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Abstract. The binary classifiers are appropriate for classification problems with two class labels. For multi-class problems, decomposition 
techniques, like one-vs-one strategy, are used because they allow the use of binary classifiers. The ensemble selection, on the other hand, is 
one of the most studied topics in multiple classifier systems because a selected subset of base classifiers may perform better than the whole 
set of base classifiers. Thus, we propose a novel concept of the dynamic ensemble selection based on values of the score function used in the 
one-vs-one decomposition scheme. The proposed algorithm has been verified on a real dataset regarding the classification of cutting tools. The 
proposed approach is compared with the static ensemble selection method based on the integration of base classifiers in geometric space, which 
also uses the one-vs-one decomposition scheme. In addition, other base classification algorithms are used to compare results in the conducted 
experiments. The obtained results demonstrate the effectiveness of our approach.
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ture subspaces. In the case of the dynamic selection, knowledge 
about the neighborhood of the newly classified object is used 
(most often defined by a fixed number of nearest neighbors) 
to determine one or a certain subset of base classifiers for the 
classification of a new object.

The discussed topic is still up-to-date, as evidenced by the 
propositions of new ensemble selection methods [6‒9]. The 
ensemble selection can also be considered in the context of 
the decomposition of a multiclass problem. The competence of 
each base classifier in an ensemble and the weighted distance 
of a new object from other objects in its nearest neighborhood 
are used in the dynamic ensemble selection, which uses the 
one-vs-one strategy [10]. The use of the nearest neighborhood 
of a newly classified object to choose the non-competent base 
classifiers was presented in [11].

ML algorithms are used in many areas for practical tasks. 
For example, in technical problems: an artificial neural net-
work [12‒14] fuzzy logic [15] and other ML methods [16‒18] 
are used. The supervised classification is used for computer 
diagnostics [19]; decision trees method was used to ecodesign 
of technological processes [20]; neural networks with radial 
basis function, Kohonen networks and the Random Forest clas-
sifier were used to optimally select compatible materials [21], 
in medical tasks to computational gait analysis for post-stroke 
rehabilitation purposes using fuzzy numbers, fractal dimension 
and neural networks [22].

On the other hand, there is a great interest in using ML 
methods in the area of cutting tool selection, or the machin-
ing parameters for specific cutting tools. Igari et al. [23] pre-
sented an optimum selection model for processing tools and 
parameters based on decision rules generated by decision 
trees. Another cutting tool application presents the carbide-tool 
selection expert system for the purposes of a CNC lathe [24]. 

1.	 Introduction

Machine learning (ML) is a subset of Artificial Intelligence 
techniques and can be defined as the ability to learn through 
the use of training data [1]. There is a variety of ML methods 
which depend, among other things, on what data we have [2]. 
For a supervised classification method, the training set must 
have a class label. The training set therefore contains the values 
of the features (feature vector) of the described objects together 
with the class label of each object (class label vector). There-
fore, the goal of supervised classification is to build a mathe-
matical model of a real problem using a labeled dataset. This 
mathematical model is used to map feature space into class 
label space in the case of a new object which, in general, does 
not belong to the training set.

The ensemble of classifiers methods (EoC) is a popular 
approach for improving the possibilities of individual ML 
algorithms (base learners, base classifiers) by building more 
stable and accurate classifiers [3, 4]. In general, the procedure 
for creating an EoC can be divided into three major steps: gen-
eration, selection, and integration.

During the selection phase, either a model (classifier selec-
tion), or a subset of all classifiers (ensemble selection) learned 
in the generation phase, is selected to make the final decision of 
EoC [5]. The taxonomy of the selection methods distinguishes 
between the static and dynamic selections. The static pruning 
process selects one classifier or a certain subset of base classifi-
ers that is invariable throughout all feature space or defined fea-
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The aim of this study was to develop an optimum system for 
selecting a tool chuck, a cutting tool, and a plate, along with 
their machining parameters (i.e. feed and cutting speeds) by 
using decision rules. Some earlier authors՚ articles also show 
the selection of tools using simple classifiers in the form of 
neural networks [25] and the dynamic ensemble selection that 
uses median and quartile score function of correctly classified 
objects [26].

In this work we propose a novel algorithm of the dynamic 
ensemble that works in the one-vs-one scheme. Accordingly, 
we propose that the new method for the dynamic ensemble 
selection takes into consideration values of the score function 
defined by base classifiers. Therefore, our approach provides 
information about the relative distance of the recognized object 
to decision boundary defined by base classifier.

Given the above, the main objectives of this work can be 
summarized as follows:
●	 A proposal of a new dynamic ensemble selection algo-

rithm using the one-vs-one decomposition scheme that uses 
selected classifiers whose decision boundary is close to the 
recognized object.

●	 Experimental research to compare the proposed method 
with static ensemble selection based on integration of base 
classifiers in geometric space, which also used the one-
vs-one decomposition scheme and base classifiers on the 
real classification problem regarding the classification of 
cutting tools.
The paper is structured as follows: In the next section, the 

background of classification and decomposition of multi-class 
classification problems are presented. The proposed algorithms 
are presented in Section 2. The experiments that were carried 
out are presented in Section 4, whereas the results and the dis-
cussion are presented in Section 5. Finally, we draw conclusions 
and propose future works in Section 6.

2.	 Background of classification

2.1. Ensemble of classifiers. The recognition algorithm Ψ 
maps the feature space X to the set of class labels Ω = {ω1, ω2, 
…, ωM} (M denotes the number of class labels) according to 
the general formula:

	 Ψ : X ! Ω .� (1)

Therefore, the classification goal is to assign a given object 
x 2 X into one of the predefined class labels ω i 2 Ω.

