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On one algorithm for reconstruction of an disturbance
in a linear system of ordinary differential equations

M. BLIZORUKOVA and V. MAKSIMOV

The problem of reconstructing an unknown disturbance under measuring a part of phase
coordinates of a system of linear differential equations is considered. Solving algorithm is
designed. The algorithm is based on the combination of ideas from the theory of dynamical
inversion and the theory of guaranteed control. The algorithm consists of two blocks: the block of
dynamical reconstruction of unmeasured coordinates and the block of dynamical reconstruction
of an input.
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1. Introduction. Problem statement

Consider the linear system of differential equations
ẋ(t) = Ax(t) + By(t) + f1(t), t ∈ T = [0, ϑ],
ẏ(t) = Cx(t) + Dy(t) + Eu(t) + f2(t)

(1)

with the initial state
x(0) = x0 , y(0) = y0 .

Here, 0 < ϑ < +∞, x ∈ Rn, y ∈ RN , u ∈ Rr , f1(·) ∈ W1,∞(T ;Rn) = {p(·) ∈
L2(T ;Rn) : ṗ(·) ∈ L∞(T ;Rn)}, and f2(·) ∈ L2(T ;RN ) are given functions, u
is a disturbance, A, B, C, D, and E are matrices of corresponding dimensions.
The problem under consideration consists in the following. Some unknown dis-
turbance u(·) ∈ L2(T ;Rr ) acts on system (1). At discrete, frequent enough, times

τi ∈ ∆ = {τi}mi=0 (τ0 = 0, τi+1 = τi + δ, τm = ϑ)
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a part of coordinates of the phase state x(τi) = x(τi; z0, u(·)) of system (1) is mea-
sured. Here and below, z0 = {x0, y0}, z(·; z0, u(·)) = {x(·; z0, u(·)), y(·; z0, u(·))}
is the solution of system (1) corresponding to the initial state z0 and disturbance
u(·). The states x(τi), i ∈ [1 : m − 1] are measured with an error. The results of
these measurements, the vectors ξh

i ∈ Rn, satisfy the inequalities���x(τi) − ξh
i
���n ¬ h. (2)

Here, h ∈ (0, 1) is the measurement accuracy; the symbol | · |n stands for the Eu-
clidean norm in the space Rn. Our goal is to design an algorithm for approximate
reconstruction of the unknown disturbance u(·) on the basis of inaccurate mea-
surements of x(τi). In other words, the task is, given the current measurements
of x(τi), to design a feedback algorithm that generates in real time a function
uh = uh(·) that approximates the disturbance u(·) (in the metric of the space
L2(T ;Rr )). It will be seen from the description of the reconstruction algorithm
that this function can be treated as a control of a suitable auxiliary system.

The problem described above belongs to the class of dynamical reconstruction
problems. The analogous problems attract a great attention in recent years. There
are a lot of monographs and reviews devoted to reconstruction (identification)
problems, including problems for dynamical systems. List only some of them.
The monograph by [12] contains the introduction to identification theory. The
monograph by [15] focuses on the method of Poisson moment functionals and
their application to identification theory. An algorithm for estimating a nonsta-
tionary input acted upon a linear system is considered in the monograph by [2].
The monograph by [1] concentrates on the questions of reconstructing unknown
characteristics of distributed systems. The classical monograph by [5] is popular
up to now; the emphasis in it is on different classes of recurrent methods for the
identification of nonstationary objects, including their theoretical analysis and
experimental verification.

One of approaches to solving dynamical reconstruction problems was devel-
oped in [4, 6, 8–11, 13, 14]. This approach is based on the methods of feedback
control theory [3] and methods of ill-posed problems. In the case when the dis-
turbance u(·) are subject to a priori constraints and all phase coordinates of the
system (1) are measured, the problem in question can be solved on the base of
constructions of [13, 14]. In the present paper we consider the case when only
a part of coordinates are measured. In addition, we assume that instantaneous
constraints on the disturbance are absent. Accordingly, u(·) is assumed to be a
square integrable function. We design a solving algorithm. In connection with
the fact that only the part x(τi) of the system’s phase state {x(τi), y(τi)} is mea-
sured, we need an additional block: the block of dynamical reconstruction of the
unknown coordinate y. This block is considered as a provider of the information
on the current phase state of system (1). The information is transferred to the
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block of disturbance reconstruction; the latter forms an approximation to u(·)
using feedback laws.

