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mentation, machine tools, tooling, and machining parameters 
are selected for each technological procedure and operation.

Traditional manufacturing (Subtractive Manufacturing, 
Formative Manufacturing), long applied commercially with 
assured quality, often requires machining or other methods 
(drilling, grinding, etc.) to remove the surplus material (i.e. sub-
tractive methods) or casting it into moulds, but there are novel 
alternative methods of production. In contrast, 3D printing is 
the industrial group of technologies which is characterised 
by a computer-controlled process which creates 3D products 
(objects) with precise geometric shapes by depositing materi-
al(s), usually in layers [1–4]. 3D printing allows for the creation 
of objects from:
●	Digitalised physical objects of various dimensions (using 

3D object scanners, with modifications made within the 
reverse engineering process) – mainly for the modification 
of existing objects; shapes, materials, physical and/or chem-
ical properties

●	Digital files using computer-aided design (CAD) – mainly 
for rapid prototyping or creating objects not achievable 
using other technologies

●	A hybrid approach – e.g. for reconstruction and renovation 
purposes
3D printing provides:

●	Easy customisation
●	A low cost of the machines
●	 Increased material variability, including combined multiple 

materials (e.g. both hard plastics and elastomers)

1.	 Introduction

The development and use of IT tools to support the planning of 
technological processes has been the subject of research all over 
the world for many years. While the potentially greater amount 
of data should facilitate task and problem solving, in practice 
this is rarely the case. The search for increasingly advanced IT 
tools for data analysis and exploration continues, as in the case 
of an intelligent expert system supporting the planning of tech-
nological processes for machining and 3D printing processes.

In machining, the technological process constitutes a core 
part of the production process, directly entailing changes to 
shapes, dimensions, and surface quality, as well as the physi-
co-chemical properties of the processed item, or the arrange-
ment of components or assemblies in relation to each other in 
a product. Starting with the preparation of the semi-finished 
product (input) in the technological process, certain technologi-
cal operations need to be performed. The appropriate operations 
are selected by the process engineer. Technological-process 
planning is divided into several stages. The first stage involves 
selecting semi-finished products. This is followed by designing 
the technological process structure, i.e. the sequence of techno-
logical procedures and operations. Then, the workpiece instru-
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Abstract. The study aimed to develop a system supporting technological process planning for machining and 3D printing. Such a system should 
function similarly to the way human experts act in their fields of expertise and should be capable of gathering the necessary knowledge, analys-
ing data, and drawing conclusions to solve problems. This could be done by utilising artificial intelligence (AI) methods available within such 
systems. The study proved the usefulness of AI methods and their significant effectiveness in supporting technological process planning. The 
purpose of this article is to show an intelligent system that includes knowledge, models, and procedures supporting the company’s employees 
as part of machining and 3D printing. Few works are combining these two types of processing. Nowadays, however, these two types of pro-
cessing overlap each other into a common concept of hybrid processing. Therefore, in the opinion of the authors, such a comprehensive system 
is necessary. The system-embedded knowledge takes the form of neural networks, decision trees, and facts. The system is presented using the 
example of a real enterprise. The intelligent expert system is intended for process engineers who have not yet gathered sufficient experience in 
technological-process planning, or who have just begun their work in a given production enterprise and are not very familiar with its machinery 
and other means of production.
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●	A higher level of design freedom
●	The simplification of the supply chain
●	A wide range of applications
●	The ability to fabricate complex parts in one machine/pro-

cess
●	Both rapid prototyping and end-user product manufacturing 

techniques
●	The integration of the technologies and materials
●	Avoiding forging and joining processes by printing the com-

plete product within one 3D printing process
●	Rapid tooling developed towards Direct Manufacturing
●	The development of high-value, low-volume manufacturing 

industries such as aviation or prosthetics
●	Design optimisation using, e.g. computational intelligence.

