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A new multistable double-scroll 4-D hyperchaotic
system with no equilibrium point, its bifurcation
analysis, synchronization and circuit design

Sundarapandian VAIDYANATHAN, Shaobo HE and Aceng SAMBAS

In this work, we have developed a new 4-D dynamical system with hyperchaos and hidden
attractor. First, by introducing a feedback input control into the 3-D Ma chaos system (2004),
we obtain a new 4-D hyperchaos system with no equilibrium point. Thus, we derive a new
hyperchaos system with hidden attractor. We carry out an extensive bifurcation analysis of the
new hyperchaosmodel with respect to the three parameters.We also carry out probability density
distribution analysis of the new hyperchaotic system. Interestingly, the new nonlinear hyperchaos
system exhibits multistability with coexisting attractors. Next, we discuss global hyperchaos self-
synchronization for the new hyperchaos system via Integral SlidingMode Control (ISMC). As an
engineering application, we realize the new 4-D hyperchaos system with an electronic circuit via
MultiSim. The outputs of the MultiSim hyperchaos circuit show good match with the numerical
MATLAB plots of the hyperchaos model. We also analyze the power spectral density (PSD) of
the hyperchaos of the state variables using MultiSim.

Key words: hyperchaos, hyperchaotic systems, hidden attractors, multistability, sliding
mode control and circuit design

1. Introduction

In the recent years, hyperchaotic systems have received good attention in the
literature due to their applications in several fields in science and engineering
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such as convection models [1], mechanical models [2, 3], lattices [4], encryption
[5–10], neural networks [11, 12], memristive models [13, 14], neuron models
[15], finance models [16], generator models [17], circuit models [18, 19], FPGA
models [20, 21], etc.

A 3-D chaotic system with a double-scroll attractor was proposed by Ma,
Ren and Chen ( [22], 2004). By introducing a feedback control, we develop a
new double-scroll 4-D hyperchaotic model in this work. The new hyperchaotic
model has only two quadratic nonlinear terms in the dynamics. Interestingly, the
new hyperchaotic model has no equilibrium point when we take the parameter
values to be positive. Chaotic dynamical systems without equilibrium point or
with a stable equilibrium point or with infinitely many equilibrium points are said
to exhibit hidden attractors [23]. Thus, the new 4-D double-scroll hyperchaotic
model has hidden attractor.

Bifurcation analysis of the new hyperchaotic systemwith respect to each of the
three system parameters is discussed in great detail. We also carry out probability
density distribution analysis of the new hyperchaotic system. Multistability is
a complex behaviour for a nonlinear system which is the existence of several
attractors for the sameparameter values but different initial conditions [24,25].We
show that the new double-scroll hyperchaotic system has multistability property.

Many techniques have been proposed in the control literature for the regula-
tion and synchronization of chaotic systems such as nonlinear control [26–28],
adaptive control [29–31], fuzzy logic control [32], sliding mode control [33–35],
etc. In this work, we use integral sliding mode control (ISMC) to design self-
synchronization between the identical states of the new hyperchaos system with
itself. Synchronization of hyperchaotic systems has applications in secure com-
munication [36, 37].

As an application in engineering, we design a MultiSim circuit to verify the
hyperchaos of the 4-D double-scroll system. We also carry out power spectral
design (PSD) analysis of the state variables of the new 4-D double-scroll hyper-
chaos system. Circuit design of chaotic and hyperchaotic systems is useful for
real-world implementations [38].

2. A new double-scroll 4-D hyperchaos system with hidden attractor

In [22], Ma, Ren and Chen (2004) proposed a 3-D chaotic system with the
dynamics




ẏ1 = −a(y1 + y2),
ẏ2 = −y2 − ay1y3 ,

ẏ3 = b + ay1y2 .
(1)

We denote the state of the Ma system (1) as Y = (y1, y2, y3).
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It is known that the Ma system (1) exhibits chaos for a large range of positive
values of the system parameters a and b.

