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Abstract

Artificial neural network (ANN), a Computational tool that is frequently applied in the mod-
eling and simulation of manufacturing processes. The emerging forming technique of sheet
metal which is typically called single point incremental forming (SPIF) comes into the map
and the research interest towards its technological parameters. The surface quality of the end
product is a major issue in SPIF, which is more critical with the hard metals. The part of
the brass metal is demanded in many industrial uses because of its high load-carrying capac-
ity and its wear resistance property. Considering the industrial interest and demand of the
brass metal products, the present study is done with the SPIF experiment on calamine brass
Cu67Zn33 followed by an ANN analysis for predicting the absolute surface roughness. The
modeling result shows a close agreement with the measured data. The minimum and maxi-
mum errors are found in experiment 3 and experiment 7 respectively. The error of predicted
roughness is found in the range of —30.87 to 20.23 and the overall coefficient of performance

of ANN modeling is 0.947 which is quite acceptable.
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Introduction

Single point incremental forming (SPIF) is an inno-
vative sheet metal forming process in which a hemi-
spherical end tool is used for the deformation on the
thin metal sheets. The controlled movement of form-
ing tool defined the accuracy of the SPIF therefore
process needed a precise platform i.e. computer nu-
merical controlled machine (CNC). The forming tech-
nique is more advantageous for the manufacturing of
customized products, rapid prototyping, or low vol-
ume production. In the last two decades, several in-
vestigations are being made for conceptualizing the
process, but still, an optimized processing environ-
ment has not been achieved. The authors suggested
the positive forming technique in which the forming
capability of metal increased due to the plane-strain
mode which helps to form complicated shapes with
sharp corner/edges (Park and Kim, 2003) and the
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thickness of the end part is directly proportional to
the wall draft angle that should be greater than 30°
for the ductile metals (Pohlak et al., 2007). Further,
the punch force and sheet thinning rate is reported
as the significant parameters in the SPIF (Bahoul et
al., 2014). A report is presented that mentioned the
futuristic approach and the scope of the SPIF (Oraon
and Sharma, 2010). The complex deformation process
of SPIF and the achievement of required surface finish
of the final product is one of the prime concerns for its
acceptance. The linear and quadratic relation of the
thickness of metal and the total part depth affects the
surface quality (Ambrogio, 2007). The dimensional in-
accuracy with varying wall angles due to the spring-
back effect is reported in the SPIF of SPCC metal
(Luo et al., 2010). An investigation is made on the
surface roughness termed as waviness of SPIF Prod-
uct and declared that the large-scale and small-scale
wavy texture marked due to the toolpath and large
surface strains respectively (Hagan and Jeswiet, 2004)
that could be transformed i.e. wavy to smooth surface
achieved by decreasing the vertical step size (Junk et
al., 2003). A theory is proposed by the authors in
that the surface roughness is defined in terms of am-
plitude and spacing. The report mentioned that the
surface roughness is directly proportional to vertical
step size whereas an inverse relation to tool end di-
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ameter and slope angle (Hamilton and Jeswiet, 2010).
Subsequently, the effects of feed rate and spindle speed
on the SPIF of aluminum Al3003 (H14) are reported
in terms of non-contact surface roughness (orange
peel effect), thickness deviation, and the microstruc-
tural status of the formed part (Hamilton, 2010). The
maximum surface roughness (R;), and absolute sur-
face roughness (R,) are analyzed in the SPIF of alu-
minum grade AAT075 by varying the tool end ra-
dius, vertical step size, and wall angle (Durante et al.,
2010). The medical implants (femoral condylar sur-
face of the knee) is successfully developed through
SPIF of Titanium Ti-6Al-4V and observed the ef-
fect of punch diameter and lubricants on the surface
roughness) (Oleksik et al., 2010) whereas higher tool
end diameter along with high tool rotational speed en-
hanced the surface quality of the SPIFed part, made
of carbon steel (DCO01), stainless steel (304), and alu-
minum (A1050) (Radu and Cristea, 2013). It is also
reported that the step depth increment is the main
input variable, which contributes 63.56% to the sur-
face roughness (Shah and Chaudhary, 2014). Further,
the statistical investigation on the SPIF of the alu-
minum AA1100 is done and confirmed the contribu-
tion of the step depth increment (64.19%) and wall
thickness (17.23%) on the surface roughness of the
formed part (Uttarwar et al., 2015) and found that
the high-density lubricant like grease is suitable at
low spindle speed whereas low-density lubricant like
k-oil, vegetable oil, etc. are favorable at high spindle
speed in the SPIF of the Indian standard aluminum
grade 19000 (Patel et al., 2015). In the successive in-
vestigation, the report of the regression analysis of
SPIF of aluminum alloy showed the contribution of
tool diameter, spindle speed, step depth increment,
and wall angle as 1%, 3%, 27%, and 69% respectively
(Khatal et al., 2016). It is also reported that the tool
of small end diameter received the high forming forces
to the bigger tool diameter in the SPIF when exper-
iments are conducted with constant input variables
(Dabwan et al., 2016; Alsamhan et al., 2019). The
C-channel, an aerospace part is successfully formed
through SPIF of aluminum (Gupta and Jeswiet, 2019)
in which a backup plate supported the thin sheet of
aluminum for the prevention of the crack. In the SPIF
of AA1050-H14 alloy with varying the tool end diam-
eter, feed rate, step size, and sheet thickness, only
the thickness of the sheet are found insignificant. The
authors also directed that the surface quality is im-
proved with the use of greater tool diameter on SPIF
of thin sheet but it is very difficult to control because
of contradicting effect of interacting input variables
(Dabwan et al., 2020). Results showed that the he-
lical tool path generates homogeneous thinning, and