However, the so-called Mass Customisation, i.e. the abil-
ity to provide individually designed products/services to every 
customer, is still limited by:
●	Relatively low penetration into the commercial market
●	A difference in surface smoothness across prints from the 

same digital file
●	The unpredictability of the performance (e.g. random 

defects into the printed part)
●	A lack of formalised guidelines for most 3D printing pro-

cesses
●	Few professionally trained specialists
●	A lack of manufacturing design regulations, e.g. slow devel-

opment of Quality Assurance (QA) and Quality Control 
(QC) strategies [1–3].
The idea of 3D printing began in the 1960s. The first 3D 

printing manufacturing equipment for two 3D printing methods 
for fabricating 3D models was invented by Hideo Kodama of 
the Nagoya Municipal Industrial Research Institute in 1980. 
What is more, most of the currently known 3D printing tech-
nologies were developed to the pre-commercial stage by 1991 
but their rapid development and commercial use started in the 
21st century. There is still a need for improvements concerning 
3D printing techniques to lower the cost, energy consumption, 
and expand its capabilities, and recently – towards a broader use 
within the Industry 4.0 paradigm [5]. Many scientists, inven-
tors, entrepreneurs, and companies aim at replacing or creating 
new manufacturing systems [1]. The co-incidence of various 
processes and materials has created a unique possibility of 3D 
printing objects made of polymer, metal, ceramic, or even com-
posite/multi-material, which are hard or impossible to produce 
using conventional manufacturing technologies. Moreover, 
their mechanical, thermal, and/or dimensional properties can 
also be unique. This situation may create a very good founda-
tion of Industry 4.0 processes.

This article is based on a paper that was prepared for the 
Machine Modelling and Simulations conference [6] and has 
been expanded to include 3D printing. An intelligent expert 
system is used for technological-process planning for machin-
ing and 3D printing based on neural networks and rules. The 
idea of this article is to show an intelligent system that includes 
knowledge, models, and procedures supporting the company’s 
employees as part of machining and 3D printing. Few works 
are combining these two completely different types of process-

ing. Nowadays, however, these two types of processing over-
lap each other into a common concept of hybrid processing. 
There is a rapid development of hybrid processes and devices 
that combine 3D printing and CNC machining [7]. Therefore, 
in the authors’ opinion, such a comprehensive system is nec-
essary.

The article consists of the following sections: introduction; 
literature review of artificial intelligence methods used in tech-
nological process planning for machining and 3D printing; 
the authors’ case study – an intelligent system for technolog-
ical-process planning for machining and 3D printing; conclu-
sions and references.

2.	 Artificial intelligence methods used 
in technological process planning

2.1. AI methods used in technological process planning for 
machining. Attempts at increasing the use of artificial intel-
ligence (AI) methods in computer-aided technological process 
planning systems have been made for many years. The use 
of data-mining methods to acquire the knowledge available in 
the databases of the existing technological processes facilitates 
the formalisation of the process, the engineer’s inventiveness, 
and experience, taking the form of the knowledge included in 
knowledge databases, and the induction process similar to that 
which a human expert employs in technological process plan-
ning. The technological knowledge acquired with AI methods, 
coupled with an intelligent computer-aided process planning 
system (CAPP system), makes it possible to design technolog-
ical processes that are better aligned with enterprise-specific 
needs. Expert systems have been widely used in technological 
process planning [8–10]. Neural networks facilitate the tech-
nological process planning by eliminating the need to search 
through numerous rules (as in the case of expert systems). The 
use of a neural network facilitates the simultaneous consider-
ation of numerous limitations and is very popular in technical 
areas [11–13]. Random forests and decision trees represent 
a basic method of inductive machine learning due to their high 
effectiveness. This method is based on analysing examples and 
is characterised by exceptionally good classification properties. 
Rule generation based on decision trees makes it possible to 
formulate rules [14–16]. A large part of decision-making related 
to process planning can take place in an environment where 
objectives and limitations are fuzzy, i.e. not fully-known. Fuzzy 
logic can help to achieve this by transforming human knowl-
edge into mathematical models and transposing that knowledge 
into engineering systems [17].