The idea of EoC methodology is to build a predictive 
model by integrating multiple base classification models 
Ψ1, Ψ2, …, ΨK, where K is the number of classifiers in the EoC. 
The procedure for creating an EoC can be divided into three 
major steps [27]:
●	 Generation – a phase where individual classifiers are trained 

[28].
●	 Selection – a phase where only a few (or even one) individ-

ual models from the previous step are selected for inclusion 
in the EoC [5].

●	 Combining or integration – a process of combining outputs 
of base classifiers to obtain an integrated model of classi-
fication [29].
This article focuses on the problem of ensemble selection.

2.2. One-vs-one decomposition. The most commonly used ML 
methods are designed to deal with binary classification prob-
lems, and their extension to a multi-class task are still unknown 
[30]. Such an example is the SVM algorithm, which is often 
used in experimental research. The decomposition strategies 
[31], like one-vs-one (OVO) and one-vs-all (OVA), are the most 
common and useful strategies for binarization in the multi-class 
problem.

In this paper, we focus our attention on the OVO scheme. 
The OVO scheme divides the original M-class problem into 
M(M ¡ 1)

1  binary tasks, i.e. all possible class label pairs (ωi, ωj) 

can be formed from the set of all class labels M. Afterwards, 
each problem defined by possible class label pairs (ω i, ω j) 
is considered as a binary classification problem. The output 
of each binary classifier defines its scoring function rij and 
rij = 1 ¡ rij, when rij is the confidence of the binary classifier 
learned on dataset containing class label pairs (ωi, ωj) in favor 
of ωi discriminating the class label ωi from the class label ωj. 
The outputs of all binary classifiers in the OVO scheme are 
represented by score matrix R:

	 R =  

	 –	 r12	 ¢¢¢	 r1M

	r21	 –	 ¢¢¢	 r2M

	 	 –		

	r1M	 r2M …	 –	

.� (2)

Once all the pairs of classifiers are used to construct the 
score matrix, any of the aggregation methods for the OVO 
scheme can be used to define the final decision of the EoC.

2.3. Aggregation methods for OVO scheme. The final classi-
fication decision of the OVO scheme is derived from the score 
matrix R using the aggregation method [32]. In this paper, we 
employed two most popular aggregation methods for the OVO 
scheme:
●	 Voting strategy – this aggregation strategy uses the vote of 

each binary classifier and the class label with the largest 
number of votes is the final decision in the OVO scheme. 
If binary classifiers return the score function, then the scor-
ing functions are transposed into votes of these classifiers. 
The final class label for the voting strategy is obtained as 
follows:

	 ΨV
OVO = arg max

i = 1, …, M
1 ∙  j  6= i ∙ M
∑ s fij ,� (3)

where

sfij = 
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selection takes into consideration values of the score function
defined by base classifiers. Therefore, our approach provides
information about the relative distance of the recognized object
to decision boundary defined by base classifier.

Given the above, the main objectives of this work can be
summarized as follows:

• A proposal of a new dynamic ensemble selection algorithm
using the one-vs-one decomposition scheme that uses se-
lected classifiers whose decision boundary is close to the
recognized object.

• Experimental research to compare the proposed method with
static ensemble selection based on integration of base clas-
sifiers in geometric space, which also used the one-vs-one
decomposition scheme and base classifiers on the real classi-
fication problem regarding the classification of cutting tools.

The paper is structured as follows: In the next section,
the background of classification and decomposition of multi-
class classification problems are presented. The proposed al-
gorithms are presented in Section 2. The experiments that were
carried out are presented in Section 4, whereas the results and
the discussion are presented in Section 5. Finally, we draw
conclusions and propose future works in Section 6.

2. Background of classification
2.1. Ensemble of classifiers The recognition algorithm Ψ
maps the feature space X to the set of class labels Ω =
{ω1,ω2, . . . ,ωM} (M denotes the number of class labels) ac-
cording to the general formula:

Ψ : X → Ω. (1)

Therefore, the classification goal is to assign a given object
x ∈ X into one of the predefined class labels ωi ∈ Ω.

The idea of EoC methodology is to build a predictive
model by integrating multiple base classification models
Ψ1,Ψ2, . . . ,ΨK , where K is the number of classifiers in the
EoC. The procedure for creating an EoC can be divided into
three major steps [27]:

• Generation – a phase where individual classifiers are
trained [28].

• Selection – a phase where only a few (or even one) individual
models from the previous step are selected for inclusion in
the EoC [5].

• Combining or integration – a process of combining outputs
of base classifiers to obtain an integrated model of classifi-
cation [29].

This article focuses on the problem of ensemble selection.

2.2. One-vs-one decomposition The most commonly used
ML methods are designed to deal with binary classification
problems, and their extension to a multi-class task are still un-
known [30]. Such an example is the SVM algorithm, which is
often used in experimental research. The decomposition strate-
gies [31], like one-vs-one (OVO) and one-vs-all (OVA), are
the most common and useful strategies for binarization in the
multi-class problem.

In this paper, we focus our attention on the OVO scheme.
The OVO scheme divides the original M-class problem into
M(M−1)

2 binary tasks, i.e. all possible class label pairs (ωi,ω j)
can be formed from the set of all class labels M. Afterwards,
each problem defined by possible class label pairs (ωi,ω j)
is considered as a binary classification problem. The output
of each binary classifier defines its scoring function ri j and
r ji = 1− ri j, when ri j is the confidence of the binary classi-
fier learned on dataset containing class label pairs (ωi,ω j) in
favor of ωi discriminating the class label ωi from the class la-
bel ω j. The outputs of all binary classifiers in the OVO scheme
are represented by score matrix R:

R =




− r12 . . . r1M

r21 − . . . r2M
... −

...
rM1 rM2 . . . −




(2)

Once all the pairs of classifiers are used to construct the
score matrix, any of the aggregation methods for the OVO
scheme can be used to define the final decision of the EoC.

