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Abstract: Studies of isotopic ages were conducted for rock samples of the Keller, Visca
Anchorage and Domeyko Glacier formations. Together they form a part of the Martel Inlet
Group, a terrestrial calc-alkaline volcanic and volcanoclastic suite and they crop out along
the Keller Peninsula on King George Island. The U-Pb and “°Ar/**Ar isotope data from the
Keller Peninsula lava flows, although differing in quality, made it possible to obtain reliable
age intervals. The stratified volcanogenic rocks of Keller Peninsula, Visca Anchorage and
Domeyko Glacier formations of the Keller Peninsula were emplaced there near the Early/
Late Palacocene boundary (ca. 62.11 £ 0.66 Ma ago), in the Early Eocene (ca. 56.3—
51.9 Ma) and near the Early/Middle Eocene boundary (ca. 49.9-47.9 Ma), respectively.
A certain difference in the ages of Eocene volcanogenic formations, in particular tectonic
blocks of King George Island, may indicate a migration of centres of volcanic activity over
time, from northwest to southeast.

Keywords: Antarctica, South Shetland Islands, U-Pb and “°Ar/*°Ar isotopic ages,
volcanogenic rocks.

Introduction

Cenozoic volcanogenic rocks are frequent in Western Antarctica, (e.g.
Grikurov and Leychenkov 2012) but their precise dating in many places is still in
progress. Accurate ages of volcanic activity are very important not only for
detailed geological cartography of ice-free areas of Western Antarctica, but also
for time frames of past climate changes, metallic mineralization and tectonic
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evolution. Glaciogenic sediments related to the Oligocene and Miocene
glaciations of Antarctica are preserved in some regions of Western Antarctica.
Their precise dating is possible due to isotope ages of the surrounding or
interbedded volcanic rocks, as well as strontium isotope stratigraphy of carbonate
shells (e.g. Dingle and Lavelle 1998; Troedson and Smellie 2002). Apart from
thermal isolation of Antarctica accredited to the opening of the Drake Passage in
the Eocene (e.g. Barker and Burrell 1977; Livermore et al. 2005), extensive
volcanic activity could be an additional factor responsible for the initial phases of
climate cooling and glaciations of Antarctica (Nawrocki ef al. 2011). However, to
prove this thesis, a precise and credible dating of the Cenozoic volcanogenic
rocks should be conducted in the entire region of Western Antarctica.

The polycyclic nature of volcanism caused by continuous subduction of the
Pacific Plate under the Antarctic Plate can result in K-Ar and Ar-Ar dating to be
somewhat problematic. Said problems are caused by the older rocks being heated
by younger intrusions, resulting in multiple locations for their transformation and
therefore argon gas lost due to reheating (e.g. Pankhurst and Smellie 1983). On the
other hand, the U-Pb dating of zircons from andesite and basaltic-andesite lavas can
provide the ages of their crystallization in the magma chamber, i.e. ages slightly
older than the magma emplacement. Results of complementary Ar-Ar and U-Pb
dating, and magnetostratigraphic studies of the same samples of volcanogenic rocks
from King George Island (Nawrocki et al. 2010, 2011; Panczyk and Nawrocki
2011) show that such a complex methodology seems to be the best solution to
precisely date the Cenozoic volcanogenic successions in Western Antarctica.

King George Island is located in the middle of the South Shetland
archipelago. The South Shetland Islands arc was formed after the breakup of
Gondwana, during the subduction of the Phoenix Plate under the Antarctic Plate
from the earliest Cretaceous (ca. 135 Ma) to the middle of Miocene (Pankhurst
and Smellie 1983; Willan and Kelley 1999; Hasse et al. 2012). The archipelago
was separated from the Antarctic Peninsula following the formation of Bransfield
Strait and the development of a back-arc basin, presumably in the Pliocene
(Barker 1982; Barker and Dalziel 1983; Keller et al. 2002; Solari et al. 2008).
King George Island is subdivided into four major tectonostratigraphic units: the
axial Barton Horst, the northern Fildes Block, the southern Warszawa Block and
the southernmost Krakow Block (Fig. 1). These units are separated by
longitudinal strike-slip faults. The Barton Horst is bound by the right-lateral
strike-slip Ezcurra Fault in the south (Birkenmajer 2003). However, the precise
nature of the relationship between the different tectonic blocks is very uncertain
and the thesis of Neogene terrane accretion proposed by Birkenmajer (2003) and
its influence on the stratigraphical correlation of geological units on King George
Island, in particular, are unproven or at least not well understood.