In this work, we show that the Ma system (1) is chaotic for the parameter
values taken as (a, b) = (4, 20).

For the initial state Y (0) = (0.4, 0.5, 0.2) and (a, b) = (4, 20), we calculate
the Lyapunov characteristic exponents of the Ma system (1) using time-series
expansion for T = 1E5 seconds as

ψ1 = 1.2012, ψ2 = 0, ψ3 = −6.2012. (2)

The Lyapunov characteristic exponents spectrum in (2) establishes the chaotic
and dissipative nature of the Ma system (1).

It is noted that theMa system (2) stays invariant whenmake the transformation
of coordinates (y1, y2, y3) 7→ (−y1,−y2, y3). This makes it clear that the Ma
system (2) has rotational symmetry about the y2-axis.

When (a, b) = (4, 20), it is easy to calculate the two equilibrium points of the
Ma system (1) as follows:

B1 =



√
5

−
√

5
0.25



and B2 =



−
√

5
√

5
0.25



. (3)

It is easy to verify that the Jacobian matrices of the Ma system (1) about the
equilibrium points have the same spectral values given by

λ1 = −6.8840, λ2,3 = 0.9420 ± 9.5959 i . (4)

Thus, B1 and B2 are both saddle-focus equilibrium points, which are unstable.
The Ma system (1) has self-excited, double-scroll chaotic attractor, which is

shown in Fig. 1.
In this work, we build a new 4-D system by introducing a feedback control y4

into the Ma system (1) so that the resulting system is a hyperchaos system with
special properties such as hidden attractor.

Our new 4-D system is given by the following dynamics




ẏ1 = −a(y1 + y2) + cy4 ,

ẏ2 = −y2 − ay1y3 ,

ẏ3 = b + ay1y2 ,

ẏ4 = y2 .

(5)

We represent the state of the 4-D system (5) by Y = (y1, y2, y3, y4).
In the model (5), a, b, c are positive parameters.
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Figure 1: MATLAB simulation showing the double-scroll attractor of the 3-DMa system
(1) for (a, b) = (4, 20) and Y (0) = (0.4, 0.5, 0.2)

In this work, we show that the 4-D system (5) is hyperchaotic when we take
the parameters as

a = 4, b = 20, c = 1. (6)

We can verify this fact using MATLAB calculations as follows.
With the initial state Y (0) = (0.4, 0.5, 0.2, 0.3) and (a, b, c) = (4, 20, 1), we

can calculate the Lyapunov characteristic exponents of the new 4-D system (5)
for T = 1E5 seconds as

ψ1 = 1.0375, ψ2 = 0.2055, ψ3 = 0, ψ4 = −6.2433. (7)

As the LE spectrum (7) shows, the new 4-D system (5) is a hyperchaotic
system with two positive Lyapunov exponents.

Next, we notice that the 4-D system (5) has rotational symmetry about the y3
coordinate axis as the system (5) stays invariant under the change of coordinates(

y1, y2, y3, y4
)
7→

(
− y1,−y2, y3,−y4

)
. (8)

Next, we calculate the equilibrium points of the new system (5).
Thus, we proceed to solve the following equations.

−a(y1 + y2) + cy4 =0, (9a)
−y2 − ay1y3 =0, (9b)

b + ay1y2 =0, (9c)
y2 =0. (9d)
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From (9c) and (9d), we must have b = 0, which contradicts the assumption
that b > 0.

Thus the 4-D system (5) has no equilibrium point when the parameter b , 0.
Hence, the hyperchaotic system (5) has a hidden attractor for the hyperchaotic

case (6).
Figures 2–5 show 2-D MATLAB phase plots of the double-scroll 4-D hyper-

chaotic system (5).