Other dynamical reconstruction problems with solution algorithms based on
a suitable modification of the extremal shift method were discussed, for example,
in [4,6,8–11,14]. More specifically, the case when “all” phase state are measured
was considered in [6,8,10]. The case when a part of the phase state are measured
was discussed in [4, 9, 14].

2. Method for solving the problem

Let us describe a method for solving the problem under consideration. As
was noted above, the method is based on construction of feedback control theory.
The dynamical reconstruction problem is replaced by the problem of feedback
control of a suitable dynamical system. In our case, the latter problem consists of
two control blocs for systems of difference form.

For any h ∈ (0, 1), let us fixed a family of partitions of the interval T by
control moments of time τh,i:

∆h = {τh,i}mh

i=0 , τh,0 = 0, τh,mh
= ϑ, τh,i+1 = τh,i + δ(h), δ(h) ∈ (0, 1). (3)

The first (auxiliary) block involves a controlled system and a feedback control
law U that generates a control uh(·). The dynamics of the system is described by
the vector differential equation

ẇh
1 (t) = Aξh

i + By0 + f1(τi) + uh(t) for a.a. t ∈ [τi, τi+1)(i ∈ [0 : mh]) (4)

with the initial state wh(0) = x0. Here, the control uh(·) is defined by the formula

uh(t) = uh
i = U (τi, ξh

i ,w
h
1 (τi)) for a.a. t ∈ [τi, τi+1) (i ∈ [0 : mh − 1]), (5)

where ξh
i is the result of measuring the coordinate x(τi) (see (2)). For i = 0, we

set ξh
0 = x0. The law U (·, ·, ·) : T × Rn × Rn 7→ RN is constructed in such a

way that the control uh(·) approximates (in the metric of the space of continuous
functions) the unobserved component y(·) under appropriate relations between
parameters h and δ(h). In this case, system (4) and the control law (5) for system
form the block of dynamical reconstruction of the component y(·).

The second (basic) block, the block of dynamical reconstruction of unknown
disturbance. This block contains a the system

ẏh(t) = Cξh
i + Dyh(t) + Evh(t) + f2(t)

for a.a. t ∈ [τi, τi+1) (i ∈ [0 : mh−1]) (6)
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with the initial state yh(0) = y0 and a control law V (·, ·, ·) : T × RN × RN 7→ Rr

that generates the control vh(·). The law V is constructed in such a way that, for
suitable compatible parameters h and δ, the control vh(·) of the form

vh(t) = vh
i = V (τi, uh

i , y
h(τi)) for a.a. t ∈ [τi, τi+1) (i ∈ [0 : mh − 1]) (7)

approximates the unknown disturbance.
It should be noted that one and the same solution of system (1) can be derived

by multiple disturbances. Let U (z(·)) is the set of all function u(·) ∈ L2(T ;Rr )
generating the solution z(·) = {x(·), y(·)} of equation (1). Let u∗(·) means an
element of the set U (z(·)) of minimal L2(T ;Rr )-norm ; i.e.

u∗(·) = arg min
u(·)∈U (z(·))

|u(·) |L2(T ;Rr ) .

Note that the set U (z(·)) is convex and closed in the space L2(T ;Rr ). Therefore,
the element u∗(·) is unique. In compliance with the conventional in the theory of
ill-posed problems approach, we reconstruct u∗(·).

3. Solving algorithm

Let us describe the solution algorithm of the problem under consideration.
Consider a family ∆h (3) and two functions α(h) : (0, 1) → (0, 1) and α1(h) :
(0, 1) → (0.1).

Let Y (t) be the fundamental matrix of the system ẏ(t) = Dy(t). Then, the
inequality

|Y (t) | ¬ exp{ χt}, t ­ 0 (8)
is valid. Here, χ = |D |, the symbol | · | stands for the Euclidean norm of a matrix.

