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Abstract Thermodynamics deals with irreversible transformations of
substances. Every thermodynamic property of a substance, as a function
of two parameters describing its state, can be illustrated as a simply con-
nected manifold. The term manifold stands for the Methods of Geometrical
Representation of Thermodynamic Properties of Substances by Means of
Surfaces. Generally, every transformation of a substance changes its energy
(or enthalpy) by heat transfer and work done on it. All such changes (trans-
formations) are considered to be irreversible and can be described using ap-
propriate manifolds. Studies show that every transformation is associated
with the degradation of energy. Such relations (between heat, work and
other forms of energy or enthalpy) can be described by the Pfaff formulas
and their integrations.

This article discusses the issue of irreversible energy degradation in heat
transfer between two fluids. Irreversible heat transfer between separated flu-
ids most often occurs through surface heat exchangers. All such processes
are determined by convective heat transfer in thermal boundary layers and
conduction through the wall. Consequently, entropy changes of fluids in heat
and mass transfer can be observed in these layers. While the entropy rate
of the heating fluid is negative and that of the heated medium is positive,
the sum of entropy changes of all substances involved in the heat transfer
process is always positive. These sums, known as entropy increase (entropy
generation), can be interpreted as the measure of irreversible degradation
of energy in heat transfer processes. The consequence of this degradation
is that an arbitrary engine powered by the degraded (lower-temperature)
heat flux will operate at a lower efficiency. The significance of this discus-
sion relates especially to cases in power plants and cooling systems where

∗Corresponding Author. Email: drozd@imp.gda.pl

mailto:drozd@imp.gda.pl


170 Z. Drożyński

surface heat exchangers are used. In the discussion proposed is the entropy
increase as a criterion of irreversible energy degradation in heat transfer.
Such introduced measure of effectiveness leads to an analysis of local overall
heat transfer coefficient optimization on the cone-shaped manifold.
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Nomenclature

A – area, surface, m2

D – characteristic diameters, m
h – heat transfer coefficient, W/m2K
k – thermal conductivity, W/mK
l – coordinate, m
p – pressure, Pa
q – heat flux, W/m2

Q – heat, J
S – entropy, J / K
s – specific entropy, J/kg K
t – temperature, ◦C
T – temperature, K
V – volume, m3

v – specific volume, m3/kg
u – velocity, m/s

Greek symbols

η – dynamic viscosity, Pa s
ρ – density, kg/m3

Π – total entropy increase, W/K
π – local entropy increase, W/m2 K

Subscripts

a – average
c – cold fluid
h – hot fluid
i – inner
o – outer
w – wall

Dimensionless numbers

Nu – Nusselt number
Pr – Prandtl number
Re – Reynolds number
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1 Introduction
The first step in every thermodynamic problem is a phenomenological
model description with the system assumptions made. Also very impor-
tant is a definition of the control volume (as an open set) and its bound-
ary as a surface control (enclosure). Analysis of the problem begins with
defining the simply connected control volume V (l1, l2, l3) for the analysed
substance, which is then divided into elementary control volume elements
dV (l1, l2, l3), where l1, l2, l3 are geometrical coordinates of the entire con-
trol space V (l1, l2, l3). The element of the control volume dV (l1, l2, l3) is the
open space and the boundary surface control dA(l1, l2, l3) is its enclosure.
Let us analyse the fluid transformation in the element of the control volume
dV (l1, l2, l3) with the boundary surface defined as dA(l1, l2, l3). The analy-
sis is performed locally in the elements of the control volume dV (l1, l2, l3)
and then applied to optimise the entire device by appropriate integration
over the entire control volume V (l1, l2, l3). In technical considerations, all
thermodynamic parameters are real functions describing distributions of
these quantities in the space V (l1, l2, l3).

The basic principles in thermodynamics are Heat, Energy/Enthalpy and
Work (HEW) balances known as the Law of Energy Conservation. Written
with the coordinates Q(l1, l2, l3), T (l1, l2, l3), v(l1, l2, l3) this law takes the
form:

dqt(T, v) = dq(T, v) + dqf (T, v)

=
(
∂qt(T, v)
∂T

)
v
dT +

(
∂qt(T, v)

∂v

)
T
dv

= du(T, v) + p(T, v)dv , (1)

where:
dqt(T, v) [J/kg] – total amount of heat accompanying fluid transforma-

tion in the control volume element dV ,
dq(T, v) [J/kg] – amount of heat transferred from an external source

through the heat transfer surface element dA to the
fluid control volume element dV ,

dqf (T, v) [J/kg] – amount of heat heating the given fluid control volume
element dV as a result of friction on the surface ele-
ment dA in viscous fluid,

qt(T, v) [J/kg] – total amount of heat accompanying fluid transforma-
tion, related to one kilogram of its mass,
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u(T, v) [J/kg] – specific internal energy of the fluid in the control vol-
ume element dV ,

cv(T, v) [J/kg K] – specific heat capacity, determined for the substance
being analysed at constant volume.