Figure 2: The 2-DMATLAB (y1, y2) phase plot of the newdouble-scroll 4-Dhyperchaotic
system (5) for (a, b, c) = (4, 20, 1) and Y (0) = (0.4, 0.5, 0.2, 0.3)

Figure 3: The 2-DMATLAB (y2, y3) phase plot of the newdouble-scroll 4-Dhyperchaotic
system (5) for (a, b, c) = (4, 20, 1) and Y (0) = (0.4, 0.5, 0.2, 0.3)
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Figure 4: The 2-DMATLAB (y3, y4) phase plot of the newdouble-scroll 4-Dhyperchaotic
system (5) for (a, b, c) = (4, 20, 1) and Y (0) = (0.4, 0.5, 0.2, 0.3)

Figure 5: The 2-DMATLAB (y1, y4) phase plot of the newdouble-scroll 4-Dhyperchaotic
system (5) for (a, b, c) = (4, 20, 1) and Y (0) = (0.4, 0.5, 0.2, 0.3)

3. Dynamic analysis of the new double-scroll multistable hyperchaotic system

3.1. Bifurcation analysis of the new system

There are three parameters in the proposed hyperchaotic system, viz. a, b and
c. Thus, the bifurcation analysis of the system (5) is analyzed based on these three
cases. All the three cases are carried out with the initial conditions given by

y1(0) = 2, y2(0) = 1, y3(0) = 2, y4(0) = 4. (10)
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Case 1. Let b = 20, c = 1 and a vary from 0 to 10 with the step-size of
0.0024. The bifurcation of the system with the variation of parameter a is shown
in Fig. 6a and its corresponding Lyapunov exponents are presented in Fig. 6b. It
shows that the system (5) is chaotic and hyperchaotic with the increase of a, but
there are many periodic windows. It shows that the largest Lyapunov exponents
of the system (5) increase with a, and the system (5) is hyperchaotic in most of
the cases.

Figure 6: Bifurcation diagram of the hyperchaotic system (5) with the variation of a:
(a) Bifurcation diagram and (b) Lyapunov exponents

Case 2. Let a = 4, c = 1 and b vary from 0 to 50 with the step-size of
0.009. Figure 7 shows the bifurcation diagram and its corresponding Lyapunov

Figure 7: Bifurcation diagram of the hyperchaotic system (5) with the variation of b :
(a) Bifurcation diagram and (b) Lyapunov exponents
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exponents. As shown in Fig. 7, the system (5) is hyperchaotic with the variation
of the parameter b. The largest Lyapunov exponents of the system (5) increases
at the beginning stage and then as well. As a result, the system has higher
complexity interval of the parameter b in [15, 25, where the system (5) has the
largest Lyapunov exponents.

Case 3. Let a = 4, b = 20 and c vary from 0 to 10 with step-size of 0.009. The
bifurcation analysis results in Fig. 8 show that the system has rich dynamics with
the increase of the parameter c. When c > 4, there are more and more periodic
windows and the system (5) becomes into a periodic one. Meanwhile, the largest
Lyapunov exponents of the system (5) decrease with the increase of the parameter
c, when c < 4. Thus for real-world applications of the system (5), the suggested
values of the parameter c should be those smaller than 4.

Figure 8: Bifurcation diagram of the hyperchaotic system (5) with the variation of c :
(a) Bifurcation diagram and (b) Lyapunov exponents

3.2. Probability density distribution

The probability density distribution analysis of the generated chaotic time
series is investigated in this section. The higher and narrower the normal distri-
bution probability density curve is, the smaller the variance is. The smaller the
variance means that the data is more concentrated near its mean value. For the
nonlinear chaotic time series, it means that the time series is more complex.

We take eight examples to show the probability density distributions of
the system (5), where all the cases are carried out with initial condition
(y1(0), y2(0), y3(0), y4(0)) = (2, 1, 2, 4). The first four cases are obtained with
b = 20, c = 1 and a = 2, 4, 6 and 8, while the second four cases are obtained with
a = 4, c = 1 and b = 10, 20, 30 and 40. As shown in Fig. 9 that the system has



A NEWMULTISTABLE DOUBLE-SCROLL 4-D HYPERCHAOTIC SYSTEM
WITH NO EQUILIBRIUM POINT, ITS BIFURCATION ANALYSIS,

SYNCHRONIZATION AND CIRCUIT DESIGN 107

higher and narrower the normal distribution probability density curves when it
has larger parameters a and b. Thus, it shows that the system has higher complex-
ity with larger parameters a and b. In fact, the analysis results with probability
density curves agree well with the bifurcation analysis results.