Before starting the work of the algorithm, we fix the value h ∈ (0, 1), numbers
α1 = α1(h) and α = α(h) and a partition ∆h = {τh,i}mh

i=0 of form (3). The work of
the algorithm is decomposed into m − 1 (m = mh) steps. At the i-th step carried
out during the time interval δi = [τi, τi+1), τi = τh,i, the following actions take
place. First, at the time τi, the vectors uh

i and vh
i are calculated by formulas (5)

and (7), in which

U
(
τi, ξ

h
i ,w

h
1 (τi)
)
= −α−1

1

[
wh

1 (τi) − ξh
i

]
,

V
(
τi, uh

i , y
h(τi)
)
= −α−1 exp {−2χτi+1} E′

(
yh(τi) − y0 − B+uh

i

)
.

(9)

Here, the prime means transposition, the symbol B+ stands for the pseudo inverse
matrix for the matrix B. Then, for all t ∈ δi, the control uh(t) of form (5), (9) is
taken as the input of system (4), while a control vh(t) of form (7), (9) is taken as
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the input of system (6). As a result, under the action of such controls, system (4)
passes from the state wh

1 (τi) to the state wh
1 (τi+1), while system (6) passes from

the state yh(τi) to the state yh(τi+1). The procedure stops at time ϑ.
Let us show that feedbacks V (·, ·, ·) and U (·, ·, ·) of form (9) solve the problem.
Before proceeding to the proof of the theorem, we present two lemmas used

below.

Lemma 1 [6, p. 47] Let u(·) ∈ L∞(T∗;Rn) and v(·) ∈ W (T∗;Rn), T∗ = [a, b],
−∞ < a < b < +∞,�������

t∫
a

u(τ)dτ
�������n ¬ ε, |v(t) |n ¬ K ∀ t ∈ T∗.

Then, for all t ∈ T∗, the inequality�������
t∫

a

(u(τ), v(τ))dτ
�������+ ¬ ε(K + var(T∗; v(·)))

is valid.

Here, the symbol var(T∗; v(·)) means the variation of the function v(·) over
the interval T∗, the symbol (·, ·) means the scalar product in the corresponding
finite-dimensional Euclidean space, the symbol | · |+ means the absolute value of
a number, and the symbol W (T∗;Rn) means the set of functions y(·) : T∗ → Rn

of bounded variation.

Lemma 2 [7] Let a nonnegative function ϕ(t), t ∈ T , satisfy the inequalities

ϕ(τi+1) ¬ ϕ(τi)(1 + pδ) +

τi+1∫
τi

|G(τ) |+dτ

for all i ∈ [0 : m−1], where τi ∈ ∆, δ = τi+1−τi, p = const > 0, G(·) ∈ L∞(T ;R).
Then, the inequalities

ϕ(τi) ¬
*..,ϕ(0) +

τi∫
0

|G(τ) |+dτ
+//- exp(pτi), i ∈ [0 : m],

take place.
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Theorem 1 Let δ(h) = h, α1(h) = h1/2, α(h) → 0 and hα−4(h) → 0 as h → 0.
Let also N ¬ n and rankB = N . Then there exist functions ν1(·) : (0, 1) 7→
[0,+∞), ν2(·) : (0, 1) 7→ [0,+∞), r1(·) : (0, 1) 7→ [0,+∞) and r2(·) : (0, 1) 7→
[0,+∞) such that ν1(h) → 0, ν2(h) → 0, r1(h) → 1, r2(h) → 0 as h → 0 and
the inequalities

sup
t∈T

���B+uh(t) + y0 − y(t)���N ¬ ν1(h), (10)

max
i∈[0:mh]

���y(τh,i) − yh(τh,i)
���N ¬ ν2(h), (11)

ϑ∫
0

���B+vh(τ)���2r dτ ¬ r1(h)

ϑ∫
0

|u∗(τ) |2r dτ + r2(h) (12)

are fulfilled for any disturbance u(·), any h ∈ (0, 1), any family ∆h (see (3)),
any realizations vh(·) and uh(·) of feedbacks V (·, ·, ·) and U (·, ·, ·) of form (9),
any trajectory of real system (1) z(·) = z(·; z0, u(·)) (i.e., solution of (1)), any
trajectory wh

1 (·) and yh(·) of systems (4) and (6) corresponding to the feedbacks
V and U , and any measurement ξh

i with property (2).