18

removed the surface scarring of aluminum AA7075-O
(Esmaeilpour et al., 2019), and the interaction effect
of tool radius and step size, favorably influenced the
SPIF (Murugesan and Jung, 2021).

The achievement of goals in the manufacturing pro-
cesses needed a user friendly-environment but the
variation in the results is observed due to various rea-
sons like machine or tool failure, mechanical proper-
ties of raw material, lack of experience, etc. therefore
a system is needed to predict/forecast the output vir-
tually. Presently, the trend is moving in the direction
to develop a hybrid model based on finite element
method (FEM), computational tools like data-mining
(Xu et al., 2004), neuron-fuzzy logic (Liew et al., 2004)
and artificial intelligence techniques like artificial neu-
ral network (ANN) (Wang and Lee, 2006). The results
of ANN enunciated a tremendous amount of interest
in the solution of manufacturing-related problems. In
ANN modeling, the output of any forming processes
are predicted with the use of historical data therefore
a large amount of data is required for training and
testing for a valid model (Kecman, 2001).

In the manufacturing process, the outputs are found
variable. Consequently, these data are to split into
training and testing. Properly trained networks tend
to give reasonable answers with inputs that they have
never seen. The researchers proposed a variety of ANN
network algorithms for the modeling and computa-
tional work in manufacturing processes such as cal-
culating the process functional error e.g. mean ab-
solute error (MAE), mean square error (MSE), root
mean square error (RMSE), etc. ANN models in-
cluded feed-forward backpropagation (FFBP), Elman
backpropagation (EBP), cascade-forward backprop-
agation (CFBP), self-organizing map (SOM), and
Time-delay backpropagation (TDBP), etc. The feed-
forward backpropagation (FFBP) algorithms (Am-
brogio et al., 2011; Vahdati et al., 2014; Varthini et al.,
2014) are widely utilized by researchers for the predic-
tion of the surface roughness in the SPIF. The forming
force is predicted in the SPIF of aluminum AA30003
by ANN modeling and is reported the coeflicient per-
formance 0.939 and the mean error of —-0.215 (Oraon
and Sharma, 2018a) while for surface roughness, it is
found as 0.9474 with the mean absolute error (MAE)
of 1.068.