The above equation, when referred to the given fluid control volume element
dV and written in the Q, T , v, space, which is also known as the Zeuner
equation, is an inexact partial differential equation. This means that the
result of integration depends on the path of integration.

Similarly, HEW balance coordinates Q(l1, l2, l3), T (l1, l2, l3), p(l1, l2, l3)
take the form

dqt(T, p) = dq(Tp) + dqf (Tp)

=
(
∂qt(T, p)
∂T

)
p
dT −

(
∂qt(T, p)

∂p

)
T

dp

= dh(T, p)− v(T, p)dp , (2)

where:
h(T, v) [J/kg] – specific enthalpy of the fluid in the control volume

element dV ,
cp(T, p) [J/kg K] – specific heat capacity, determined for the substance

being analysed at constant pressure.
It can be easily shown that vector pairs cv(T, v), p(T, v) and cp(T, p),

−v(T, p) determining rotational vector fields do not allow for the calculation
of integrals. When written in differential form, the HEW balance equations
are inexact differential equations. Thus, in the analysed spaces (Q, T, v)
or (Q, T, p) no surfaces or manifolds provide solutions to HEW balances.
There are no manifolds describing the solution of these equations defined in
these spaces. To solve and optimize the problem, new equations are needed.
After determining the integrating factor and its application, converted law
equations become an exact differential Pfaff’s form. Consequently, solutions
exist for new equations written in the new converted spaces (Q, T, v, s)
or (Q, T, p, s). These solutions have the form of surfaces obtained from
integration, which are independent of the path of integration. These sur-
faces meet conditions of differentiable potential manifolds. The results of
integration are differentiable manifolds and corresponding vector fields.

In thermodynamics, converting inexact differential equations into ex-
act differential equations allowed Clausius to define the specific entropy
of a substance [3]. Thermodynamically, this operation involves defining
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manifolds (vector fields), which make it possible to solve equations de-
scribing real processes in fluids. Entropy defined in the above way is an
additional state parameter of the fluid, which can be used to describe its
real irreversible processes. The new form of equations written in the spaces
Q, T, v, s or Q, T, p, s can be integrated, and the results of this oper-
ation exist in the form of differential, potential manifolds. The equations
describing the specific entropy of the fluid are converted equations of HEW
balances.

For parameters T (l1, l2, l3), v(l1, l2, l3), s(l1, l2, l3) the following equation
is true:

ds(T, v) = dqt(T, v)
T

=
dq(T, v) + dqf (T, v)

T

=
[(
∂qt(T, v)
∂T

)
v
dT +

(
∂qt(T, v)

∂v

)
T
dv

] 1
T

= [cv(T, v)dT + p(T, v)dv] 1
T
. (3)

Similarly, for coordinates T (l1, l2, l3), p(l1, l2, l3), s((l1, l2, l3) we have

ds(T, p) = dqt(T, p)
T

=
dq(T, p) + dqf (T, p)

T

=
[(

∂qt(T, p)
∂T

)
p
dT +

(
∂qt(T, p)

∂p

)
T

dp

]
1
T

= [cp(T, p)dT − v(T, p)dp] 1
T

(4)

provided that T 6= 0.
The definition of the specific entropy of a substance makes it possible

to balance the heat flux delivered to (or removed from) one kilogramme of
the substance to allow performing (or being subjected to) certain work by
changing its specific energy or enthalpy in real irreversible transformations.