2.2. AI methods used in technological process planning for 
3D printing. From a technological point of view, 3D printing 
can be broadly divided into three types:
●	Sintering – the material is heated without being liquefied to 

create complex high-resolution objects.
●	Melting – the material is fully melted.
●	Stereolithography – using photopolymerisation, where an 

ultraviolet laser is fired into a vat of photopolymer resin to 
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create torque-resistant ceramic parts able to endure extreme 
temperatures.
The American Society for Testing and Materials (ASTM) 

has defined 7 categories of 3D printing technologies: vat pho-
topolymerisation, material jetting, binder jetting, powder bed 
fusion, material extrusion, sheet lamination, and direct energy 
deposition [18].

Artificial intelligence is currently widely applied in 
3D printing as part of an intelligent, efficient, high-quality, 
mass-customised, and service-oriented production process [19]. 
Many factors should be taken into consideration when selecting 
a manufacturing method, including cost, time, energy consump-
tion, product complexity, material usage, material properties 
requirements, sustainability, and many more. Thus, automated, 
or semi-automated optimisation based on artificial intelligence 
is often used to meet these requirements [20–22]. Despite recent 
developments in automated and semi-automated AI-based opti-
misation of 3D printing processes, especially for Industry 4.0 
purposes, they are still at the beginning of their development 
[23, 24]. The main applications were divided into parameter 
optimisation, and anomaly detection, and may be classified 
into different types of machine learning (ML) tasks, including 
regression, classification, and clustering [25]. They may sig-
nificantly improve the efficiency in the prefabrication stage 
and defect detection. But the future aim is a real-time process 
control and built-in predictive maintenance.

There are many examples of the use of AI in additive manu-
facturing in the literature. Although fused deposition modelling 
(FDM) additive manufacturing technologies have advanced in 
the past decade, interlayer imperfections such as delamination 
and warping are still dominant when printing complex parts. 
Herein, a self‐monitoring system based on real‐time camera 
images and deep learning algorithms is developed to clas-
sify the various extents of delamination in a printed part. In 
addition, a novel method incorporating strain measurements is 
established to measure and predict the onset of warping [26]. 
At present, quality control in additive manufacturing is based 
on diligently controlling the temperature of the process zone 
or high resolution imaging. So far, no methods are known to 
monitor the quality of additive manufacturing in situ and in 
real-time. To achieve the goal of accurate real-time quality con-
trol, was proposed an approach that relies on acoustic emis-
sion, which is further analysed within the artificial intelligence 
framework [27]. Another article presents an AI-based algorithm 
for finding material deformations in 3D printed products in 
additive manufacturing [28]. In other research, an Artificial 
Neural Network was applied to build an optimisation system 
for finding optimal process parameters. The inputs of the sys-
tem are the desirable properties of a product such as the rela-
tive density ratio, and surface roughness, while the outputs are 
laser power, laser velocity, hatch distance, and layer thickness. 
Applying the system not only requires less pre-manufacturing 
expenditure but also helps the printing users to choose approx-
imate process parameters for printing a desirable product [29].

An analysis of the literature, the needs of enterprises from 
additive manufacturing, and the experience of the authors [30, 
31], among others, allowed for the development of an intel-

ligent planning system for technological processes towards 
additive processing.

3.	 Case study – an intelligent system 
for technological-process planning

3.1. Data preparation. Data were collected at a real enterprise 
providing a wide range of products. The company is engaged 
in the manufacture of injection moulds and plastic processing. 
Depending on the products being manufactured, the production 
involves unit, serial, or mass production. The company col-
lects its knowledge, experience, and data in order to improve 
its processes and products. The data concerns machining and 
3D printing processes. For machining, the data are collected 
on semi-finished products, technological process structures, 
conventional and CNC machine tools, cutting tools, workpiece 
instrumentation, and tooling. For 3D printing processes, the 
data are collected on process parameters: type of manufactur-
ing, type of material, layer height [mm], shell thickness [mm], 
bottom thickness [mm], top thickness [mm], fill density [%], 
print speed [mm/s], bed temperature [°C], printing tempera-
ture [°C], second nozzle temperature [°C], build orientation 
[degree], no. of contours [no], and tensile strength [kN/mm2]. 
For example, the surface roughness can be determined from 
the layer height, print speed, print temperature, and outer shell 
speed. The tensile strength can be determined from the material 
name, layer height, and temperature.