Proof. The proof of the theorem consists of three steps. At the first step, we
prove inequality (10). At the second one, we estimate the change of the function
λh(τi), where λh(t) = exp(−2χt) |yh(t) − y(t) |2N . At the third step, we prove the
inequalities (11) and (12).

Step 1. Introduce the new function

Y (t) = y(t) − y0 .

Then first subsystem of system (1) takes the form

ẋ(t) = Ax(t) + BY (t) + By0 + f1(t).

In virtue of condition ḟ1(·) ∈ L∞(T ;Rn) and the inequalities (2), we conclude
that the inequalities���Ax(t) + By0 + f1(t) − Aξh

i − By0 − f1(τi)
���n ¬ M1(h + δ)

are fulfilled for a.a. t ∈ δi and all i ∈ [0 : m − 1]. Note that Y (·) ∈ W1,∞(T ;RN )
and Y (0) = 0. Then, from Theorem 2 [8] we derive the estimate���uh(t) + B(y0 − y(t))���n = ���uh(t) − BY (t)���n ¬ M2h1 . (13)

Here,
h1 = α1 + (h + δ)α−1

1 , α1 = α1(h), δ = δ(h),
M1 > 0 and M2 > 0 are some constants. Inequality (10) follows from inequal-
ity (13).



ON ONE ALGORITHM FOR RECONSTRUCTION OF AN DISTURBANCE
IN A LINEAR SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS 763

Step 2. We estimate the change of the function

εh(t) = λh(t) + α

t∫
0

{
|vh(τ) |2r − |u∗(τ) |2r

}
dτ. (14)

In virtue of the Cauchy formula, we conclude that the equalities

y(t) = Y (t − τi)y(τi) +

t∫
τi

Y (t − τ) {Cx(τ) + Eu∗(τ) + f2(τ)} dτ,

yh(t) = Y (t − τi)yh(τi) +

t∫
τi

Y (t − τ)
{
Cξh

i + Evh(τ) + f2(τ)
}

dτ

(15)

are fulfilled for all t ∈ δi = [τi, τi+1), τi = τh,i. By using equalities (15), it is easily
seen that, for all i ∈ [0 : m − 1], the estimate

εh(τi+1) ¬ exp{−2χτi+1} ���yh(τi) − y(τi)
���2n + λi + µi

+ α

τi+1∫
0

{
|vh(τ) |2r − |u∗(τ) |2r

}
dτ (16)

is valid. Here,

λi = 2
*..,Si,

τi+1∫
τi

Y (τi+1 − τ)
[
E{vh(τ) − u∗(τ)} + C

{
ξh

i − x(τ)
}]

dτ
+//- , (17)

µi = δ exp{−2χτi+1}
τi+1∫
τi

���Y (τi+1 − τ)
{
E
(
vh(τ) − u∗(τ)

)
+ C

(
ξh

i − x(τ)
) }���2N dτ, (18)

Si = exp{−2χτi+1}Y (τi+1 − τi)
{
yh(τi) − y(τi)

}
, δ = τi+1 − τi . (19)

Using the inequality exp{−2χδ} ¬ 1 and (16), we derive the estimate

εh(τi+1) ¬ εh(τi) + λi + µi + α

τi+1∫
τi

{
|vh(τ) |2r − |u∗(τ) |2r

}
dτ. (20)
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Consider the function λi (see (17)). Taking into account (8), (2), and (19), one
can show that the inequalities��(Si,Y (τi+1 − τ)Eu

) − exp{−2χτi+1}(si, Eu)��
¬ C0δλ

1/2
h (τi) |Eu|N + C1h1 |Eu|N ∀u ∈ Rr (21)

hold. Here, si = yh(τi) − y0 − B+uh
i . Note that f1(·) ∈ L∞(T ;Rn). Therefore,

���ξh
i − x(t)���n ¬ h +

τi+1∫
τi

| ẋ(t) |n dt ¬ C2(h + δ), t ∈ δi . (22)