2.3. Aggregation methods for OVO scheme The final classi-
fication decision of the OVO scheme is derived from the score
matrix R using the aggregation method [32]. In this paper, we
employed two most popular aggregation methods for the OVO
scheme:

• Voting strategy – this aggregation strategy uses the vote of
each binary classifier and the class label with the largest
number of votes is the final decision in the OVO scheme.
If binary classifiers return the score function, then the scor-
ing functions are transposed into votes of these classifiers.
The final class label for the voting strategy is obtained as
follows:

ΨV
OVO = arg max

i=1,...,M
∑

1≤ j �=i≤M
s fi j (3)

where

s fi j =

{
1, if ri j > r ji

0, otherwise.

• Weighted voting strategy – this aggregation directly uses the
score functions from the score matrix R. The class label with
the greatest total values of the score functions is designated
as the final class label according to the formula:

ΨWV
OVO = arg max

i=1,...,M
∑

1≤ j �=i≤M
ri j. (4)

Other combination methods are presented, inter alia, in [32].
The choice of the combination method is either arbitrary or
depends on the available output type of binary classifiers. For
example, if the output of the binary classifier is a class label,
we can only use the voting method. We will deal with this case
in the static ensemble selection considered in this article.

2.4. Ensemble selection In the selection phase of the EoC
building procedure, one classifier (the classifier selection) or a
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●	 Weighted voting strategy – this aggregation directly uses the 
score functions from the score matrix R. The class label with 
the greatest total values of the score functions is designated 
as the final class label according to the formula:

	 ΨWV
OVO = arg max

i = 1, …, M
1 ∙  j  6= i ∙ M
∑ rij .� (4)

Other combination methods are presented, inter alia, in [32]. 
The choice of the combination method is either arbitrary or 
depends on the available output type of binary classifiers. For 
example, if the output of the binary classifier is a class label, 
we can only use the voting method. We will deal with this case 
in the static ensemble selection considered in this article.

2.4. Ensemble selection. In the selection phase of the EoC 
building procedure, one classifier (the classifier selection) or 
a certain subset of classifiers is selected (the ensemble selec-
tion or ensemble pruning) and learned at the generation stage. 
The classifier selection is a special type of ensemble selection, 
because only one base classifier is selected from all sets of base 
classifiers. In general, two different categories of the ensemble 
selection can be distinguished. The static ensemble selection 
– in this case, the entire feature space after training the base 
classifier is divided into disjoint regions of competence. These 
regions are determined permanently and depend mostly on the 
value of classifiers՚ performance measure in these regions. 
If the newly recognized object belongs to the region of com-
petence, then the selected ensemble of classifiers decides its 
class label. The dynamic ensemble selection – in this case the 
competence of base classifiers is determined using the nearest 
neighborhood of the recognized object. The base classifiers 
which are the most competent in the nearest neighborhood of 
this object decide on the class label.

In this article we will the use both the static and dynamic 
ensemble selection strategies. In the case of the static ensemble 
selection, the method presented in [33] is adapted to the multi-
class problem. In the case of the dynamic ensemble selection, 
we propose a new approach that takes into account the distance 
from the base classifier decision boundary to the classified 
object in the selection process.

3.	 Ensemble selection in one-vs-one scheme

3.1. The proposed method of dynamic ensemble selection. 
The distance of the recognized object from the decision bound-
ary is often used to determine the scoring functions or other 
functions in supervised classification. In linear Support Vec-
tor Machines (SVM) algorithms, the distance to the separating 
decision boundary is used to compute the scoring function. 
Afterwards, the calibration converts the score functions into 
a probability measure, or more precisely transforms classifier 
outputs into values that can be interpreted as probabilities. 
In this paper, we propose a dynamic ensemble selection that 
uses score function values directly. Unlike other methods of 

the dynamic ensemble selection, the proposed approach takes 
into account the location of the recognized object relative to 
the decision boundaries of the base classifiers rather than the 
location of this object relative to other objects from the training 
dataset. The selection process takes into account the value of the 
scoring function, which is the output of each classifier from the 
set of base classifiers obtained after the learning process. The 
overall procedure of the proposed dynamic ensemble selection 
in the OVO scheme is shown in Algorithm 1. Figure 2 shows 
the layered diagram of the OVO method with the selection 
process that is made in the penultimate layer, i.e. before deter-
mining the matrix defined by Eq. (2).

Ensemble selection in one-versus-one scheme

certain subset of classifiers is selected (the ensemble selection
or ensemble pruning) and learned at the generation stage. The
classifier selection is a special type of ensemble selection, be-
cause only one base classifier is selected from all sets of base
classifiers. In general, two different categories of the ensem-
ble selection can be distinguished. The static ensemble selec-
tion – in this case, the entire feature space after training the
base classifier is divided into disjoint regions of competence.
These regions are determined permanently and depend mostly
on the value of classifiers’ performance measure in these re-
gions. If the newly recognized object belongs to the region of
competence, then the selected ensemble of classifiers decides
its class label. The dynamic ensemble selection – in this case
the competence of base classifiers is determined using the near-
est neighborhood of the recognized object. The base classifiers
which are the most competent in the nearest neighborhood of
this object decide on the class label.

In this article we will the use both the static and dynamic en-
semble selection strategies. In the case of the static ensemble
selection, the method presented in [33] is adapted to the multi-
class problem. In the case of the dynamic ensemble selection,
we propose a new approach that takes into account the distance
from the base classifier decision boundary to the classified ob-
ject in the selection process.