Technological knowledge is gathered in the form of techno-
logical processes which are developed. The exemplars of tech-
nological process elements comprise a significant amount of 
knowledge, experience, and intuition of the process engineers.

The majority of information obtained from databases is raw, 
incomplete, and noisy. For such data to become useful for min-
ing purposes, they need to be cleaned and transformed [32, 33]. 
Data cleaning entails the unification of records, the supplemen-
tation of missing entries, or the identification of extreme points. 
In turn, data transformation involves normalisation or coding.

3.2. An intelligent system schematic. A schematic of an intel-
ligent expert system for technological process planning is made 
up of (1) a user interface, and modules for (2) data manage-
ment, (3) data normalisation using fuzzy logic, (4) a module 
of technological knowledge acquisition, and (5) a module of 
technological process planning (Fig. 1).

3.3. Knowledge sources for the system for machining using 
the example of models of semi-finished product selection. 
The type of task to be solved is considered to be the principal 
criterion for AI method selection. Fuzzy logic is used for the 
normalising and coding of facts in the expert system knowl-
edge base, whereas neural networks and decision trees served 
the purpose of providing technical insights and assisting pro-
cess engineers in the course of technological process planning. 
The underlying problem in technological process planning is 
related to the classification necessary for the proper selection 
of individual technological process elements. The results of 
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Fig. 1. Intelligent expert system for technological process planning for machining and 3D printing; NN – neural networks; DT – decision trees
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the study presented in this article relate to identifying, analys-
ing, and experimenting with various types of neural networks 
and decision trees. The following types of NN were selected: 
(1) unidirectional multi-layer perceptron (MLP) networks with 
backward propagation of errors; (2) radial basis function (RBS) 
networks; (3) self-organising Kohonen networks (KN); and (4) 
recurrent Hamming networks (HN). Certain types of decision 
trees, i.e. C4.5, C&RT, CHAID, boosted trees, and random 
forests, were also used in the analysis. Decision rules were 
developed based on expert trees, and then they were entered into 
the expert system, following which selected AI methods were 
analysed in terms of their application in specific tasks related to 
technological process planning. The combination of an expert 
system, neural networks, decision trees, and rules leads to an 
intelligent expert system for machining.

Semi-finished product selection was performed using uni-
directional multi-layer perceptron (MLP) networks with back-
ward propagation of errors, radial-basis function (RBS) net-
works, and Kohonen and Hamming networks. Figure 2 presents 
an exemplary structure of MLP and RBF neural networks for 
semi-finished product selection.

files: training (75% of the records), testing (15%), and val-
idation (10%). Neural network models were trained using 
a training file and tested with a test file, and their operation 
was checked with a validation file, which is a response to the 
model overfitting.

In the course of the analyses of the neural networks, their 
effectiveness was found to depend on the following param-
eters: in the case of MLP and RBF networks, on the number 
of neurons in the hidden layer, the number of training cycles 
according to a specific learning algorithm, the values of the 
error function and the function of activation in the hidden and 
output layer; and in the case of the Kohonen networks, on the 
network topology, the number of training cycles, and the error 
function. Neural-network outputs were also analysed. In the 
course of the analysis of all the neural network models devel-
oped, the MLP (5‒15‒1), Kohonen (6‒100), and Hamming 
network models proved the most effective for semi-finished 
product selection (100.00% effectiveness). Therefore, the sim-
plest network (MLP) could be used for their selection. The 
assessments also covered the operational network accuracy 
based on the new data, and the degree of certainty defining 
the relationship of the new input data with specific template 
classes. Both parameters influence neural network effective-
ness, and the higher the accuracy and degree of certainty, the 
better the ability to classify the neural networks [6].

The same model-development method was used for estab-
lishing a neural network and decision tree models in the pro-
cess of selecting the workpiece instrumentation, tool chucks, 
machine tools, tools, and tooling and machining parameters, 
while the framework of the technological process was created 
using the decision-making rules.