In turn, in virtue of (17), (22) and (21), we obtain the estimate

λi ¬ 2 exp{−2χτi+1}
τi+1∫
τi

(
si, E{vh(τ) − u∗(τ)}

)
dτ + ρi + ρ

(1)
i , (23)

where

ρ(1)
i = 2

��������Si,

τi+1∫
τi

Y (τi+1 − τi)C
{
ξh

i − x(τ)
}

dτ

��������
¬ C3(h + δ)δλ1/2

h (τi) ¬ C4δ
3/2λh(τi) + C4δ

1/2(h + δ)2, (24)

It is easily seen that the inequalities

δλ1/2
h (τi)

τi+1∫
τi

���E{vh(τ) − u∗(τ)}���N dτ ¬ δ2λh(τi)+ |E |2δ
τi+1∫
τi

{
|vh(τ) |2r+|u∗(τ) |2r

}
dτ,

h1

τi+1∫
τi

���E{vh(τ) − u∗(τ)}���N dτ ¬ h2
1δ

1/2−ε+|E |2δ1/2+ε
τi+1∫
τi

{
|vh(τ) |2r + |u∗(τ) |2r

}
dτ

holds for any ε ∈ (0, 1/2).

ρi = C5
{
δλ1/2

h (τi) + h1
} τi+1∫
τi

���E{vh(τ) − u∗(τ)}���N dτ.
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Therefore,

ρi ¬ C6

δ
2λh(τi) + h2

1δ
1/2−ε + δ1/2+ε

τi+1∫
τi

{���vh(τ)���2r + |u∗(τ) |2r } dτ
 . (25)

Then, we get (see (18), (22))

µi ¬ C7δ exp {−2χτi+1}
τi+1∫
τi

{
|vh(τ) |2r + |u∗(τ) |2r

}
dτ + C7δ

2(h + δ)2

¬ C8δ
1/2+ε

τi+1∫
τi

{
|vh(τ) |2r + |u∗(τ) |2r

}
dτ + C7δ

2(h + δ)2. (26)

Note that the vector vh
i (see (7), (9)) is found from the condition

vh
i = arg min

{
2 exp{−2χτi+1}(si, Ev) + α |v |2r : v ∈ Rr

}
. (27)

Consequently, from (23) and (27) we derive the inequality

λi + α

τi+1∫
τi

{
|vh(τ) |2r − |u∗(τ) |2r

}
dτ ¬ ρi + ρ

(1)
i . (28)

Hence, in virtue of (20), (24)-(26) and (28), we obtain for ε ∈ (0, 1/2)

εh(τi+1) ¬ εh(τi) + C9

 δ3/2λh(τi) + h2
1δ

1/2−ε

+δ1/2+ε
τi+1∫
τi

{
|vh(τ) |2r + |u∗(τ) |2r

}
dτ + δ1/2(h + δ)2

 , (29)

i.e., (see (14))

λh(τi+1) ¬ (1 + C10δ)λh(τi) + C11

 h2
1δ

1/2−ε

+ δ1/2+ε
τi+1∫
τi

{
|vh(τ) |2r + |u∗(τ) |2r

}
dτ + δ1/2(h + δ)2

 + α
τi+1∫
τi

|u∗(τ) |2r dτ.
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The rule for finding of the control vh
i implies the inequalities

|vh
i |2N ¬ 2|E |2 exp

{ − 2χ(τi+1 + δ)
} (
λh(τi) + h2

1

)
α−2

¬ C12
(
λh(τi) + h2

1

)
α−2. (30)

In addition, we have
λh(0) = 0. (31)

Using inequalities (30) and

δ1/2+ε
τi+1∫
τi

|vh(τ) |2r dτ ¬ C12δ
3/2+ε

(
λh(τi) + h2

1

)
α−2

= C12δ
3/2+εα−2λh(τi) + C12δ

3/2+εα−2h2
1,

we obtain (for δ(h) ∈ (0, 1), δ1/2+ε (h)α−2(h) ¬ const .) the relation

λh(τi+1) ¬ (1 + C13δ)λh(τi)

+ C14

h2
1δ

1/2−ε +
(
α + δ1/2+ε

) τi+1∫
τi

|u∗(τ) |2r dτ + δ1/2(h + δ)2
 .