Motion along the Ezcurra Fault probably began at ca. 54 Ma and continued
until approximately 21 Ma (Birkenmajer 2003). The Cenozoic strata of King
George Island, mostly basaltic and andesitic rocks with terrestrial sedimentary
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Fig. 1. (A) Geological map of the Keller Peninsula modified after Birkenmajer (2003), with
locations and results of isotope dating. Topography after Mendes Junior et al. (2012). Stratigraphic
subdivision of rocks after Guangfu et al. (2002) and Birkenmajer (2003). (B) Studied area overlain
by structural units of King George Island after Birkenmajer (1983).

intercalations and intruded by dykes and plugs (Birkenmajer 2003), contain
sediments reflecting glacial and interglacial events that affected the South
Shetland Islands and the Antarctic Peninsula, although there is disagreement on
the ages and existence of some environmental episodes (Dingle and Lavelle
1998; Birkenmajer 2001; Troedson and Smellie 2002; Troedson and Riding
2002; Nawrocki et al. 2011, 2021).

This paper is dedicated to further isotopic age evaluation of volcanogenic
sequences from King George Island and summarizes and discusses the ages of
particular volcanogenic formations from different tectonic blocks of King George
Island (Birkenmajer 1983). Further, it attempts to determine the dispersion of
volcanic activity throughout the Cenozoic Era and in individual tectonic blocks
of King George Island.

Studied rocks and methods

General setting. — Isotopic studies were performed for the samples taken
from the Keller, Visca Anchorage and Domeyko formations, which form a part of
the Martel Inlet Group, a terrestrial calc-alkaline volcanic and volcanoclastic
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suite, which crop out along Keller Peninsula of King George Island (Birkenmajer
2003). Keller Peninsula occupies the northernmost part of Admiralty Bay of King
George Island and forms a part of the Barton tectonic block (Fig. 1). Previously,
the studied rocks have been attributed to the Jurassic system (Barton 1965; see
Smellie ef al. 1984). According to K-Ar data, a ?Cretaceous-Paleocene age has
been suggested for the Martel Inlet Group by Birkenmajer (2003). Three volcanic
cycles at Keller Peninsula, Ullman Spur and Point Hennequin have been
distinguished by Guangfu et al. (2002), who calculated K-Ar ages between
51.9+1 and 51.4+2 Ma for the Keller Peninsula Formation, 49.2+2 Ma for the
Visca Anchorage Formation and 48.75+2 Ma for the Domeyko Glacier
Formation (Fig. 1A). Because the ages were determined by the K-Ar method,
which is particularly prone to resetting by later thermal events, the significance of
all of the published K-Ar ages is very uncertain.

The Keller Peninsula Formation is at least 270 m thick and consists of the
Plaza Point Member and Mount Flagstaff Member, both being exposed in the
southern part of Keller Peninsula only (Birkenmajer 2003). The Visca
Anchorage Formation ca. 140 m thick, crops out in the middle part of the
Keller Peninsula and is separated from the Keller Peninsula Formation by an
angular unconformity. The formation consists of the Barton Buttress Member,
dated at 66.7+4 Ma (Birkenmajer 1983), and the Tyrrel Ridge Member. The
presence of petrified wood fragments suggests that the volcanic activity took
place in a terrestrial environment. The fossilized leaf specimens from the Tyrrell
Ridge Member suggest a late Palacocene? to early Eocene age for these rocks
(Kellner at al. 2007), but ages based solely on plant remains are typically very
imprecise. The Domeyko Glacier Formation is more than 320 m thick and
conformably sits on top of the Visca Anchorage Formation, being exposed along
the mountain ridge, with its tallest peak of Mount Birkenmajer, in the northern
part of the Keller Peninsula (Fig. 2, Birkenmajer 2003). The copper-bearing
mineral veins of the Wegger Peak Group intrude all the volcanogenic formations
of Keller Peninsula in several places (Barton 1965; Paulo and Rubinowski
1987).