Experimental procedure

The surface texture of the end product is one of
the important output response that are demanded. In
SPIF, obtaining the desired part accuracy and surface
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roughness is a major issue as it depends on the spring-
back effect, step depth increment, and the toughness
of the sheet metal.

The copper alloy Cu67Zn33, commonly known as
calamine brass is taken for the experiments. The prod-
uct copper alloys are wildly utilized in the industries
due to its rigidity at high load and resistance to wear
property. The ultimate tensile strength (UTS) of this
material is determined in the automated material test
machine INSTRON Series IX’. The test-samples are
prepared and tested as per American society for test-
ing and measurement (ASTM) standard B-557M. The
results of tensile tests are tabulated in Table 1.

Table 1
Taguchi L8 design and measured R, values
Metals Cu67Zn33
Stress at Ultimate (MPa) 336.25
Strain at Max. Load (%) 4.43
Stress at Auto Break (MPa) 129.99
Toughness (MPa) 14.23
Maximum Percent Strain (%) 5.96

Six significant input variables are considered for the
experiments. The input variables are step depth size
(Az), tool feed rate (f), tool rotational speed (R),
wall angle (6), sheet thickness (T), and density of
lubricant (L). The output parameter considered for
the analysis is the surface absolute roughness value
(Ra)- The experiments are performed on a robust
machine DT-110 manufactured by Mikrotools Pvt.
Ltd., Singapore. A customized forming tool is manu-
factured. The solid cylindrical rod of medium carbon
steel 40C6 is taken for forming tool. One face of the

Table 2
Taguchi L8 design and measured Ra values

Exp. rﬁrfl mmk;min koo rr’1Tm KgI7m3 Ra
1 0.1 20 500 |15| 0.2 1.5 134.86
2 0.1 20 500 45| 0.4 4.9 268.29
3 0.1 100 2000 (15| 0.2 4.9 156.10
4 0.1 100 2000 (45| 0.4 1.5 269.83
5 0.7 20 2000(15| 0.4 1.5 ]362.94
6 0.7 20 2000 (45| 0.2 4.9 |378.63
7 107 100 500(15| 0.4 4.9 1360.95
8 0.7 100 500 |45| 0.2 1.5 ]369.63
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0.7 mm diameter solid rod is grooved hemispherically
and a 0.6 mm diameter bearing ball (Bohler W300
alloy) is inserted into the groove to form a hemispher-
ical end. The experiments are designed according to
Taguchi’s methodology using the L8 orthogonal array.
The square pyramid shape of base size 35 mm x 35 mm
is formed. The level of input variables for the exper-
iment and the output i.e. absolute surface roughness
(Re) is presented in Table 2. The R,-value of the test
samples are measured through atomic force measure-
ment (AFM) technique with 5xmagnification.

Estimating Surface Roughness through
ANN

In the present study, FFBP neural network 6-6-1
topology is modeled in which an input layer, a hidden
layer, and a output layer (Fig. 1) is present. The
ANN computation is done by using MATLAB, version
7.10.0 (R2010a) (Fig. 2) in which a three-layer FFBP
network is developed.

Output Vectot (R,

T Quiput Layer

Hidden Layer
(6 Hidden neurons)

Input Layer
(6 Input neurons)

Input Vector

Fig. 1. Structure of three-layer backpropagation neural
network

Neural Network:

Hidden Layer Output Layer

Input Output
b QE» 'mg!" 5|
N N
6 = 1

6

B) Change thenumber of neurons if desired, then diick [Next] to continue.

@ Bsck @ Cancel

Fig. 2. The network architecture of FFBP
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At hidden layer, the hyperbolic tangent sigmoid
transfer function (Tansig) and at output layer, the
linear transfer function (Purelin) is set. The model is
adopted two stopping criteria i.e., the maximum num-
ber of iteration (the first activated) and the sufficient
accuracy on the test set.