Figure 9: Probability density distribution of the system (5) with different parameters: (a)
The parameter a varying; (b) The parameter b varying.

3.3. Multistability and coexisting attractors

Multistability is a special property of a chaotic or a hyperchaotic systemwhich
indicates the presence of two or more coexisting attractors for the system for the
same set of parameters but different sets of initial conditions.

In this paper, we show that multi-stability exists for the proposed hyperchaotic
system (5).

To decide whether the obtained attractor is new or not, we need to consider
the size and position of the attractor. We introduce the following method.

For the proposed system (5), we have four state variables, viz. y1, y2, y3 and
y4. Thus, four time-series are obtained, and we also define them as {yi (n) : n =
1, 2, . . . , N and i = 1, 2, 3, 4}, where N is the length of the time-series.
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The position of the attractor is defined by

P =
[
ȳ1, ȳ2, ȳ3, ȳ4

]
. (11)

Here, ȳi denotes the mean value of the time-series yi for i = 1, 2, 3, 4.
The size of each time-series for the attractor is defined as

Si = max(yi) −min(yi) for i = 1, 2, 3, 4. (12)

Suppose that there are two attractors for the proposed system (5) and their
time-series are defined by {yi (n) : n = 1, 2, . . . , N, i = 1, 2, 3, 4} and { ỹi (n) : n =
1, 2, . . . , N, i = 1, 2, 3, 4}.

The error between the positions of the two attractors is given by

e1 =
1
4

√√√ 4∑
i=1

(
ȳi − ¯̃yi

)2
. (13)

The error regarding the sizes of the two attractors is defined by

e2 =
1
4

√√√ 4∑
i=1

(
Si − S̃i

)2
. (14)

In this paper, we set a parameter error to decide whether the obtained attractor
is different with the existing ones or not. Namely, if both e1 > error and e2 >
error, then the obtained attractor { ỹi (n) : n = 1, 2, . . . , N, i = 1, 2, 3, 4} is a new
attractor. Otherwise, it is not a new attractor. In this paper, the value of error is
50.

Let a = 3, b = 40, c = 3, y3(0) = 2, y4(0) = 4 and the initial conditions y1(0)
and y2(0) both vary from−10 to 10with step size of one. The coexisting attractors
found in the system (5) are shown in Fig. 10. In fact, there are 34 different kind
of the attractors found in the system (5) with the given parameters under different
initial conditions. Some of the initial conditions of different attractors are listed
in Fig. 10.

In Fig. 10, two different attractors with initial conditions Y (0) = (−8, 7, 2, 4)
and Y (0) = (−10, 6, 2, 4) are shown with red color and blue color, respectively.

Let a = 4, b = 20, c = 1, y3(0) = 2, y4(0) = 4 and the initial conditions
y1(0) and y2(0) both vary from −10 to 10 with step size of one. The coexisting
attractors found in the system (5) are shown in Fig. 11.The attractors may look
similar but they have some differences according to the method introduced in this
paper. For instance, as shown in Fig. 10, the blue attractor and the red attractor
are different since the blue one has holes in the middle of the phase space.
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Figure 10: Coexisting attractors of the system (5) with parameters a = 3, b = 40, c = 3

It should be noted that the coexisting attractors as shown in the two figures
(Figs. 10 and 11) are overlapped with each other in the phase space y1 ∈ [−15, 15]
and y2 ∈ [−40, 40]. The two figures are plotted by considering the distinguisha-
bility of different attractors. Meanwhile, the initial conditions are listed in the
Figs. 10 and 11. As for the method to detect different coexisting attractors, it
is effective for those attractors with different size and positions. Meanwhile, the
values of the error should be chosen carefully. A small error could make the
algorithm sensitive to the attractors with small difference, but large error could
make the method to ignore those attractors with small difference. Due to the
limitation of the algorithm which is designed based on the size and position, we
cannot guarantee that we found all the coexisting attractors for the system (5).