Sample locations and petrography. — Two samples, KL-1 and KL-2, were
taken for isotopic dating, from the andesite of the Domeyko Glacier Formation
cropping out in the NW coast of the Keller Peninsula (Fig. 1A). One sample
(KL-3) was obtained from the basaltic andesite lava flow of the Keller Peninsula
Formation that is exposed in the cliff near the Plaza Point, in the southernmost
part of the Keller Peninsula. The Visca Anchorage Formation was sampled in the
middle part of the western slope of Keller Peninsula ca. 300 m above the
Brazilian Refuge 2 location (sample KL-5).

Most of the sampled rocks are strongly altered due to hydrothermal
processes. Only sample KL-3 remained mostly unaffected by post-magmatic
hydrothermal activity. The dark grey andesitic and basaltic andesitic rocks
(Birkenmajer 2003) display a porphyritic, intersertal texture (Fig. 3A-H).
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Fig. 2. (A) Geological cross-section of the Keller Peninsula after Birkenmajer (1982), for
stratigraphic subdivision see Fig. 1A. (B) Panorama of western slope of Mount Birkenmajer on the

Keller Peninsula, composed of andesite and basaltic-andesite lavas of the Domeyko Glacier
Formation.

The KL-1, KL-2 and KL-5 samples contain plagioclase crystals altered from
labradorite-andesine (Fig. 3C-D). They occur as euhedral and subhedral
phenocrysts up to 2 mm in length, as well as irregularly orientated laths within
the matrix. The altered matrix contains pseudomorphs of plagioclase, calcite,
quartz, albite and chlorite. The mafic minerals, most probably clinopyroxenes,
are strongly chloritized (Fig. 3B—C). The main accessory minerals are apatite,
magnetite (Fig. 3A and 3H) and rarely zircons. The KL-3 sample contains
plagioclase phenocrysts with a labradorite-andesine composition, and clinopyr-

oxene (Ti-augite). Its matrix comprise of laths of plagioclase, glass, mafic
minerals and Fe-Ti oxides.
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Fig. 3. Photomicrographic images of volcanic rocks from Keller Peninsula: sample KL-1 (A-B),
sample KL-2 (C-D), sample KL-3 (E-F), sample KL-5 (G-H). A. Strongly altered plagioclase
phenocrysts surrounded by matrix comprised of calcite, quartz and albite (crossed polars).
B. Strongly altered plagioclase phenocrysts and chloritized clinopyroxene with magnetite
inclusions (Backscattered-Electron (BSE) image). C. Altered plagioclase phenocrysts and
chloritized clinopyroxene phenocryst (crossed polars). D. Altered plagioclase phenocryst (BSE
image). E. Plagioclase and clinopyroxene phenocrysts surrounded by an intersertal matrix (crossed
polars). F. Clinopyroxene phenocryst (BSE image). G. Carbonatization of matrix (crossed polars).
H. Apatite crystal inclusions within the matrix (BSE image).
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Isotope analyses. — The samples were crushed in a ring mill, washed in
distilled water and ethanol, and sieved when dry to —40+60mesh. Appropriate
mineral grains were picked out of the bulk fraction. The samples were wrapped in
aluminum foil and stacked in an irradiation capsule with similar-aged samples
and neutron flux monitors (Fish Canyon Tuff sanidine (FCs), 28.305+0.036 Ma,
Renne et al. 2011), and irradiated without Pt shielding in October 2019 at the
McMaster Nuclear Reactor in Hamilton, Ontario, for 100 MWH in the medium
flux site 8E. Analyses (n=24) of 8 neutron flux monitor positions produced errors
0f' <0.5% in the J value. The samples were analysed by Janet Gabites at the Noble
Gas Laboratory, Pacific Centre for Isotopic and Geochemical Research,
Department of Earth, Ocean and Atmospheric Sciences, University of British
Columbia, Vancouver. The mineral separates were step-heated at incrementally
higher powers in the defocused beam of a 10W CO, laser (New Wave Research
MIR10) until fused. The gas evolved from each step was analysed by a VG5400
mass spectrometer equipped with an ion-counting electron multiplier. All
measurements are corrected for total system blank, mass spectrometer sensitivity,
mass discrimination, radioactive decay during and subsequent to irradiation, as
well as interfering Ar from atmospheric contamination and the irradiation of Ca,
Cl and K, with isotope production ratios: (*°Ar/*°Ar)k=0.0302+0.00006,
C7ArP°Ar),=1416.4+0.5, (°Ar/*°Ar)c,=0.3952+0.0004 and Ca/K=1.83+0.01
(7 Arc,/*° Arg).