The last two equations (Pfaff formulas) are described in defined spaces
and conditions, i.e. for specific substances. Therefore their illustration first
requires the specification of the substance being analyzed. In the following
study, water is chosen as the exemplar substance. Similarly, charts can be
drawn for an arbitrary substance as a function of two of its parameters of
state. Each real substance has a set of its unique surfaces, manifolds (Fig. 1
to Fig. 9), on which all possible thermodynamic processes can be described
and analysed [1].
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Figure 1: Surface illustrating specific en-
tropy of water as a function of
temperature and specific volume.
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Figure 2: Surface illustrating specific en-
tropy of water as a function of
temperature and pressure.
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Figure 3: Surface illustrating Clausius in-
ternal energy of water as a func-
tion of specific entropy and spe-
cific volume.
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Figure 4: Surface representing Helmholtz
free energy of water as a function
of specific volume and tempera-
ture.
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Figure 5: Surface illustrating Gibbs free
enthalpy of water as a function
of temperature and pressure.
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Figure 6: Surface illustrating specific en-
thalpy of water as a function of
pressure and specific entropy.
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Figure 7: Surface illustrating density of
water as a function of tempera-
ture and pressure.
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Figure 8: Surface illustrating dynamic vis-
cosity of water as a function of
temperature and pressure.
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Figure 9: Surface illustrating thermal con-
ductivity of water as a function
of temperature and pressure.

The last two exact differentiable equations can be taken to solve the
Navier Stokes set of equations expressing the problem of irreversible trans-
formations.

The above equations allow for another interpretation of entropy. As can
be noticed from the structure of Eqs. (1), (2) and their converted versions
(3), (4), the duality of entropy is expressed in the fact that, on one hand, it is
a function of the temperature field and, on the other, it is a volumetric/mass
phenomenon.

The above diagrams (Fig. 1 and Fig. 2) of potential differentiable mani-
folds are perfect illustrations for interpretation of Caratheodory’s theorem.

Specific entropy has made it possible to define and generate other man-
ifolds and their inducted vector fields, such as Clausius internal energy,
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Helmholtz free energy, Gibbs free enthalpy, or specific enthalpy of a given
substance [4–7].

The above four manifolds (presented in Fig. 3 to Fig. 6) can only be
defined using the coordinates introduced by Clausius, which are the spe-
cific entropy of the substance s(T, v) or s(T, p). When determining these
manifolds, preserving the Maxwell relations is essential. All the above func-
tions, determined as integrals of exact partial differential equations, have
the properties of potential manifolds. Each real thermodynamic substance
has its individual, unique set of surfaces, potential manifolds, on which all
possible thermodynamic processes can be described, calculated and anal-
ysed. Knowing these manifolds (or equations) and the HEW balance equa-
tions, we can solve the problem of irreversible heat flow, i.e. analyse its
degradation. The above manifolds are generated for water as an example.
Similarly, charts can be drawn for an arbitrary substance as a function of
two its parameters of state.

The processes taking place in the surface heat exchangers, analysed be-
low, illustrate the most frequently used method of heat transfer. The flows
of both fluids are separated by a wall. The analysis assumes convective heat
transfer in the thermal boundary layers (TBL) of the fluids on both sides
and heat conduction through the wall. Fluid on one side of the wall has
fully defined initial and final properties, including mass flow rate, whereas
the fluid on the other side of the wall can be the object of optimisation
in terms of the type of substance, mass flow rate and its initial thermody-
namic parameters. Another object of optimisation can be the arrangement
of heat transfer surfaces. The geometry of heat transfer surfaces, as well as
the mass flow rate and thermodynamic parameters of the second fluid need
to be selected in such a way that the irreversible degradation of energy in
the entire process is minimal. The analysis requires an explicit definition
of a criterion of the process optimisation. It is proposed to be the minimi-
sation of entropy increase in heat transfer, i.e. minimisation of irreversible
degradation of energy [2]. The dominating processes, which is the object of
this analysis, is the entropy increase caused by heat transfer in the TBL
of the fluids and heat conduction through the wall. The analysis requires
information on the basic properties of the fluids involved in the process.
The fluid properties, defined as real functions of two parameters relating to
both fluids, are available in the form of manifolds limited by the extreme
values of their parameters.

The present work is a continuation of ideas described in articles [2, 11,
15]. The paper [2] defines and discusses entropy increase as a measure of
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energy degradation in heat transfer. It also shows the influence of entropy
increments calculated for upper and lower energy sources on the efficiency of
the whole cycle. This influence means that an arbitrary engine powered by
a degraded (lower-temperature) heat flux will operate at a lower efficiency.
Paper [15] discusses the effects of heat transfer irreversibility in condensers
working as a lower heat source of a power plant cycle. For the first time
discussed is the analysis of steam condensation in the case of inertial gases,
including processes in the vapour-gas sublayer, heat conduction through
condensate film and fouled wall as well as an analysis of heat transfer
in TBL of water. An analysis of irreversibility sources is carried out by
determining the local entropy increase in individual TBLs. The results of
the analyses published in [15] help explain how heat transfer irreversibility
occurs and assess its scope. This article presents the possibilities of heat
transfer optimization using manifolds.