Hence, taking into account (31) and Lemma 2, we get

λh(τi+1) ¬ C15
(
α + δ1/2+ε + h1δ

−1/2−ε + δ−1/2(h + δ)1/2
)
. (32)

Step 3. In virtue of (30) and (32), we have the inequalities

Ii = δ
1/2+ε

τi+1∫
0

|vh(τ) |2r dτ ¬ C12δ
3/2+εα−2

i∑
j=0

(
λh(τj ) + h2

1

)
¬ C16δ

1/2+εα−2
(
α + δ1/2+ε + h2

1δ
1/2−ε + δ−1/2(h + δ)2

)
. (33)

It is easily seen that the inequality

h2
1δ
−1/2−ε ¬ 2α2

1δ
−1/2−ε + 4

(
h2 + δ2

)
α−2

1 δ
−1/2−ε (34)

is valid. Assume α1 = δ
1/4+ε . Then α2

1δ
1/2+ε = δ1+3ε. Hence, in virtue of this

equality, we obtain

α2
1δ
−1/2−ε = δε, δ2α−2

1 δ
−1/2−ε = α−2

1 δ
3/2−ε = δ1−3ε . (35)
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Moreover, δ1−3ε → 0 if δ → 0 and ε ∈ (0, 1/3). So, if we assume

ε = 1/4, δ = h, α1 = δ
1/4+ε = h1/2,

then, in virtue of (34) and (35), we derive the estimate

h2
1δ
−1/2−ε ¬ C17

(
h2δ−1−3ε + δε + δ1−3ε

)
¬ C18

(
h2δ−7/4 + δ1/4

)
¬ C19h1/4. (36)

In turn, by the use of (33) and (36), we deduce that

Ii ¬ C20h3/4α−2
(
α + h3/4 + h1/4

)
¬ C21h3/4α−2

(
α + h1/4

)
. (37)

Note that
h1/4 ¬ C22α(h) for h ∈ (0, 1). (38)

Then, from (36), (38) and (32) we have

λh(τi) ¬ C22(α + h1/4) ¬ C23α, i ∈ [0 : m]. (39)

Thus inequality (11) follows from (39) (ν2(h) = constα1/2(h)). Next, summing
(29) over i from 0 to j, in virtue of (31), (37) and (39), we have

εh(τi+1) ¬ C24

 h1/4 + h1/2
(
α + h1/4

)

+ h3/4
τi+1∫
0

|u∗(τ) |2r dτ + hα−2 + h3/4α−1
 . (40)

In this case, from (40) we get
τi+1∫
0

|vh(τ) |2r dτ ¬ k1(h)

τi+1∫
0

|u∗(τ) |2r dτ + k2(h), i ∈ [0 : m−1], (41)

where

k1(h) = 1 + d1h3/4α−1(h),

k2(h) = d2
(
h1/4α−1(h) + hα−3(h) + h3/4α−2(h) + h1/2

)
.

It is easily seen that the inequalities

k1(h) ¬ r1(h) = 1 + d3α
2(h), k2(h) ¬ r2(h) = d4h1/4α−1(h) (42)

holds. The inequality (12) follows from (41) and (42). The theorem is proved. □
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Theorem 2 Let the conditions of Theorem 1 be fulfilled. Then the convergence

vh(·) → u∗(·) in L2(T ;Rr ) as h → 0

takes place.

The assertion of Theorem 2 follows Theorem 1 and Theorem 1.2.1 [6, p. 23].
Under some additional conditions, we can obtain the algorithm’s convergence

rate (see Theorem 3 below). Note that, under the condition of Theorem 1, the
solution’s component y(·) is uniquely determined by the component x(·) from
the first subsystem of (1).