The same rock samples (KL-2 and KL-5) were used for U-Pb isotope dating.
The Domeyko Glacier Formation KL-1 sample was dated by U-Pb method only.
The volcanic rock samples, KL-1, KL-2 and KL-5 from the Keller Peninsula
were crushed and sieved for zircon separation. Heavy mineral fractions were
separated using conventional heavy liquid and magnetic techniques. Hand-picked
zircons from the studied samples were mounted in epoxy with zircon standards
91500 (U = 78.5 ppm) and TEMORA (**°Pb/***U = 0.06683). The mounts with
zircons were polished, documented using optical microscope (reflected and
transmitted light) and imaged by cathodoluminescence (CL) using a Hitachi
SU3500 scanning electron microscope equipped with CL detector. The CL
images were used to characterize each grain and to identify any cracked and
otherwise damaged zircons. Following CL examination, the zircon grains were
analyzed using the ion microprobe SHRIMP Ile in the Polish Geological Institute
- NRI, Warsaw according to procedures based on those described by Williams
and Claesson (1987). Analytical conditions were: 3 nA negative O, primary ion
beam focused to ca. 25 um diameter spot; mass resolution ca. 5500; isotope ratio
measurement by single electron multiplier and cyclic peak stepping. Data were
collected in six sets of mass scans (196Zr20 - 2s; 24P - 5s: 204.1 background
- 5s; 29Pp - 15s; 2°7Pb - 15s; 298Pb - 15s; 228U - 5s; 2*8ThO - 5s; 2**UO - 5s),
with TEMORA zircon analyzed after every three unknown estimations. The data
were reduced in a manner similar to that described by Williams (1998), using the
SQUID Excel Macro of Ludwig (2000). All measurements on zircons were
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corrected for common Pb content using measured 2**Pb. Ages were calculated
using the constants recommended by the IUGS Subcommission on Geochronol-
ogy (Steiger and Jager 1977). The plots of SHRIMP Ile data were constructed
using ISOPLOT/EX (Ludwig 2003).

Results

The whole-rock sample, KL-3 of the Keller Peninsula Formation yielded an
“OAr/*® Ar plateau age of 60.60 + 0.74 Ma with MSWD of 0.73, J-error of 4% and
a probability of occurrence of 0.57. This estimation includes 78.6% of the *°Ar
and is similar to the inverse isochron age of 59.29 + 0.85 Ma (Fig. 4, Table 1).
Because of a certain signs of excess of argon, an integrated date of
62.11 =+ 0.66 Ma is, however, most probably closer to the time of magma
emplacement. The KL-5 sample plagioclase crystals from the Visca Anchorage
Formation, that was strongly altered due to hydrothermal processes, yielded an
40Ar/*?Ar plateau age of 54 + 2.2 Ma (Fig. 4) with MSWD of 1.14, J-error of 4%
and a probability of occurrence of 0.33. This estimation includes 67% of the *°Ar
(Fig. 4, Table 2). The KL-2 whole-rock sample from the Domeyko Glacier
Formation provided an *’Ar/*’Ar plateau age of 43.59 = 0.77 Ma with MSWD of
1.3, J-error of 4% and a probability of occurrence of 0.27. This estimation
includes 62.2% of the *°Ar (Fig. 4, Table 3).