Network Modeling of Surface
Roughness

The modeling of ISF through FFBP having the
following set parameters is adopted for computation.
They are summarized below.

Network: FFBP

Function for Training: TRAINLM

Learning rate: LEARNGDM

Performance: MSE

Training: Levenberg—Marquardt algorithm

No of neurons (n): 0 to 10

During the ANN computation 60%, 20%, 20% of
experimental data are segregated for training, testing,
and validation respectively without normalizing the
input data.

b 4
d MNeural Network Training (nntraintocl) [

Neural Network

Layer Layer

Algorithms

Training:
Performance:
Data Division:

Levenberg-Marquardt (trainlm)
Mean Squared Error (mse)
Random (dividerand)

Progress

Epoch: 0 || 7 iterations 1000
0:00:00

Performance: 267e+03 [0 s8R 0.00

Gradient: 1.00 118 1.00e-10

Mu: 0.00100 100e-10 1.00e+10

Validation Checks: 0 5 5

Plots

Training State (plottrainstate)

Plot Interval: U

1 epochs

v Opening Regression Plo-

@ Stop Training @ Cancel

Fig. 3. ANN training performance
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The training stopped after 7 iterations because the
validation error increased (Fig. 3). Figure 4 showing
the train data best validated at epoch 2 with a value
of 54.8658 and the test set error and the validation
set error have similar characteristics. The regression
model indicated the performance index of ANN. The
overall R-value comes as 0.947444 (94.7%) which quite
acceptable.

[ Performance (plotperform) cnjiEl
Best Validation Performance is 54.8658 at epoch 2
T T T T T T
] —Train
Validation
1()4 t Test H

Mean Squared Error (mse)

7 Epochs

Fig. 4. Validation Plot

Result and discussion

The computational result of the SPIF and func-
tional error is presented in Table 3. The results of
the experiments yield good agreement with the pre-
dicted Ry-value. The error range of predicted R,-
value is —30.871%-20.23% and the mean functional
error is 0.71. Table 3 shows the maximum error in
the predicted R,-value of approx 31% to the mea-
sured R,-value. It is confirming that the achievements
of the required surface finish of end product through
SPIF by conducting the forming process at 0.1 mm
step depth size, 20mm/min feed rate of the tool, 500
RPM, 15° wall angle, and the grease lubricant in the
0.2 mm thickness of CU67Zn33 alloy.

Figures 5 to 10 corresponds to a comparison of ex-
perimental R,-value to predicted R,-value set yield-
ing an excellent agreement to each other. Figure 5
showed the comparison of experiment R,, value to pre-
dicted R, at variable step depth size. The graph shows
that the predicted R,-value having similar nature to
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Table 3 Spindle Speed (RPM)
Comparison of R,-values and calculated error function A Exp. 8
- » .%F&]IA
R R E E 350 -
Exp. a & Error "1 Mean Error et L
(Exp.) | (Pred.) (%) 3 300
1 [134.863|176.497| 41.63 |-30.871 '% Exp. §
o 250
2 1268.29 |272.376 4.086| —1.522 5
]
3 |156.102 | 149.289 | —6.813| 4.364 E 00
7]
4 1269.831|270.174 0.343| —-0.127 071 150
. Exp. 5
5 [1362.943 | 348.148 | -14.79 4.076 o Exp. 1 ’
6 [378.637|377.619| 1.018| 0.268 . Expeciment No.
(500RPM) =—w— Experimental R , ==&== Predicted R,
7 360.951 | 287.911 73.04 20.23 (2000RPM ==~ Experimental R , =—#= Predicted R,
8 369.637|377.594| 7.957| -2.152 Fig. 7. Comparative results of spindle speed (R)
Step depth (mm) 0
- pRemal - Wall Angle ()
o Exp. 6p-
‘-E' 350 :ﬂ\“’% 8 E 350 ? Exp. 8
=] g R
: Exp. § -
% 300 . _ 4 300
‘th Exp.2 Exp. 4 G ‘Eb
5 250 5 250 Exp. 4
8 2
“g 200 | :@‘. 200
5
© 77}
150 150
Exp. 1 Exp.3 Exp. 1
100 - 100
Experiment No. Experiment No.
(0.1mm) == Experimental R , ==&= Predicted R, (15") —w— Experimental R, =A== Predicted R,
(0.7mm) ==#= Experimental R , =—#= Predicted R, (45") —8— Experimental R, —e— Predicted R,
Fig. 5. Comparative results of step depth (Az) Fig. 8. Comparative results of wall angle (6)
Feed Rate (mm/min) Thickness of sheet (mm)
400 400
];'xp.(7<=
E 350 ’%“‘ 6 'g 350 Exp. 8
£ £
% 300 5 300
-5) -Eh ] Exp.7
g 250 2 250 Exp.2  Exp.4
v Q@
"S 200 “E 200
@ 7]
150 150
Exp. 3 :
Exp. 1 Exp. 1
100 100