Theorem 3 Let the conditions of Theorem 1 be fulfilled. Let also r ¬ N ,
rank E = r , and u(·) ∈ W (T ;Rr ). Then the following inequality is valid:���u∗(·) − vh(·)���2L2(T ;Rr )

¬ K0
{
α1/2(h) + h1/4α−1(h)

}
, (43)

Here K0 is a constant not depending on h and α.
Proof. By the use of (15), it is easily seen that the inequalities

λ1/2
h (t) ¬ c1

λ
1/2
h (τi) +

t∫
τi

(
|vh

i |N + |y(τ) |N
)

dτ
 (44)

are fulfilled for t ∈ [τi, τi+1], i ∈ [0 : m − 1]. Note that h1 = h1/2. In turn, from
(38) and (39) we obtain

τi+1∫
τi

|vh
i |N dτ ¬ c2δα

−1
(
h1 + λ

1/2
h (τi)

)
¬ c3hα−1/2. (45)

In this case, from (44), (38) and (45), in virtue of (39) we get for t ∈ [τi, τi+1]

|zh(t) |n ¬ c4
(
α1/2(h) + hα−1/2(h)

)
, (46)

where zh(t) = wh(t) − x(t). Let the symbol Ẽ stand for an r × r matrix that
consists of r columns of matrix E and has the rank r . In turn, in virtue of (1), (6),
(46), and (22), the estimate��������

t2∫
t1

Ẽ
(
u∗(t) − vh(t)

)
dt

��������r ¬ c5

 |zh(t2) − zh(t1) |n +
t2∫

t1

|zh(t) |n dt
 + c6h

¬ c7α
1/2(h)
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is fulfilled for all t1, t2 ∈ T , t1 < t2. By the use of inequality (41), from Lemma 1
we get the relations

���u∗(·) − vh(·)���2L2(T ;Rr )
¬ 2|u∗(·) |2L2(T ;Rr ) − 2

ϑ∫
0

(u∗(τ), vh(τ))dτ + r2(h)

+ (r1(h) − 1)

ϑ∫
0

|u∗(τ) |2r dτ = 2
ϑ∫

0

((
Ẽ−1
)′

u∗(τ), Ẽ
(
u∗(τ) − vh(τ)

))
dτ

+ r2(h) + (r1(h) − 1)

ϑ∫
0

|u∗(τ) |2r dτ ¬ c8
{
α1/2 + r2(h) + (r1(h) − 1)

}
. (47)

From (47) and (12) we derive the inequality (43). The theorem is proved. □

4. Example

A material point of unit mass moves along a line under the action of a
tractive force. The gravity force is ignored. The travel of the point is inaccurately
measured at discrete, frequent enough, times. It is required to design an algorithm
of reconstructing (in real time mode) the unknown force. According to the second
Newton law, the motion is described by the equation

ẍ(t) = u(t), t ∈ [0, ϑ], (48)

where u(t) is the outer force, x(t) is the travel of the point. Let the initial state x0
and initial velocity y0 be known. Assuming ẋ(t) = y(t), rewrite equation (48) in
the form of system (1)

ẋ(t) = y(t), x(0) = 0,
ẏ(t) = u(t), y(0) = y0 .

(49)

In this case, f1(t) = f2(t) = 0 for t ∈ [0, ϑ]. The equations of the auxiliary
systems have the form of system (4)

ẇh
1 (t) = uh(t) + y0 , wh

1 (0) = x0 , (50)

and system (6) is
ẏh(t) = vh(t), yh(0) = y0 . (51)
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Systems (49)–(51) were solved using the Euler method with some integration step
δ. At the moments τi = iδ, the values vh

i and uh
i are calculated by the formulas

(see (5), (7) and (9))

uh
i = α

−1
1

(
ξh

i − wh
1 (τi)
)
,

vh
i = α

−1 exp
{ − τi+1

} (
uh

i + y0 − yh(τi)
)
.

In the numerical experiment, we setϑ = 2, x0 = 1, y0 = 1, δ = 0.003, α1 = 0.006,
α = 0.002, ξh

i = x(τi) + h cos(10t). The simulation results are presented in
Figs. 1–4. Figures 1 and 2 correspond to the case h = 0.01, whereas Figs. 3

Figure 1: h = 0.01

Figure 2: h = 0.01
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and 4, to the case h = 0.001. In Figs. 1 and 3, the dashed lines represent the
force u(t) = 1 if t ∈ [0, 1], u(t) = −1 if t ∈ (1, 2], while the solid lines represent
the result of the work of the algorithm vh(t). In Figs. 2 and 4, the dashed lines
represent uh(t) + y0, while the solid lines, y(t). As we see from the Figs. 3 and 4,
the solid and dashed lines virtually coincide.