Results of U-Pb isotope studies are summarized in Appendix 1. All zircon
populations are homogenous and range from 80 to 120 um in length. Most of
zircons are transparent, with slight zonation visible in CL images. The zircons are
fragmented, without evidence of dissolution or a complicated zoning texture.
They displayed a very low to moderate U and Th contents (67—1024 ppm and 39—
1116 ppm, respectively) typical for igneous rocks Th/U ratio, ranging from 0.68
up to 1.30. The results of U-Pb isotope dating are not concordant in different
degree and because of this the mean *°°Pb/>**U ages are presented only (Fig. 5).
The mean 2°°Pb/***U age (error 26) calculated for zircons grains from the sample
KL-1 is 4892 + 1 Ma (MSWD 2.2), whereas from the sample KL-2 is
46.9 £ 3.7 Ma with high MSWD (9.5). The obtained age for sample KL-5 is 51.5
+5.4 Ma (MSWD 5.4).

Discussion

Towards a reliable age of volcanogenic formations from the Keller
Peninsula. — The whole rock KL-3 sample’s “°Ar/*°Ar plateau age of from the
Keller Peninsula Formation (60.6 £ 0.74 Ma) is of high statistical quality and
close to the inverse isochron and integrated ages (59.29 + 0.85 Ma;
62.11 + 0.66 Ma). The sample displayed a weak post-magmatic alteration only
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Fig. 4. Plagioclase and whole-rock sample “°’Ar/*’Ar age spectra from the volcanogenic Martel
Inlet Group rocks from the Keller Peninsula presented in plateau diagrams and inverse isochron
plots. The plateau age error bars of the apparent ages of step heating are drawn at 2c analytical
uncertainties. For details see Tables 1, 2 and 3.
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ages obtained for particular sample are also presented.
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(Fig. 3). Consequently, it is assumed that the integrated age most probably points
best the time of magma emplacement. Sample KL-5 of the Visca Anchorage
Formation showed evidences of strong post-magmatic alterations. However, these
hydrothermal alteration processes could be approximately close in time to when
the magma was emplaced. The plagioclase **Ar/*?Ar plateau age (54.1 + 2.2 Ma)
and the mean U-Pb age of zircons from this sample (51.5 £ 5.4 Ma) overlap
between 56.3 and 51.9 Ma. It may support this interpretation despite of poor
quality of U-Pb age. Bearing in mind both isotope ages with their analytical errors,
we can assume that this part of the Visca Anchorage Formation was emplaced
sometime between 56.3 and 51.9 Ma. This agrees with paleontological evidence
from the Tyrrell Ridge Member of the Visca Anchorage Formation that suggest
a late Palaeocene? to early Eocene age for these rocks (Kellner at al. 2007). The
mean U-Pb ages obtained from samples KL-1 and KL-2 of the Domeyko Glacier
Formation from the same lava flow (48.92 + 1 Ma; 46.9 = 3.7 Ma), lead to
conclusion that these rocks were emplaced between ca. 47.9 and 49.9 Ma, when
taking into consideration the overlapping of analytical errors. The *°Ar/°Ar
plateau age obtained from the whole rock sample KL.-2 is about 4 Ma younger
(43.59 + 0.77 Ma), and although it is of good quality, it most probably indicates
a time of strong hydrothermal alteration of the studied rock (Fig. 3). Finally, it can
be concluded that the stratified volcanogenic succession at the Keller Peninsula
was deposited near the Early/Late Palacocene boundary (Keller Peninsula
Formation), in the Early Eocene (Visca Anchorage Formation) and in the early
Middle Eocene (Domeyko Glacier Formation). The unconformity that separates
the Palaeocene and Eocene lavas at the Keller Peninsula may be linked with
a phase of folding of the stratiform volcanic-sedimentary succession in the
southern part of the Barton Horst. It may be an effect of transpression related to
strike-slip displacement along the Ezcurra Fault (Birkenmajer 2003). It is possible
that a major phase of tectonic displacement took place along the Ezcurra Fault
near the Eocene and Palacocene boundary, as the coeval Early to Middle Eocene
volcanogenic succession covers both tectonic blocks (Barton Horst and Warszawa
Block) separated by this fault (Fig. 6).