2 Assumptions for heat transfer analysis
in surface heat exchangers

To make the optimisation process as clear and transparent as possible, the
following assumptions and simplifications have been adopted:

• Heat flow is only analysed between two separated (non-mixing) mass
flows of fluids mh and mc with different temperatures (averaged in
the channel cross-section): Th(l) > Tc(l);

• The phenomenon is steady and time independent;

• The phenomenon is one-dimensional, i.e. the averaged temperatures
of fluid change along the channel length 0 < l < L as a result of
heat transfer between the fluids, but the heat flow is mainly driven
by what takes place in the fluid’s TBL in the vicinity of the heat
transfer surface dA(l);

• For simplification, it is assumed that the fluid flow areas are simply-
connected spaces

• Fluids flowing through the channels require optimisation. Geometrical
properties described as Fh(l) and Fc(l) (where F is the cross-section
area of the channels) and their characteristic diameters Dh(l) and
Dc(l) can be optimised. These properties make it possible to calculate
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explicitly the Reynolds and Nusselt numbers which determine the
nature of the analysed phenomena;
• Channels are separated by a single-layer wall with heat transfer
area A(l);
• The wall thickness δ(l) = δ is constant along the heat transfer area;
• The wall is made of a material with known thermal conductivity,
k(T ) = k.

Control volumes dVh(l) and dVc(l) for both fluids are marked in such
a way that their common intersection is the control area segment dA(l).
The coordinate l defines the position of heat transfer control element dA(l)
in the device. All thermodynamic parameters are functions of the channel
length l. For calculations let us generally assume that the fluid undergoing
the thermal process is hot with initial parameters Th(l = 0) = Th0, ph(l =
0) = ph0, and final parameters Th(l = L) = ThL, ph(l = L) = phL as well
as a mass flow rate of mh. Also all the thermodynamic and thermokinetic
properties of the fluids necessary to determine the heat transfer process
are known. These characteristics are explicitly given as functions of two
parameters (e.g., T – temperature and p – pressure of the fluid). They are
differentiable manifolds:

• fluid densities ρh(Th, ph) and ρc(Tc, pc),
• specific fluid enthalpies hh(Th, ph) and hc(Tc, pc) or values of an arbi-
trary thermodynamic potential,
• fluid dynamic (or kinematic) viscosity coefficients ηh(Th, ph) and
ηc(Tc, pc),
• fluid thermal conductivities kh(Th, ph) and kc(Tc, pc),
• Prandtl numbers Prh(Th, ph) and Prc(Tc, pc),

where:

Thmin < Th < Thmax and Tcmin < Tc < Tcmax ,

phmin < ph < phmax and pcmin < pc < pcmax ,

Th and Tc as well as ph and pc – temperature and pressure of the fluids are
within the changeability range of these parameters. The fluid properties
defined (within appropriate ranges) in the above way can be treated as
differentiable manifolds and as such used in calculations.
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Figures 1 to Fig. 9 present various differentiable potential surfaces, or
manifolds representing the basic properties of water to calculate heat trans-
fer. For greater clarity, the entire analysis will be presented in the flat geom-
etry of the wall. The prerequisite formal assumption for the analysis refers
to the continuity of temperature distributions.

3 Temperature distribution in the heat transfer
process

The analysis is performed locally on control volume elements dV (l) and then
applied to the general heat exchange process by appropriate integration
over the entire control volume V (l). The first step in every thermodynamics
problem is a phenomenological model description with system assumptions
made. Also very important is a definition of the control volume and its
boundary surface control.

Figure 10: Diagram of heat transfer between the flows of two fluids separated by a wall.
where: Th(l) [K] – local averaged temperature in the hot fluid flow,

Twh(l) [K] – local wall temperature on the hot fluid side,
Twc(l) [K] – local wall temperature on the cold fluid side,
Tc(l) [K] – local averaged temperature in the cold fluid flow,
dQ(l) – local heat transfer between the fluids.