Experiment No.
(20mm/min) ==¥=— Experimental R , ==& Predicted R,
(100mm/min) —®— Experimental R , —®— Predicted R,

Fig. 6. Comparative results of feed rate (f)

experimental R, in the case of step depth size Az of
0.2 mm whereas it is diverted severely when the exper-
iment is conducted with 0.7 mm step depth size. The
maximum variation of 20.23% is observed in the ex-
perimental run 7 to the predicted R,-value. The vari-
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Experiment No.
(0.2mm) === Experimental R.‘ ==h=— Predicted R.
(0.4mm) === Experimental R , === Predicted R

Fig. 9. Comparative results of sheet thickness (T)

ation of predicted R, value is also affected greatly at
100 mm/min feed rate which is controlled at the lower
feed rate i.e. 20 mm/min (Fig. 6). The higher spindle
speed i.e. 2000 RPM is recommended for getting the
minimum surface roughness when the 0.2 mm thick-
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Density of Lubricant (Kg/m’)

400
350 Lap &
300
Exp. 2

250

200

Surface roughness (nm)

150

Exp. 3

Exp. 1

Experiment No.
(1.5 Kg/m') =—w=— Experimental R , —4&— Predicted R

(49Kg/m) Experimental R , == Predicted R,

Fig. 10. Comparative results of the lubricant (L)

ness of Cu67Zn33 alloy is deformed through SPIF
(Fig. 7). At varying wall angles, the predicted R,-
value greatly deviated from the experimental R,-value
for lower wall angle 15°.

The control of the roughness value, higher wall an-
gle is suitable for SPIF of metal having high hard-
ness (Fig. 8). When the experiment is conducted at
45°, the measured R,-value is quite closer to the
predicted R,-value. The predicted roughness value
is found similar curve to the experimental R, for
the SPIF of 0.2 mm sheet thickness (Fig. 9) and the
formability is increased with increasing wall angle.
Figure 10 indicated the effect of lubricant in the SPIF
of Cu67Zn33 alloy. Applying white grease in the SPIF
of Cu67Zn33 alloy presumes the smooth surface finish.
The graphite lubricant greatly affected the R,-value,
when the inputs are set at the high step depth size,
100 mm/min feed rate, and 2000 RPM, the coarser
surface finish is achieved.

Conclusions

The SPIF of Cu67Zn33 alloy is successfully done
and computational work for the prediction of the sur-
face roughness through ANN is presented in this pa-
per. The network structure, modeling, and computa-
tional methods of ANN are presented in this paper
that is compared with the measured R,. The pre-
dicted R,-value is found quite closer to the measured
R,. The minimum error of 0.343 nm in experiment 4
and the maximum error of 30.87% in experiment 1 are
found. The overall efficiency of 94.7% indicated that
the acceptable data is generated with ANN modeling.

The solving technique in ANN is quite simple and
efficient. Therefore, ANN can be used as a predictional
tool in manufacturing sector too.
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