3. Ensemble selection in one-vs-one scheme
3.1. The proposed method of dynamic ensemble selection
The distance of the recognized object from the decision bound-
ary is often used to determine the scoring functions or other
functions in supervised classification. In linear Support Vec-
tor Machines (SVM) algorithms, the distance to the separat-
ing decision boundary is used to compute the scoring function.
Afterwards, the calibration converts the score functions into
a probability measure, or more precisely transforms classifier
outputs into values that can be interpreted as probabilities. In
this paper, we propose the a dynamic ensemble selection that
uses score function values directly. Unlike other methods of
the dynamic ensemble selection, the proposed approach takes
into account the location of the recognized object relative to
the decision boundaries of the base classifiers rather than the
location of this object relative to other objects from the train-
ing dataset. The selection process takes into account the value
of the scoring function, which is the output of each classifier
from the set of base classifiers obtained after the learning pro-
cess. The overall procedure of the proposed dynamic ensemble
selection in the OVO scheme is shown in Algorithm 1. Fig. 2
shows the layered diagram of the OVO method with the selec-
tion process that is made in the penultimate layer, i.e. before
determining the matrix defined by Equation 2.

3.2. Static ensemble selection In the static ensemble selec-
tion in the OVO scheme, we will adopt the algorithm described
in the paper [33]. In the integration phase of building the EoC,
this algorithm uses functions that define the decision bound-
aries of individual base classifiers. The decision boundary of
the EoC is therefore built using the decision boundaries of the

Algorithm 1: Dynamic ensemble selection based on
values of score function in the one-vs-one scheme.

Data: Set of base classifiers Ψ1, . . . ,ΨK , parameters α
and β of the algorithm, recognized object x,
training dataset Dtr

Result: Ensemble decision after dynamic ensemble
selection ΨDESOVO in the one-vs-one scheme
for two aggregations strategy – voting
ΨV

DESOVO and weighted voting ΨWV
DESOVO

for each class labels pair ωi,ω j do
Di j

tr ← a subset of Dtr whose class labels
are ωi or ω j train all classifiers Ψi j

k ← Di j
tr for each

trained classifier Ψi j
k do

if α ≤ Ψi j
k (x)≤ β then

Ψi j
k (x) = 0

end
end
build an ensemble of classifiers EoΨi j

k whose score
functions are greater than 0

if | EoΨi j
k |= 0 then

randomly select a classifier from Ψi j
k to EoΨi j

k
| EoΨi j

k |= 1
end

ri j ←
∑K

k=1 Ψi j
k (x)

|EoΨi j
k |

r ji ← 1− ri j

end
obtain the final decision of ΨDESOVO, according to:
voting strategy – ΨV

DESOVO weighted voting strategy –
ΨWV

DSOVO

base classifiers, which have gone through a selection process.
The overall procedure of the static ensemble selection in the
OVO scheme is shown in Algorithm 2. The visualization of the
selection process of the base classifier is presented in Fig. 4.

4. Experimental setup
4.1. Dataset of cutting tools Examples of cutting tool selec-
tion were prepared by technologists in a real production com-
pany. The scope of data gathering depends on the type of pro-
duction. The production of the enterprise was mostly unit, ne-
cessitating to production of a large number of product variants,
thus requiring a technologist with a lot of experience when
choosing tools. The diversity of these variants leads to a rather
low degree of standardization. The right selection of tools is
very difficult, because it depends on many earlier selections
(selected semi-finished products, technological operations, and
machine tool) [34]. This article presents classification models
for the selection of cutting tools for milling operations.

The cutting tools dataset contains 564 learning objects (N =
564) and 17 class labels (M = 17). The features of the ob-
ject are: machining surface – x1, symbol of material – x2, de-
manded surface roughness – x3, structure of milling tool – x4,
milling tool clamping – x5, dimension – x6, shape of milling
cutter – x7, number of teeth – x8, milling tool total length –
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4.	 Experimental setup

4.1. Dataset of cutting tools. Examples of cutting tool selection 
were prepared by technologists in a real production company. 
The scope of data gathering depends on the type of production. 
The production of the enterprise was mostly unit, necessitat-
ing to the production of a large number of product variants, 
thus requiring a technologist with a lot of experience when 
choosing tools. The diversity of these variants leads to a rather 
low degree of standardization. The right selection of tools is 
very difficult, because it depends on many earlier selections 
(selected semi-finished products, technological operations, and 
machine tool) [34]. This article presents classification models 
for the selection of cutting tools for milling operations.

The cutting tools dataset contains 564 learning objects 
(N = 564) and 17 class labels (M = 17). The features of the 
object are: machining surface – x1, symbol of material – x2, 
demanded surface roughness – x3, structure of milling tool – x4, 
milling tool clamping – x5, dimension – x6, shape of milling 
cutter – x7, number of teeth – x8, milling tool total length – x9, 
min. cutting speed – x10, max. cutting speed – x11, cutting depth 
– x12, milling width – x13, cutting feed – x14, operating cost 

– x15. The class labels are the milling tool symbols. Table 1 
presents examples objects of cutting tools dataset. The exam-
ples of cutting tools are presented in Fig. 1.

The majority of information obtained from the databases 
was incomplete and raw. To make such data useful for ML 
purposes, they need to be pre-processed, i.e. transformed and 
cleaned. Data cleaning entails the identification of extreme 
points, the supplementation of missing entries, or the unifica-
tion of records. In turn, data transformation involves coding or 
normalization.

4.2. Classification performance measures. To evaluate the 
experiments, the following classification measures are used: 
average accuracy (ACC), micro-averaged F1 measure (F1µ) and 
macro-averaged F1 measure (F1M). ACC represent average per-
class effectiveness of a classifier:

	 ACC = 
1
jM j i = 1

jM j

∑
TPi + TNi

TPi + FPi + FNi + TNi
.� (5)

The micro-averaged F1 measure represents the relations 
between the data՚s positive labels and the labels given by a class-
sifier that is based on the sums of the per-class decisions. On 
the other hand, the macro-averaged F1 measure represents the 
relations between data՚s positive labels and the labels given by 
a classifier based on a per-class average [35]. Macro and micro 
averaged measures were used to assess the performance for the 
majority and minority classes. Their use is due to the fact the 
macro-averaged measures are more sensitive to the performance 
for minority classes.