The mass flow rate mh of the medium is known and the optimised mass
flow ratemc is assumed in the optimization process. The above assumptions
make it possible to determine the homogeneous flow velocities wh(l) and
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wc(l) of each fluid in an arbitrary cross-section. The analysed heat transfer
between the two fluid flows is composed of [8–10]:

• convection in the TBL of the hot fluid determined by the local con-
vective heat transfer coefficient hconv h(l),

• local conduction through the wall with thickness δ(l) = δ and thermal
conductivity k,

• convection in the TBL of the cold fluid determined by the local con-
vective heat transfer coefficient hconv c(l).

From the Law of Heat Conservation, we have:

dQ(l) = hconv h(l)
(
Th(l)− Twh(l)

)
dA(l)

= k

δ

(
Twh(l)− Twc(l)

)
dA(l)

= hconv c(l)
(
Twc(l)− Tc(l)

)
dA(l), (5)

where: hconv h(l) [W/(m2 K)] – local convective heat transfer coefficient
in the TBL of the hot fluid as a function of local Reynolds and Nusselt
numbers for the geometry:

Reh(l) = f1
(
Fh(l), Dh(l),mh, ρh(Th(l), ph(l)), ηh(Th(l), ph(l))

)
,

Nuh(l) = f2
(
Reh(l),Prh(Th(l), ph(l))

)
,

hconv h(l) = fh
(
Dh(l),Nuh(l), kh(Th(l), ph(l))

)
,

(6)

hconv c(l) [W/(m2K)] – local convective heat transfer coefficient in the TBL
of the cold fluid as a function of local Reynolds and Nusselt numbers for
the geometry:

Rec(l) = f3
(
Fc(l), Dc(l),mc, ρc(Tc(l), pc(l)), ηc(Tc(l), pc(l))

)
,

Nuc(l) = f4
(
Rec(l),Prc(Tc(l), pc(l))

)
,

hconv c(l) = fc
(
Dc(l),Nuc(l), kc(Th(l), ph(l))

)
,

(7)

dQ(l) [W] – heat flux between the flowing media through the heat transfer
surface element dA.

The Nusselt numbers describe free or forced convection, depending on
the Reynolds number determined for the given fluid flowing in the local ge-
ometry. The above equation system, along with the determined Reynolds
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and Nusselt numbers, makes it possible to determine the missing local tem-
peratures Twh(l), Twc(l) on the wall and the local heat transfer dQ(l) pass-
ing between the fluids in the vicinity of the heat transfer area dA(l). In this
way, local temperature distributions Th(l), Twh(l), Twc(l), Tc(l), and local
heat fluxes dQ(l) along the heat transfer area A(1) can be calculated. Math-
ematically, the problem can be presented with a set of nonlinear equations
[11] and [15].

For the given channel coordinate l, local temperature differences in fluids
can be determined as:

• (Th(l) − Tc(l)) – difference between averaged fluid temperatures in
flows,

• (Th(l)− Twh(l)) – temperature difference in TBL of the hot fluid,

• (Twh(l)− Twc(l)) – temperature difference in the wall,

• (Twc(l)− Tc(l)) – temperature difference in TBL of the cold fluid.

The fact that the sum of temperature differences in the layers and wall
is equal to the temperature difference between the fluids provides a simple
and well-known formula for local overall (resultant) heat transfer coefficient
hoverall(l). For the case of flat geometry:

hoverall(l) = hconv h(l)hconv c(l)k
hconv c(l)k + hconv h(l)hconv c(l)δ + hconv hk

. (8)

Written for a plane wall, Eq. (8) illustrates the rule for a potential field of
temperature. According to this rule (see analysis assumption and Fig. 10),
the sum of temperature differences in boundary layers and the wall is equal
to the temperature difference between substances in the vicinity of heat
transfer field dA(l). Equations following this rule can be written for walls
of any geometry and their interpretations will always produce similar cone-
shaped manifolds. Analyzes of these similarly cone-shaped manifolds lead
to the same results, as described in Section 5 of this work.

The set of Eqs. (5)–(7) allows for an accurate designation of temperature
distribution [15] needed in further calculations. However, a new equation
criterion is needed to optimize the problem of heat transfer.
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4 Irreversibility of heat transfer
Local entropy changes occur naturally in fluid flows due to irreversible heat
transfer through the wall dQ(l) and friction heat dQf (l) resulting from
turbulent fluid flow in the exchanger passages. For individual fluids:

dSh(l) = dQht(l)
Th(l) =

dQh(l) + dQfh(l)
Th(l) , (9)

dSc(l) = dQct(l)
Tc(l)

=
dQc(l) + dQfc(l)

Tc(l)
. (10)

It is also easy to determine the thermokinetic effects of mass flows [2, 11, 15]

dQfh(l) = f5(Fh, dl),
dQfc(l) = f6(Fc, dl).

