϑη ). Then, we have
zη (ϑη ) = z(ϑη ), and, owing to (A.2) and (A.3), we derive

|J∗(t0, z0, u(·)) − Jη (t0, z0, pη (·)) |

¬ |σ(z(ϑ)) − σ(zη (ϑη )) | +
ϑ∫

ϑη

| χ(τ, u(τ)) |dτ ¬ ε/6 + Mχη ¬ ε/3.

Taking into account that J (t0, x0, u(·)) = J∗(t0, z0, u(·)) according to (A.1), we
conclude

J (t0, x0, u(·)) ­ Jη (t0, z0, pη (·)) − ε/3 ­ ρη (t0, z0) − ε/3.

Since this estimate is valid for every u(·) ∈ U (t0, ϑ), we get ρ(t0, x0) ­
ρη (t0, z0) − ε/3.

On the other hand, let pη (·) ∈ U (t0, ϑη ), and let u(t) = pη (t) for t ∈ [t0, ϑη )
and u(t) = ū ∈ U for t ∈ [ϑη, ϑ) (see (31)). Arguing as above, we obtain

Jη (t0, z0, pη (·)) ­ J (t0, x0, u(·)) − ε/3 ­ ρ(t0, x0) − ε/3. (A.4)

Consequently, ρη (t0, z0) ­ ρ(t0, x0) − ε/3, and, hence,

|ρ(t0, x0) − ρη (t0, z0) | ¬ ε/3 ¬ ε. (A.5)

Now, let a control p∗η (·) be ε∗-optimal in the auxiliary problem, and let the
control u∗(·) be defined by (31). Then, in accordance with (A.4) and (A.5), we
have

J (t0, x0, u∗(·)) ¬ Jη (t0, z0, p∗η (·)) + ε/3 ¬ ρη (t0, z0) + ε∗ + ε/3 ¬ ρ(t0, x0) + ε.

Thus, the control u∗(·) is ε-optimal in the original problem. The theorem is
proved. □

Proof of Theorem 3. Let ε > 0 be fixed. Let us choose η∗ ∈ (0, ϑ − t0) as in
the proof of Theorem 2 and put η◦ = min{η∗, ε/3}. For every η ∈ (0, η◦], let us
determine ω◦η (η, <◦η (η)) according to (41) and define δ◦(η) = ω◦η (η, <◦η (η)).

Let us fix η ∈ (0, η◦], a partition ∆ (34) such that diam(∆) ¬ δ◦(η), and
x0 ∈ B(Rx), and consider the control u(·) = u(· | t0, x0, ϑ,U∗, η,∆) formed in
system (1) by the control law {U∗, η,∆} on the basis of the control strategy U∗
from (46). Thus, in order to complete the proof, it is sufficient to show that (see
(36))

J (t0, x0, u(·)) ¬ ρ(t0, x0) + ε. (A.6)
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Let us consider the partition ∆η = {τj }k+1
j=1 of [t0, ϑη] (see (37)) such that

∆η = (∆ ∩ [t0, ϑη]) ∪ {ϑη }.

Let us note that diam(∆η ) ¬ diam(∆) ¬ δ◦(η) = ω◦η (η, <◦η (η)). Let z0 =
I(t0, z0), and let the control pη (·) = pη (· | t0, z0, ϑη, P◦η, <◦η (η),∆η ) be formed
in auxiliary system (26) by the control law {P◦η, <◦η (η),∆η } on the basis of the
optimal in the auxiliary problem control strategy P◦η . Then, in accordance with
(40) and (42), taking (A.5) into account, we obtain

Jη (t0, z0, pη (·)) ¬ ρη (t0, z0) + η ¬ ρη (t0, z0) + ε/3 ¬ ρ(t0, x0) + 2ε/3. (A.7)

Further, arguing by induction, let us prove that

u(t) = pη (t), t ∈ [τj, τj+1), j ∈ 1, k . (A.8)

For j = 1, due to (35), (38), and (46), we have

u(t) = U∗(t0, x0, η) = P◦η
(
t0, z0, <◦η (η)

)
= pη (t), t ∈ [τ1, τ2).

Now, let us take q ∈ 2, k and suppose that (A.8) holds for every j ∈ 1, q − 1,
i.e., u(t) = pη (t), t ∈ [t0, τq). Hence, I(τq, xτq (·)) = z(τq) by Lemma 1, and,
therefore, we get (A.8) for j = q:

u(t) = U∗(τq, xτq (·), η) = P◦η
(
τq, z(τq), <◦η (η)

)
= pη (t), t ∈ [τq, τq+1).

Applying (A.8) for j = k, we conclude u(t) = pη (t), t ∈ [t0, ϑη ). Then, in
accordance with (A.4) and (A.7), we derive

J (t0, x0, u(·)) ¬ Jη (t0, z0, pη (·)) + ε/3 ¬ ρ(t0, x0) + ε.

Thus, the inequality in (A.6) and the theorem are proved. □
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