Chronology of volcanic activity on King George Island. — More than 95%
of King George Island is covered by an ice sheet, therefore the study of the
stratigraphy is limited to its coastal parts only. A stratigraphic chart with phases
of volcanic activity on King George Island presented here (Fig. 6), is based
largely on the *°A/*°Ar and U-Pb age results. The oldest volcanogenic rocks on
the surface of King George Island (basaltic andesites) were dated to ca. 120 Ma
(Kim et al. 2000). They crop out on the Barton Peninsula, ie. in the
south-western part of the Barton Horst (Figs 1 and 6). A Late Cretaceous
“OAr/*?Ar age (ca. 75 Ma) was obtained (Nawrocki ez al. 2010) from the Uchatka
Point Formation basalt (Paradise Cove Group, Fig. 6) outcropping from the
Warszawa Block. The basaltic andesites of the Keller Peninsula Formation are
the next pre-Eocene rocks with a well-documented *’A-*°Ar isotope age ca.
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62 Ma. However, most of the volcanogenic formations identified on King George
Island were emplaced there during the Eocene (Nawrocki ef al. 2011). Their ages
are comparable in the areas of the Warszawa Block and the Barton Horst, being
emplaced between 53 and 43 Ma (see also Nawrocki et al. 2010, 2011; Mozer
et al. 2015). It should be noted that isotope data indicates slightly older ages (56—
52 Ma) for the Fildes Peninsula Group of the Fildes Block (Gao et al. 2017) and
slightly younger ages (45-37 Ma) of the upper pats of the Mazurek Point and
Hennequin formations (Panczyk and Nawrocki 2011) outcropping from the
Krakow Block (Fig. 6). This may indicate a migration of Eocene volcanic activity
over time, from northwest to southeast. This phenomenon cannot be noticed
across the Barton Horst and the Warszawa Block, as all of the outcrops studied
from these units are close to their tectonic boundary. There is no data from the
central and northern parts of the Barton Horst. The Late Oligocene to Early
Miocene magmatic activity took place most probably in the entire area of King
George Island (Troedson and Riding 2002; Panczyk and Nawrocki 2009). Its lack
in the area of the Fildes Block is most probably due to a very limited number of
isotopic studies. They only cover the south-western margin of this unit.

Conclusions

The U-Pb and *°Ar/*°Ar isotope data of lava flows from the Keller Peninsula
allow for an estimation of their emplacement age. The stratified volcanogenic
rocks of the Keller Peninsula, Visca Anchorage and Domeyko Glacier formations
of the Keller Peninsula were emplaced near the Early/Late Palacocene boundary
(ca. 62.11 £ 0.66 Ma ago), in the Early Eocene (ca. 56.3—51.9 Ma) and near the
Early/Middle Eocene boundary (ca. 49.9-47.9 Ma), respectively. Consequently,
the tectonic inclination of the rocks forming the Keller Peninsula Formation,
which was most probably caused by strike-slip tectonic activity of the Ezcurra
Fault, resulted in an angular unconformity between them and the overlying Visca
Anchorage Formation, and is dated to have occurred ca. 62—-52 Ma ago. A certain
age difference of Eocene volcanogenic formations, in particular of the tectonic
blocks of King George Island, may indicate a migration of centres of Eocene
volcanic activity over time, from northwest to southeast.
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