The Second Law of Thermodynamics determines the direction of heat trans-
fer from the hotter fluid to a lower temperature domain.

dQc(l) = −dQh(l) = dQ(l). (11)

The entropy change of the warmer fluid is negative (dSh(l) < 0), while
that of the cooler fluid is positive (dSc(l) > 0). Heat transfer dQ(l) through
the wall and friction heat dQf (l) observed in the fluid flows in the ex-
changer passages are interdependent. The higher the local Reynolds num-
bers (Rec(l), Reh(l)) describing the turbulence of the fluid flows in the pas-
sages, the higher the corresponding Nusselt numbers (Nuc(l), Nuh(l)) and,
as a consequence, the higher the local heat transfer coefficients hconv h(l),
hconv c(l) describing the heat transfer between the fluids. Along with this
rule, however, the increasing Reynolds number intensifies the effects of fric-
tion heat, which contributes to the additional entropy increase. The sum of
entropy changes of substances involved in the heat transfer process is equal
to the entropy increase (known in literature as the entropy generation) [2]

dπ(l) = dSc(l) + dSh(l)

= dQ(l)
Tc(l)

[
1− Tc(l)

Th(l)

]
+ dQfc(l)

Tc(l)
+ dQfh(l)

Th(l)

= dQ(l)
Th(l)

[
Th(l)
Tc(l)

− 1
]

+ dQfc(l)
Tc(l)

+ dQfh(l)
Th(l)

= dπQ(l) + dπf (l) ≥ 0. (12)
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The local entropy increase is equal to the sum of entropy increase dπQ(l)
resulting from irreversible heat transfer dQ(l) through the wall and to the
entropy increase dπf (l) caused by the friction of fluids in the passages. The
sum of the entropy changes of the fluids involved in the heat transfer process
is always positive. The entropy increment is equal to zero (dπ(l) = 0) if and
only if dQ(l) = 0 and dQf...(l) = 0 (no thermodynamic transformations).
The entropy increments are always positive (dπ(l) > 0) when dQ(l) > 0
or dQf...(l) > 0 (for all other thermodynamic transformations). In thermo-
dynamics, there has been no explicit method for calculating the efficiency
of heat transfer [12–14], and certainly the Second Law of Thermodynamics
is not applicable in this case. The above defined entropy increase is the
expected solution. When evaluating the heat transfer, we should determine
in which process (respective convection or conduction) the largest entropy
increases occur. For this purpose, the temperature distribution is to be de-
termined in successive layers, and then in the wall. After complementing
these equations with the temperature distributions on the wall surfaces
(Twh(l), Twc(l)) obtained from numerical or experimental analyses, we can
analyse the entropy increase in the TBL on both sides of the heat transfer
wall [2, 11, 15]

dπQ(l) = dQ(l)
Tc(l)

[
1− Tc(l)

Th(l)

]
= dQ(l)

{ 1
Tc(l)

[
1− Tc(l)

Twc(l)

]
+ 1
Twc(l)

[
1− Twc(l)

Twh(l)

]
+ 1
Twh(l)

[
1− Twh(l)

Th(l)

]}
= dπTwc,Tc(l) + dπTwh,Twc(l) + dπTh,Twh

(l)
= dπTh,Tc(l) ≥ 0. (13)

The local entropy increase dπQ(l) caused by irreversible heat transfer dQ(l)
through infinitesimal surface element dA(l) of the heat exchanger surface is
equal to the sum of entropy increases in TBL of the fluids and the wall. The
above differential form of the relations can be used to calculate the total
entropy increase caused by the heat transfer between the flowing fluids in
the entire heat exchanger. By integrating the local entropy increase dπQ(l)
along the fluid flow path l (or over the heat transfer surface A(l)), we can
obtain the total entropy increase ΠQ connected with heat transfer in the
entire heat exchanger [15].
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In order to obtain relevant heat transfer, the process should be optimized
to minimize entropy increase, which involves minimizing all the terms in
the above equation. As technical analyses have shown, the entropy increase
connected with the irreversible heat transfer is far larger than the entropy
increase caused by the turbulent fluid flow

dπQ(A)� dπf (A). (14)