The F1 measures are defined as follows:

	 F1M =  
1
jM j i = 1

jM j

∑
FPi + FNi

2TPi + FPi + FNi
,� (6)

	 F1µ =  
∑ jM j

i = 1 FPi + ∑ jM j
i = 1 FNi

2TPi + ∑ jM j
i = 1 FPi + ∑ jM j

i = 1 FNi

,� (7)

where TPi, TNi, FPi, FNi are class-specific true positive, true 
negative, false positive, and false negative rates, respectively.
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Algorithm 2: Static ensemble selection based on inte-
gration base classifiers in geometric space in the one-
vs-one scheme.
Data: Set of base classifiers Ψ1, . . . ,ΨK , recognized

object x, training dataset Dtr
Result: Ensemble decision after static ensemble

selection ΨV
SESOVO in the one-vs-one scheme

for each class labels pair ωi,ω j do
Di j

tr ← a subset of Dtr whose class labels
are ωi or ω j

select two most important features Di j
tr f 2 ← Di j

tr

train all classifiers Ψi j
k ← Di j

tr f 2

divide the feature space of Di j
tr f 2 in different

separable decision regions
evaluate the base classifiers’ Ψi j

k competence in
each decision region based on the classification
accuracy

select 2 best classifiers from all base classifiers for
each decision regions

define the decision boundary of the proposed
ensemble of classifiers EoΨi j

SES as an average
decision boundary of the selected in the previous
step classifiers if EoΨi j

SES(x) = ωi then
ri j ← 1 r ji ← 0 else

ri j ← 0
r ji ← 1

end
end

end
obtain the final decision of ΨSESOVO, according to

voting strategy – ΨV
SESOVO

(a) The cutting tool labeled as Fi16W.

(b) The cutting tool labeled as 203014_25.

Fig. 1: Examples of cutting tools.

x9, min. cutting speed – x10, max. cutting speed – x11, cutting
depth – x12, milling width – x13, cutting feed – x14, operat-
ing cost – x15. The class labels are the milling tool symbols.
Tab. 1 presents examples objects of cutting tools dataset. The
examples of cutting tools are presented in Fig. 1.

The majority of information obtained from the databases
was incomplete and raw. To make such data useful for ML
purposes, they need to be pre-processed, i.e. transformed and
cleaned. Data cleaning entails the identification of extreme
points, the supplementation of missing entries, or the unifica-

tion of records. In turn, data transformation involves coding or
normalization.

4.2. Classification performance measures To evaluate the
experiments, the following classification measures are used:
average accuracy (ACC), micro-averaged F1 measure (F1µ)
and macro-averaged F1 measure (F1M). ACC represent aver-
age per-class effectiveness of a classifier:

ACC =
1

| M |

|M|

∑
i=1

TPi +TNi

TPi +FPi +FNi +TNi
. (5)

The micro-averaged F1 measure represents the relations be-
tween the data’s positive labels and the labels given by a clas-
sifier that is based on the sums of the per-class decisions. On
the other hand, the macro-averaged F1 measure represents the
relations between data’s positive labels and the labels given by
a classifier based on a per-class average [35]. Macro and mi-
cro averaged measures were used to assess the performance for
the majority and minority classes. Their use is due to the fact
the macro-averaged measures are more sensitive to the perfor-
mance for minority classes.

The F1 measures are defined as follows:

F1M =
1

| M |

|M|

∑
i=1

FPi +FNi

2TPi +FPi +FNi
, (6)

F1µ =
∑|M|

i=1 FPi +∑|M|
i=1 FNi

2TPi +∑|M|
i=1 FPi +∑|M|

i=1 FNi

, (7)

where TPi, TNi, FPi, FNi are class-specific true positive, true
negative, false positive, and false negative rates, respectively.

4.3. Experiment setup for the dynamic ensemble selection
During the experiment on the dynamic ensemble selection in
the OVO scheme, 16 base classifiers were used. We use the
SVM model with different kernel types. Tab. 2 presents kernels
and parameters of the SVM classifiers used in the experiment.

Experimental studies for the dynamic ensemble selection
were carried out for various sets of parameters α and β . We
use sets of those parameters, where Pn, n= 1 . . .25. The param-
eters α and β take values according to the following formulas
α = (0.5−n/100) and β = (0.5+n/100).

4.4. Experiment setup for static ensemble selection Dur-
ing the experiment on static ensemble selection in the OVO
scheme, 3 base classifiers were used. We use linear base clas-
sifiers; that is, classifiers whose decision boundary is a linear
function. The use of linear classifiers results from the prop-
erties of the integration of the base classifiers, which uses the
values of these linear functions. In particular, we used the fol-
lowing classification models ΨMLP – single layer MLP clas-
sifier, ΨSV M – SVM classifier with linear kernel and ΨNC –
nearest centroid with the class-specific Mahalanobis distance
classifier.

The environment SAS 9.4 and SAS Enterprise Miner were
used to perform the experiments. The presented results are
obtained via a 10-fold-cross-validation method.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

Algorithm 2: Static ensemble selection based on 
integration base classifiers in geometric space in  
the one-vs-one scheme

Fig. 1. Examples of cutting tools: a) The cutting tool labeled as Fi16W, 
b) The cutting tool labeled as 203014_25

(a)

(b)
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Table 1 
Example of cutting tools data sets – before the pre-processing