Figure 3: h = 0.001

Figure 4: h = 0.001

5. Conclusion

The disturbance reconstruction problem for a system of linear differential
equations is considered. The problem consists in designing an algorithm of dy-
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namical reconstruction of an disturbance through measuring a part of system’s
phase coordinates. In the paper, the problem with two peculiarities is investigated.
First, it is assumed that not all but a part of phase coordinates of the dynamical
system is inaccurately measured at discrete, frequent enough, times. Second, as
to the unknown disturbance, only the fact that this disturbance is an element of
the space of square integrable functions (i.e., it may be unbounded) is known.
Taking this feature of the problem into account, a solving algorithm that is stable
to informational perturbations and computational errors is designed.

References

[1] H.T. Banks and K. Kunisch: Estimation Techniques for Distributed Pa-
rameter Systems, Boston: Birkhäuser, 1989.

[2] Y. Bar-Shalom and X.R. Li: Estimation and Tracking: Principles, Tech-
niques, and Software, Boston: Artech House, 1993.

[3] N.N. Krasovskii and A.I. Subbotin: Game-Theoretical Control Problems,
New York—Berlin: Springer Verlag, 1988.

[4] A. Kuklin, V. Maksimov, and N. Nikulina: On reconstructing unknown
characteristics of a nonlineas system of differential equations, Archives of
Control Sciences, 23(2) (2015), 163–176.

[5] L. Ljung and T. Söderström: Theory and Practice of Recursive Identifica-
tion, Massachusetts: M.I.T. Press, 1983.

[6] V.I. Maksimov: Dynamical Inverse Problems for Distributed Systems,
Utrecht—Boston: VSP, 2002.

[7] V.I. Maksimov: The tracking of the trajectory of a dynamical system,
J. Appl. Math. Mech., 75 (2011), 667–674.

[8] V.I. Maksimov: An algorithm for reconstructing controls in a uniform met-
ric, J. Appl. Math. Mech., 77(2) (2013), 212–219.

[9] V.I. Maksimov: Game control problem for a phase field equation, J. Optim.
Theory and Appl (2016), JOTA-D-14-00400R1, DOI: 10.1007/s10957-015-
0721-0.

[10] V.I. Maksimov: Dynamic reconstruction of system disturbances using in-
accurate discrete measurements of phase coordinates, J. Computer. Syst. Sc.
Int., 57(3) (2018), 358–373.

https://doi.org/10.1007/s10957-015-0721-0
https://doi.org/10.1007/s10957-015-0721-0


ON ONE ALGORITHM FOR RECONSTRUCTION OF AN DISTURBANCE
IN A LINEAR SYSTEM OF ORDINARY DIFFERENTIAL EQUATIONS 773

[11] V.I. Maksimov and F. Tröltzsch: Input reconstruction by feedback control
for the Schlogl and Fitzhugh-Nagumo equations, Int. J. Appl. Math. Comput.
Sci., 30(1) (2020), 5–22.

[12] J.P. Norton: An Introduction to Identification, London: Academic Press,
1986.

[13] Yu.S. Osipov and A.V. Kryazhimskii: Inverse Problems for Ordinary Dif-
ferential Equations: Dynamical Solutions, London: Gordon and Breach,
1995.

[14] Yu.S. Osipov, A.V. Kryazhimskii, and V.I. Maksimov: Methods of Dynam-
ical Reconstruction of Inputs of Control systems, UrO RAN, Ekaterinburg
(in Russian), 2011.

[15] H. Unbehauen and G.P. Rao: Identification of Continuous Systems, Ams-
terdam: Elsevier, 1987.


	M. Blizorukova V. Maksimov: On one algorithm for reconstruction of an disturbance in a linear system of ordinary differential equations
	Introduction. Problem statement
	Method for solving the problem
	Solving algorithm
	Example
	Conclusion
	References