According to (13), calculating the entropy increase connected with the ir-
reversible process of heat transfer through the infinitesimal surface ele-
ment dA(l) requires knowledge of the local specific entropy change in the
heated fluid and the dimensionless local Thermodynamic Potential Coeffi-
cient, TPC, expressed by relevant temperature values

0 < TPCTh,Tc(A) =
[
1− Tc(A)

Th(A)

]
< 1. (15)

By knowing the local heat transfer dQ(A) as well as real distributions
Tc(A) and Th(A) we can calculate the entropy increase as a measure of
energy degradation in the irreversible heat transfer process of the entire
heat exchanger. As has been shown in [2], a consequence of this degradation
is that an engine powered by the degraded (lower-temperature) heat flux
will be less efficient.

In order to obtain relevant heat transfer, the process should be optimized
to minimize the entropy increase

dπQ(l) = dQ(l)
Tc(l)

[
1− Tc(l)

Th(l)

]
= dQ(l)
Th(l)

[
Th(l)
Tc(l)

− 1
]
≥ 0→ min . (16)

Optimization of the process, i.e. minimization of irreversible energy degra-
dation (inflation) in the heat transfer process, involves minimizing entropy
increase. For the entropy increase to be as small as possible the temperature
difference between the fluids should also be minimal[

Th(l)− Tc(l)
]
→ min . (17)

Generally, the smaller temperature difference between the heat transfer
fluids, the smaller the entropy increase. On the other hand,

dQ(l) = dA(l)hoverall(l)
[
Th(l)− Tc(l)

]
. (18)

To reduce costs, we aim to obtain the smallest possible heat transfer surface

dA(l)→ min . (19)
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To ensure the required effect of heat transfer, we should maximally intensify
hydrodynamic conditions by

hoverall(l)→ max . (20)

A geometric illustration of the local overall heat transfer coefficient hoverall(l)
as a function (8) of varying local convective heat transfer values hconv h(l),
hconv c(l), with heat conduction across the wall (determined by its thickness
δ, and thermal conductivity k) can be presented as a manifold in Fig. 11.
Of course, the presented section of the cone-shaped manifolds is defined in
an open domain.
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Figure 11: Manifold illustrating local overall heat transfer coefficient (hoverall(l)) values
generated for variable local convective heat transfer parameters (hconv h(l),
hconv c(l)) and conduction conditions in the wall (δ and k), as well as for
assumed initial fluid conditions.

Equipped with the optimization criterion (13)–(16), the system of equa-
tions (5)–(8) and necessary data specifying the properties of substances
(manifolds) involved in the process, the optimization can begin. The anal-
ysis can be performed during the heat exchanger construction as well as
during their operation. By executing step-by-step calculations for differ-
ent types of substances, mass flow rates, and initial thermodynamic condi-
tions, one can determine the local and total entropy increase. Additionally,
by changing the geometrical arrangement (co- and counter-flow devices),
one can examine the effect of channel geometries on the efficiency of the
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entire process. The analysis of local overall heat transfer coefficients on
cone-shaped manifolds is invaluable to the optimization of heat transfer
efficiency.
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Figure 12: Cone-shaped manifold properties. Surface hoverall(l)(hconv h(l), hconv c(l)) with
projections of its intersections with planes dhoverall(l) = 0.

5 Conclusions from manifold-based analysis

The aim of this paper was to analyse and then optimise heat transfer, i.e.
minimise irreversible energy degradation in heat exchangers. The adopted
criterion (17) provided the highest overall heat transfer coefficient value
(20). The latter is defined as a function of two variable local convective
heat transfer coefficients (8) and can be illustrated as a surface. This surface
fulfils the baseline conditions for a cone-shaped manifold.

• Each real substance has a set of unique surfaces, or simply connected
manifolds, on which all possible thermodynamic processes can be de-
scribed and analysed [1].

• The sum of entropy changes in heat transfer process substances equals
the entropy increase (entropy generation), which is always positive
and can be interpreted as a measure of irreversible energy degrada-
tion [2].
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• The optimisation of the process, i.e. minimisation of irreversible en-
ergy degradation in the heat transfer process, involves minimising
entropy increase.