Feature number
Class labels

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

	contouring the curve	 EN-AW 5754	 6.30	 monolit	 pin	 16	 cylindrical	 3	 32	 250	 500	 9	 1	 796	 120	 Fi16W
	 groove	 316L	 10	 monolith	 pin	 20	 cylindrical	 5	 104	 96	 200	 10	 0.50	 445	 260	 203012_20
	 contour	 316L	 10	 monolith	 pin	 20	 cylindrical	 5	 104	 96	 200	 5	 0.25	 509	 260	 203012_20
	 groove	 316L	 20	 monolith	 pin	 25	 cylindrical	 4	 125	 80	 160	 25	 1	 285	 250	 203014_25
	 contour	 316L	 20	 monolith	 pin	 25	 cylindrical	 4	 125	 80	 160	 12.50	 0.50	 326	 250	 203014_25
	 groove	 316L	 20	 monolith	 pin	 16	 cylindrical	 4	 92	 85	 170	 16	 1	 338	 350	 203016_16
	 contour	 316L	 20	 monolith	 pin	 16	 cylindrical	 4	 92	 85	 170	 8	 0.50	 372	 350	 203016_16
	 groove	 316L	 20	 monolith	 pin	 20	 cylindrical	 4	 175	 40	 80	 20	 1	 178	 315	 203022_20
	 contour	 316L	 20	 monolith	 pin	 20	 cylindrical	 4	 175	 40	 80	 10	 0.50	 216	 315	 203022_20
	 groove	 316L	 20	 monolith	 pin	 10	 cylindrical	 4	 100	 45	 90	 10	 1	 229	 75	 203025_10
	 contour	 316L	 20	 monolith	 pin	 10	 cylindrical	 4	 100	 45	 90	 5	 0.50	 286	 75	 203025_10
	 groove	 316L	 20	 monolith	 pin	 20	 cylindrical	 4	 92	 50	 100	 20	 1	 318	 196	 203031_20
	 contour	 316L	 20	 monolith	 pin	 20	 cylindrical	 4	 92	 50	 100	 10	 0.50	 414	 196	 203031_20
	 contour	 316L	 10	 monolith	 pin	 25	 cylindrical	 6	 165	 78	 160	 6.25	 0.25	 596	 730	 203540_25
	 contour	 316L	 10	 monolith	 pin	 25	 cylindrical	 6	 165	 78	 160	 6.25	 0.25	 596	 730	 203540_25
	 contour	 316L	 10	 monolith	 pin	 25	 cylindrical	 8	 165	 78	 160	 6.25	 0.25	 795	 730	 203540_25
	 contour	 316L	 10	 monolith	 pin	 25	 cylindrical	 8	 165	 78	 160	 6.25	 0.25	 795	 730	 203540_25
	 plane	 316L	 20	 folded	 sockets	 100	 sockets	 7	 55	 120	 240	 30	 0.30	 722	 765	 222403_100/7
	 plane	 316L	 20	 folded	 sockets	 100	 sockets	 7	 55	 120	 240	 30	 0.30	 722	 765	 222403_100/7
	 plane	 316L	 20	 folded	 sockets	 40	 sockets	 4	 35	 120	 240	 12	 0.30	 1032	 455	 222403_40
	 plane	 316L	 10	 folded	 sockets	 40	 sockets	 4	 35	 144	 300	 6	 0.15	 1032	 455	 222403_40
	 plane	 S235JR	 20	 folded	 sockets	 100	 sockets	 6	 50	 180	 360	 30	 0.30	 240	 595	 222800_100/6
	 plane	 S235JR	 10	 folded	 sockets	 100	 sockets	 6	 50	 216	 420	 15	 0.15	 289	 595	 222800_100/6
	 plane	 316L	 20	 folded	 sockets	 125	 sockets	 7	 63	 140	 280	 30	 0.30	 187	 760	 222800_125/7
	 plane	 316L	 10	 folded	 sockets	 125	 sockets	 7	 63	 168	 340	 15	 0.15	 187	 760	 222800_125/7
	 plane	 316L	 20	 folded	 sockets	 250	 sockets	 20	 63	 140	 280	 75	 0.30	 249	 1700	 222800_250
	 plane	 316L	 10	 folded	 sockets	 250	 sockets	 20	 63	 168	 340	 37.50	 0.15	 249	 1700	 222800_250
	 plane	 316L	 20	 folded	 sockets	 63	 sockets	 4	 40	 140	 280	 19	 0.30	 198	 410	 222800_63
	 plane	 316L	 10	 folded	 sockets	 63	 sockets	 4	 40	 168	 340	 9.50	 0.15	 198	 410	 222800_63
	 plane	 316L	 20	 folded	 sockets	 80	 sockets	 6	 50	 140	 280	 30	 0.30	 187	 486	 222800_80
	 plane	 316L	 10	 folded	 sockets	 80	 sockets	 6	 50	 168	 340	 15	 0.15	 187	 486	 222800_80

Fig. 2. Layered diagram of  the OVO method with the base classifier selection process

Ensemble selection in one-versus-one scheme

Table 1
Example of cutting tools data sets – before the pre-processing

Feature number Class labels

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15
contouring the curve EN-AW 5754 6.30 monolit pin 16 cylindrical 3 32 250 500 9 1 796 120 Fi16W