As a result, the proposed system (5) has multistability with the initial condi-
tions. The system has different number of coexisting attractors with different sets
of parameters. It shows that the system has found 34 coexisting attractors with
a = 3, b = 40, c = 3 and the given simulation conditions.

If we search the initial space with smaller step-size, more coexisting attractors
may be found. Although there are many coexisting attractor for the proposed
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Figure 11: Coexisting attractors of the system (5) with parameters a = 4, b = 20, c = 1

system (5), whether the system (5) has extreme multistability or not needs further
investigation.

3.4. Complexity analysis

In this section, multiscale spectral entropy (MSE) algorithm [39, 40] is em-
ployed to analyze the complexity of the proposed system (5).

Firstly, complexity of the system (5) with the variation of system parameters
a, b and c is analyzed and the results are shown in Fig. 12.

Here, the system parameters and initial conditions are set as the same with
those in Figs. 6, 7 and 8.

As shown in Fig. 12, the complexity analysis results of the system (5) matches
well with the largest Lyapunov exponents of the system (5). Figure 12 shows that
the system (5) has high complexity with proper parameters.

Secondly, complexity of the system in the parameter plane is analyzed. Here,
the parameter a varies from 0 to 10 with step size of 0.1, the parameter b varies
from 0 to 50 with step size of 0.5 and the parameter c varies from 0 to 4 with step
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Figure 12: Complexity analysis of the system (5) with (a) a varying, (b) b varying and
(c) c varying

size of 0.04. The complexity analysis results in the parameter planes (a, c) and
(b, c) are shown in Fig. 13.

Figure 13: Complexity analysis of the system (5) in the parameter planes: (a) (a, c)-plane
and (b) (b, c)-plane

Figure 13 shows that the system (5) has higher complexity in the left side of
the parameter planes. In fact, according to the complexity analysis results, the
system (5) has higher complexity with smaller parameter c and larger parameters
a and b.

Thirdly, the complexity of the system (5) with different initial conditions is
analyzed by fixing z0 = 2, w0 = 4 and varying x0 and y0 from −10 to 10. The
analysis results are shown in Fig. 14, where Fig. 14a is obtained by fixing a = 3,
b = 40 andc = 3 and Fig. 14b is obtained by fixing a = 4, b = 20 and
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Figure 14: Complexity analysis of the system (5) with different initial conditions by fixing
z0 = 2,w0 = 4 and varying x0 and y0: (a) a = 3, b = 40, c = 3 and (b) a = 4, b = 20,
c = 1

When the system (5) has high complexity, it means that the system is chaotic.
When the system (5) has low complexity, it means that the system is non-chaotic
including the periodic states. Figure 14 shows that the system (5) has different
complexity measure results with different conditions. Compared with case (b),
case (a) hasmore complex behaviors in the initial condition plane. In fact, there are
more coexisting attractors in case (a) as shown in Fig. 10. Thus the multistability
in the proposed system (5) is verified by the complexity measure algorithm.

4. Self-synchronization of the new double-scroll multistable hyperchaotic system

In this section, we deploy integral sliding mode control (ISMC) to achieve
global self-synchronization of the new double-scroll multistable hyperchaotic
system with itself (drive-slave systems).

The drive system of the self-synchronization design consists of the new
double-scroll multistable hyperchaotic system given by




ẏ1 = −a(y1 + y2) + cy4 ,

ẏ2 = −y2 − ay1y3 ,

ẏ3 = b + ay1y2 ,

ẏ4 = y2 .

(15)

In the drive system (15), Y = (y1, y2, y3, y4) is the state.
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The slave system of the self-synchronization design consists of the new
double-scroll multistable hyperchaotic system with controls given by




ż1 = −a(z1 + z2) + cz4 +U1 ,

ż2 = −z2 − az1z3 +U2 ,

ż3 = b + az1z2 +U3 ,

ż4 = z2 +U4 .