The use of the system for the selection of a semi-finished 
product is shown in Fig. 3. The process engineer first enters the 
relevant input data, including the product name and production 
volume, and then selects the appropriate semi-finished product. 
Before choosing a semi-finished product, you can choose the 
material. However, if you know the material, you provide it 
when choosing a semi-finished product. This way the selection 
process speeds up.

Fig. 3. Semi-finished product selection [6]

Fig. 2. Selection of semi-finished product by MLP, RBF, Kohonen, 
and Hamming neural-network structure [6]
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Part class, Production volume, Part shape,  

Material type, Semi-finished product availability
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Input Layer
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Classification models were learned based on the example 
databases (the whole database contains about 1000 records). The 
learning database includes examples of a selection of semi-fin-
ished product (550 records). These examples are divided into 
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Next, the process engineer establishes further elements of 
the technological process. All the results obtained from the 
expert system were verified and recognised as correct by pro-
cess engineers, which can be considered as confirming the use-
fulness of this kind of IT tool in industrial practice.

3.4. Knowledge sources for the system for 3D printing 
using the example of material selection based on the ten-
sile strength. The intelligent system was expanded to include 
technological process planning for 3D printing in terms of the 
selection of appropriate materials for the production of specific 
products, optimisation of process parameters, and searching for 
technological processes of similar products.

Material development can probably create the most signif-
icant breakthrough in the area of 3D printing. The main 3D 
printing material features include the dimensional properties 
(accuracy and volumetric shrink), the production speed or (in 
smaller parts) the number of production cycles per minute, 
mechanical properties, thermal properties, chemical proper-
ties, and the ability to be used in direct contact with the human 
body. The pallet of materials which may be used in 3D printing 
processes cover almost all kinds of them (polymers, metals, 
ceramics, sand, glass, etc.), and this list is increasing each year, 
including the possibility of multi-material 3D printing. The cre-
ation of neural network models is shown using the example 
of material selection based on tensile strength. Classification 
models were learned based on example databases (the whole 
database contains about 500 records). The learning database 
includes examples of selection (150 records). These examples 
were divided into files: training (75% of the records), testing 
(15%), and validation (10%). The neural network models were 
trained using the training file, tested with the test file, and 
their operation was checked with the validation file, which is 
a response to the model overfitting.

The material selection based on the tensile strength was 
performed using unidirectional multi-layer perceptron (MLP) 
networks with backward propagation of errors. Figure 4 pres-
ents the structure of the MLP neural networks for the material 
selection based on the tensile strength. In the course of the 
analysis of the neural networks, their effectiveness was found 
to depend on the following parameters: the number of neurons 

in the hidden layer, the number of training cycles according to 
a specific learning algorithm, the values of the error function. 
and the function of activation in the hidden and output layers.

Table 1 features a comparison of MLP networks for the 
material selection based on the tensile strength, considering 
a correlation coefficient (r) that shows the fit of the model. 
The value of r = 1 gives the best fit of the model. The best 
model was the MLP network with a structure of 4‒32‒1, where 
4‒32‒1 refers to the number of network inputs (4), the number 
of neurons in the hidden layer (32), and the number of network 
outputs (1).

Table 1 
MLP networks for the material selection based on the tensile strength

MLP network MLP 
4‒18‒1

MLP 
4‒47‒1

MLP 
4‒32‒1

MLP 
4‒44‒1

Effectiveness 
[%] 98 95 100 93

Error function SOS SOS SOS SOS

Activation 
function in the 
hidden layer

Tanh Sinus Tanh Logistic

Activation 
function in the 
output layer

Exponential Exponential Exponential Logistic

Correlation 
coefficient 0.908237 0.880434 1.000000 0.861899

The use of the system for the material selection based on the 
tensile strength is shown in Fig. 5. The process engineer first 
enters the relevant input data, including the material name, the 
layer height, the infill density and temperature, and the MLP 
network selects and returns the parameter of the tensile strength. 
If the tensile strength selected by the MLP network meets the 
requirements of the machine operator, he chooses this and the 
parameters for the technological process, which were provided 
to the neural network.