groove 316L 10 monolith pin 20 cylindrical 5 104 96 200 10 0.50 445 260 203012_20
contour 316L 10 monolith pin 20 cylindrical 5 104 96 200 5 0.25 509 260 203012_20
groove 316L 20 monolith pin 25 cylindrical 4 125 80 160 25 1 285 250 203014_25
contour 316L 20 monolith pin 25 cylindrical 4 125 80 160 12.50 0.50 326 250 203014_25
groove 316L 20 monolith pin 16 cylindrical 4 92 85 170 16 1 338 350 203016_16
contour 316L 20 monolith pin 16 cylindrical 4 92 85 170 8 0.50 372 350 203016_16
groove 316L 20 monolith pin 20 cylindrical 4 175 40 80 20 1 178 315 203022_20
contour 316L 20 monolith pin 20 cylindrical 4 175 40 80 10 0.50 216 315 203022_20
groove 316L 20 monolith pin 10 cylindrical 4 100 45 90 10 1 229 75 203025_10
contour 316L 20 monolith pin 10 cylindrical 4 100 45 90 5 0.50 286 75 203025_10
groove 316L 20 monolith pin 20 cylindrical 4 92 50 100 20 1 318 196 203031_20
contour 316L 20 monolith pin 20 cylindrical 4 92 50 100 10 0.50 414 196 203031_20
contour 316L 10 monolith pin 25 cylindrical 6 165 78 160 6.25 0.25 596 730 203540_25
contour 316L 10 monolith pin 25 cylindrical 6 165 78 160 6.25 0.25 596 730 203540_25
contour 316L 10 monolith pin 25 cylindrical 8 165 78 160 6.25 0.25 795 730 203540_25
contour 316L 10 monolith pin 25 cylindrical 8 165 78 160 6.25 0.25 795 730 203540_25
plane 316L 20 folded sockets 100 sockets 7 55 120 240 30 0.30 722 765 222403_100/7
plane 316L 20 folded sockets 100 sockets 7 55 120 240 30 0.30 722 765 222403_100/7
plane 316L 20 folded sockets 40 sockets 4 35 120 240 12 0.30 1032 455 222403_40
plane 316L 10 folded sockets 40 sockets 4 35 144 300 6 0.15 1032 455 222403_40
plane S235JR 20 folded sockets 100 sockets 6 50 180 360 30 0.30 240 595 222800_100/6
plane S235JR 10 folded sockets 100 sockets 6 50 216 420 15 0.15 289 595 222800_100/6
plane 316L 20 folded sockets 125 sockets 7 63 140 280 30 0.30 187 760 222800_125/7
plane 316L 10 folded sockets 125 sockets 7 63 168 340 15 0.15 187 760 222800_125/7
plane 316L 20 folded sockets 250 sockets 20 63 140 280 75 0.30 249 1700 222800_250
plane 316L 10 folded sockets 250 sockets 20 63 168 340 37.50 0.15 249 1700 222800_250
plane 316L 20 folded sockets 63 sockets 4 40 140 280 19 0.30 198 410 222800_63
plane 316L 10 folded sockets 63 sockets 4 40 168 340 9.50 0.15 198 410 222800_63
plane 316L 20 folded sockets 80 sockets 6 50 140 280 30 0.30 187 486 222800_80
plane 316L 10 folded sockets 80 sockets 6 50 168 340 15 0.15 187 486 222800_80
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Fig. 2: Layered diagram of the OVO method with the base classifier selection process.
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4.3. Experiment setup for the dynamic ensemble selection. 
During the experiment on the dynamic ensemble selection in the 
OVO scheme, 16 base classifiers were used. We use the SVM 
model with different kernel types. Table 2 presents kernels and 
parameters of the SVM classifiers used in the experiment.

Table 2 
The parameters of the SVM models

Classifier Estimation 
method

Tuning 
method

Regular 
parameter

Kernel

Ψ1 LSVM Grid Tuning Linear
Ψ2 DQP Optimal Tuning Linear
Ψ3 LSSVM Optimal Tuning Linear
Ψ4 FQP Grid Tuning Linear
Ψ5 DQP Optimal Tuning RBF
Ψ6 FQP Optimal Tuning RBF
Ψ7 LSVM Grid Tuning RBF
Ψ8 LSSVM Optimal Tuning RBF
Ψ9 DQP Optimal Tuning Polyn.
Ψ10 FQP Optimal Constant (0.1) Polyn.
Ψ11 LSVM Optimal Tuning Polyn.
Ψ12 LSSVM Optimal Tuning Polyn.
Ψ13 DQP Optimal Tuning Sigmoid
Ψ14 LSSVM Grid Tuning Polyn.
Ψ15 DQP Grid Tuning Sigmoid
Ψ16 DQP Optimal Constant (0.3) Linear

Experimental studies for the dynamic ensemble selection 
were carried out for various sets of parameters α and β. We use 
sets of those parameters, where Pn, n = 1 … 25. The parame-
ters α and β take values according to the following formulas 
α = (0.5 ¡ n/100) and β = (0.5 + n/100).

4.4. Experiment setup for static ensemble selection. During 
the experiment on static ensemble selection in the OVO scheme, 
3 base classifiers were used. We use linear base classifiers; 
that is, classifiers whose decision boundary is a linear func-
tion. The use of linear classifiers results from the properties 
of the integration of the base classifiers, which uses the values 
of these linear functions. In particular, we used the following 
classification models: ΨMLP – single layer MLP classifier, ΨSVM 
– SVM classifier with linear kernel and ΨNC – nearest centroid 
with the class-specific Mahalanobis distance classifier.

The environment SAS 9.4 and SAS Enterprise Miner were 
used to perform the experiments. The presented results are 
obtained via a 10-fold-cross-validation method.

5.	 Results and discussion

For the ACC performance measure, the best set of parameters 
for the dynamic ensemble selection is as follows: P8: α = 0.42, 
β = 0.58. In the results analyzing the algorithms ΨV

DESOVO and  
ΨWV

DESOVO , we used this set of parameters. The results obtained 
for the algorithms ΨV

DESOVO and ΨWV
DESOVO  were compared with 

the results obtained by the base classifiers Ψ1, …, Ψ16 and 
ensemble of this base classifier without selection ΨMV

OVO. In addi-
tion, the static ensemble selection algorithm ΨV

SESOVO and base 
classifiers used in static ensemble selection ΨMLP, ΨSVM, ΨNC 
were also compared. Each base classifier also worked in the 
OVO scheme. Table 3 shows the results for three classification 
measures ACC, F1µ and F1M. The visualization of the obtained 
results is presented in Fig. 3 where the axis range is 0.804 ¡ 1. 
These results means that the smallest value from Table 3, which 
equals 0.804, is in the middle of the radar plot chart.