• Every heat transfer process defined between two fluids separated by
a wall (with a known geometry) can be determined as a resultant
local overall heat transfer coefficient. This is a function of two local
convective heat transfer coefficients and conductivity in the wall. Lo-
cal overall heat transfer coefficient hoverall(hconv h(l), hconv c(l)) can be
illustrated and analyzed on a cone-shaped manifold.

• Since for 0 ≤ l ≤ L, the second mixed derivatives of the local overall
heat transfer coefficient are equal

∂2hoverall(l)
∂hconv h(l)∂hconv c(l)

= 2hconv c(l)hconv h(l)k3

[hconv c(l)k+hconv h(l)hconv c(l)δ + hconv h(l)k]3

= ∂2hoverall(l)
∂hconv c(l)∂hconv h(l) , (21)

where surface hoverall(hconv h(l), hconv c(l)) is a differentiable manifold.
This mathematical manifold has some very interesting properties re-
garding the theory of heat transfer.

• Apparently, to achieve a maximum overall heat transfer coefficient
(Eq. (20)) both convective heat transfer coefficients should be as
large as possible, where hconv h(l) and hconv c(l) can be calculated from
known procedures (6) and (7).

• Manifold hoverall(hconv h(l), hconv c(l)) describing the overall heat trans-
fer coefficient has the local maximum for hconv h(l) = hconv c(l).

• At an arbitrary point of the manifold, we can determine changes
dhoverall(l) as a Pfaff’s form

dhoverall(l) = ∂hoverall(l)
∂hconv h(l) dhconv h(l) + ∂hoverall(l)

∂hconv c(l)
dhconv c(l)

= B
[
dhconv c(l)2dhconv h(l) + hconv h(l)2dhconv c(l)

]
, (22)
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where

B = k2

[hconv c(l)k + hconv h(l)hconv c(l)δ + hconv h(l)k]2
.

To intensify the heat transfer (i.e. to increase the overall heat trans-
fer coefficient hoverall(l)), it is more effective to increase the smaller
convective heat transfer coefficient.

• With equations (5) and (18), it is easy to show that the resultant
overall heat transfer coefficient hoverall(l) is always smaller than the
smallest element of the set {hconv h(l), hconv c(l), k/δ}

min{hconv h(l), hconv c(l), k/δ} > hoverall(l), (23)

where min{hconv h(l), hconv c(l), k/δ} – is the smallest element of the
set for 0 < l < L. This is another property of the cone-shaped mani-
fold, describing the local overall heat transfer coefficient.

• The analysis should be first performed locally on control volume el-
ements dV (l1, l2, l3) and then applied to the general heat exchange
process by appropriate integration over the entire control volume
V (l1, l2, l3) [15].

• The analysis can be performed during the construction of heat ex-
changers as well as during their operation.

• Geometric illustrations of equations defining the local overall heat
transfer coefficient as a function of two local convective heat transfer
parameters written for any wall geometry will always produce similar
cone-shaped manifolds.

As mentioned before, plane wall Eq. (8) illustrates the general rule for the
potential field of temperature. Analogous equations written in a cylindrical
coordinate system for warmer fluids flowing in the pipe takes the form:

hoverall(l) = hconv h(l)hconv c(l)kCδ
hconv c(l)kCo + hconv h(l)hconv c(l)δCiCo + hconv hkCi

, (24)

where Co = Do/Dr, Ci = Di/Dr, Cδ = (Dr ln(Do/Di))/2 and Dr – known
in literature as an averaged diameter of the pipe.

Of course, Eqs. (5) and all dimensionless numbers (6), (7) take into ac-
count the new, cylindrical geometry of the wall. As can be seen in the
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last Eq. (24), describing heat transfer on a different wall geometry takes
the same functional form as Eq. (8). In spite of its different wall geome-
try, Eq. (24) still produces a similar cone-shaped manifold. The analysis of
results for similar manifolds in Section 4 lead to the same conclusions. Ad-
ditionally, for reasonable thermodynamics conditions, it can be shown that
Co → 1, Ci → 1 and Cδ → δ. With equations valid for various conditions
(24), it is possible to analyze the impact of wall geometry on irreversible
heat transfer.

The obtained results present the general idea of applying the manifold-
based approach for irreversibility of heat transfer process analysis. Based on
the above analysis, it is easy to show that when the measure of irreversibility
increases (dπ ↑), the time of transformation (dτ ↓) decreases.

All manifolds presented above can be generated using Matlab and REF-
PROP.
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