The intelligent system will be further developed towards 
the optimisation of the technological process parameters for 

Fig.5. Material selection based on tensile strengthFig. 4. MLP structure for the material selection based on tensile strength

Input layer

Material/Density

Tensile 
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Hidden layer Output layer



7

Intelligent system supporting technological process planning for machining and 3D printing

Bull. Pol. Acad. Sci. Tech. Sci. 69(2) 2021, e136722

additive manufacturing and in terms of the selection of the 
appropriate materials for the production of specific products, 
as well as the search for technological processes of similar 
products.

4.	 Discussion

The study aimed to develop an intelligent expert system sup-
porting technological process planning for machining and 3D 
printing, the functioning of which similarly the way human 
experts act in their f ields of expertise, and should be capable 
of gathering the necessary knowledge, analysing the data, and 
drawing conclusions to solve problems. This can be achieved 
by employing AI methods. The study proved the usefulness of 
the AI methods (neural networks and decision trees) and their 
effectiveness in supporting the technological process design.

The advantages of the presented concept, especially com-
pared to the solutions known and described in the literature, are 
the use of a real industry example, simplicity, real-time or close 
to real-time computation time, and high efficiency (even 100% 
achieved by the MLP 4‒32‒1). The advantages presented, in 
terms of the benefits resulting from the implementation of the 
presented concept, show the possibility of almost immediate 
application in 3D printing industrial processes, after the adap-
tation to the producers’ assembly line or other manufacturing 
devices. Such adaptation may be performed even online, as part 
of the control module, if all of the features taken into consid-
eration can be changed and controlled online. In some older 
3D printers, such adaptation may be financially unprofitable 
or even not possible at all.

The intelligent expert system is intended for process engi-
neers who have not yet gathered sufficient experience in tech-
nological process planning, or who have just begun their work 
in a given production enterprise and are not very familiar with 
its machinery and other means of production. It should be 
stressed that such a system plays an advisory role, and the final 
decision always belongs to the process engineer. The function-
ing of the expert system was described using the example of 
a real enterprise.

In future work, a general computational intelligence-aided 
design framework will be utilised in the smart design process. 
It can integrate not only the AI techniques (e.g. decision trees, 
ANNs, GA, fuzzy logic, and multifractal analysis) for technical 
optimisation and more accurate reasoning, but also a paradigm 
of design thinking, multi-scale performance simulations, and 
joint participation to better inform decision making [34]. Our 
further studies will focus on the systematic development and 
implementation of AI within Industry 4.0, i.e. the next gener-
ation of industrial systems, and the real impact of novel tech-
nologies such as 3D printing and the Internet of Things. The 
bigger complex systems aim at handling data, from material 
selection to semi-finished product selection, within the future 
AI-controlled multi-material 3D printers.

A limitation of the new solution is the necessity to contin-
uously upgrade the datasets in a multifactorial database due to 
the relatively quick development of 3D printing technologies 

and materials, due to the emerging novel possibilities of the 
final products. Despite the quite well-established knowledge 
and experience within 3D printing, many various process vari-
ants and improvements still have to be taken into consider-
ation, creating a lot of sub-technologies and possibilities to gain 
novel challenging product features. Additional factors are the 
accuracy and speed of production, which are often considered 
to pay particular attention to the quality of the final product. 
Further requirements for quicker development toward a wider 
commercial use within Industry 4.0 include the high stability 
of 3D printing processes and the database easing selection of 
the materials used in 3D printing, the formalised and widely 
accepted online quality control processes, and certification and 
provision of design rules [1].

5.	 Conclusions

The evaluation of the study results and their measurements 
showed that even a simple ANN can be effective in a really 
complicated task as presented in our case study. Compartmental 
studies showed that our results are similar to or better than the 
result of previous studies [19, 22–29]. We should be aware that 
the variability of 3D printing processes is so huge that each case 
may be hard to compare. The aforementioned feature makes 3D 
printing appropriate for customer-tailored products, but requires 
more advanced planning and control systems, and therefore 
more advanced AI support.

Acknowledgments: The work presented in the paper was 
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