Table 3 
Results of experimental research for three classification 

performance measures

Algorithm ACC F1M F1µ

Ψ1 0.972 0.873 0.986

Ψ2 0.966 0.869 0.979

Ψ3 0.972 0.873 0.986

Ψ4 0.972 0.873 0.986

Ψ5 0.972 0.873 0.986

Ψ6 0.954 0.858 0.967

Ψ7 0.972 0.873 0.986

Ψ8 0.964 0.865 0.977

Ψ9 0.972 0.873 0.986

Ψ10 0.972 0.873 0.986

Ψ11 0.972 0.873 0.986

Ψ12 0.964 0.865 0.977

Ψ13 0.972 0.873 0.986

Ψ14 0.972 0.873 0.986

Ψ15 0.972 0.873 0.986

Ψ16 0.964 0.865 0.977

ΨV
OVO 0.971 0.871 0.984

ΨWV
OVO 0.901 0.804 0.918

ΨV
DESOVO 0.986 0.882 1.000

ΨWV
DESOVO 0.969 0.864 0.982

ΨMLP 0.973 0.863 0.973

ΨSVM 0.967 0.865 0.967

ΨNC 0.962 0.873 0.962

ΨV
SESOVO 0.975 0.877 0.975

The obtained results indicate that the proposed dynamic 
ensemble selection in the OVO scheme method significantly 
improves the quality of the cutting tools classification. In the 
case of F1µ, the classification performance measures we pro-
posed obtained a perfect classification result. Also, for perfor-
mance measures ACC and F1M, the approach proposed in this 
paper achieves the best results when compared with the static 
ensemble selection in the OVO scheme and all base classifiers 
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used in the experiment. In addition, the method proposed in this 
article obtains better classification performance results than the 
methods described in [26, 36], which are the earlier works of 
the authors.

6.	 Conclusions

This paper presented a new dynamic ensemble selection method 
for the multi-class problem by the application the OVO scheme. 
The proposed algorithm used the values of the score function in 
the selection process. The proposed approach took into account 

the location of the recognized object relative to the decision 
boundaries of the base classifiers. The results obtained on the 
real classification problems – tool selections performed during 
the design of manufacturing processes – indicated clearly that 
the proposed method achieves very good results compared to 
other algorithms described in both the community literature and 
the previous works of the authors.
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National Science Centre, Poland under the grant no. 2017/25/B/
ST6/01750 and statutory funds of Institute of Computer Sci-
ence, Kazimierz Wielki University.

Fig. 3. Radar plot for the three classification performance measures and all classifiers – the red line for F1µ, the blue line for F1M and the 
black line for ACC performance measure
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Fig. 3: Radar plot for the three classification performance measures and all classifiers – the red line for F1µ , the blue line for
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Table 2
The parameters of the SVM models

Classifier
Estimation

method
Tuning
method

Regular.
parameter

Kernel

Ψ1 LSVM Grid Tuning Linear
Ψ2 DQP Optimal Tuning Linear
Ψ3 LSSVM Optimal Tuning Linear
Ψ4 FQP Grid Tuning Linear
Ψ5 DQP Optimal Tuning RBF
Ψ6 FQP Optimal Tuning RBF
Ψ7 LSVM Grid Tuning RBF
Ψ8 LSSVM Optimal Tuning RBF
Ψ9 DQP Optimal Tuning Polyn.
Ψ10 FQP Optimal Constant (0.1) Polyn.
Ψ11 LSVM Optimal Tuning Polyn.
Ψ12 LSSVM Optimal Tuning Polyn.
Ψ13 DQP Optimal Tuning Sigmoid
Ψ14 LSSVM Grid Tuning Polyn.
Ψ15 DQP Grid. Tuning Sigmoid
Ψ16 DQP Optimal Constant (0.3) Linear

5. Results and discussion
For the ACC performance measure, the best set of parame-
ters for the dynamic ensemble selection is as follows: P8 :
α = 0.42,β = 0.58. In the results analyzing the algorithms
ΨV

DESOVO and ΨWV
DESOVO, we used this set of parameters. The

results obtained for the algorithms ΨV
DESOVO and ΨWV

DESOVO
were compared with the results obtained by the base classifiers

Ψ1, . . . ,Ψ16 and ensemble of this base classifier without selec-
tion ΨMV

OVO. In addition, the static ensemble selection algorithm
ΨV

SESOVO and base classifiers used in static ensemble selection
ΨMLP,ΨSV M,ΨNC were also compared. Each base classifier
also worked in the OVO scheme. Tab. 3 shows the results for
three classification measures ACC, F1µ and F1M. The visual-
ization of the obtained results is presented in Fig. 3 where the
axis range is 0.804− 1. These results means that the smallest
value from Tab. 3, which equals 0.804, is in the middle of the
radar plot chart.

The obtained results indicate that the proposed dynamic en-
semble selection in the OVO scheme method significantly im-
proves the quality of the cutting tools classification. In the case
of F1µ , the classification performance measures we proposed
obtained a perfect classification result. Also, for performance
measures ACC and F1M, the approach proposed in this paper
achieves the best results when compared with the static ensem-
ble selection in the OVO scheme and all base classifiers used
in the experiment. In addition, the method proposed in this ar-
ticle obtains better classification performance results than the
methods described in [26], [36], which are the earlier works of
the authors.

6. Conclusions

This paper presented a new dynamic ensemble selection
method for the multi-class problem by the application the OVO
scheme. The proposed algorithm used the values of the score
function in the selection process. The proposed approach took

6 Bull. Pol. Ac.: Tech. XX(Y) 2016

Fig. 4. An example of the selection process for three base classifiers and three regions of competence: a) Decision boundaries of the three base 
classifiers and three regions of competence, b) Decision boundaries of the base classifiers after selection one base classifier in each region of 

competence, c) Final decision boundary – red

(a) (b) (c)
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