(16)

In the slave system (16), Z = (z1, z2, z3, z4) is the state.
Here, (a, b, c) are constant parameters and U1, U2, U3, U4 are controls to be

designed so as to synchronize the like states of the drive system (15) and slave
system (16).

In the usual manner, the self-synchronization error for the new hyperchaotic
systems (15) and (16) is defined as follows:




ε1 = z1 − y1 ,

ε2 = z2 − y2 ,

ε3 = z3 − y3 ,

ε4 = z4 − y4 .

(17)

Proceeding next, we calculate the error dynamics for the self-synchronization
error as follows:




ε̇1 = −a(ε1 + ε2) + cε4 +U1 ,

ε̇2 = −ε2 − a(z1z3 − y1y3) +U2 ,

ε̇3 = a(z1z2 − y1y2) +U3 ,

ε̇4 = ε2 +U4 .

(18)

In the control design, we associate an integral sliding surface with each error
variable as follows:




S1 = ε1 + µ1

t∫
0

ε1(ν)dν ,

S2 = ε2 + µ2

t∫
0

ε2(ν)dν ,

S3 = ε3 + µ3

t∫
0

ε3(ν)dν ,

S4 = ε4 + µ4

t∫
0

ε4(ν)dν .

(19)
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Differentiating the sliding surface equations in (19), the following results are
obtained:




Ṡ1 = ε̇1 + µ1 ε1 ,

Ṡ2 = ε̇2 + µ2 ε2 ,

Ṡ3 = ε̇3 + µ3 ε3 ,

Ṡ4 = ε̇4 + µ4 ε4 .

(20)

Thus, we derive the integral sliding manifold controls as follows:




U1 = a(ε1 + ε2) − cε4 − µ1 ε1 − α1 sgn(S1) − β1S1 ,

U2 = ε2 + a(z1z3 − y1y3) − µ2 ε2 − α2 sgn(S2) − β2S2 ,

U3 = −a(z1z2 − y1y2) − µ3 ε3 − α3 sgn(S3) − β3S3 ,

U4 = d(ex + ey) − λw ew − τw sgn(σw) − kyσw .

(21)

By implementing the sliding control law (21), we derive the following closed-
loop system:




ε̇1 = −µ1 ε1 − α1 sgn(S1) − β1S1 ,

ε̇2 = −µ2 ε2 − α2 sgn(S2) − β2S2 ,

ε̇3 = −µ3 ε3 − α3 sgn(S3) − β3S3 ,

ε̇4 = −µ4 ε4 − α4 sgn(S4) − β4S4 .

(22)

The main control result of this section on self-synchronization of the new
multistable double-scroll hyperchaotic systems is established in the following
theorem.

Theorem 1 The new 4-D multistable double-scroll hyperchaotic models (15)
and (16) are synchronized globally by the ISMC law (21) where we assume that
µi, αi, βi, (i = 1, 2, 3, 4) are all positive constants.

Proof. We start the proof by taking the Lyapunov function defined by

V (S1, S2, S3, S4) =
1
2

(
S2

1 + S2
2 + S2

3 + S2
4

)
(23)

We note that V takes all non-negative values. Also, V = 0 if and only if
S1 = S2 = S3 = S4 = 0.
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This shows that V is a quadratic and strictly positive definite function on R4.
Next, we find that

V̇ = S1 Ṡ1 + S2 Ṡ2 + S3 Ṡ3 + S4 Ṡ4 . (24)

Using (20) and (22), we can simplify (24) as

V̇ =
4∑
i=

Si (−αi sgn(Si) − βiSi). (25)

Simplifying, we get

V̇ = −
4∑

i=1

[
αi |Si | + βiS2

i

]
(26)

Since αi > 0 and βi > 0 for i = 1, 2, 3, 4, we conclude that V̇ is a negative
definite function defined on R4.

Thus, by Lyapunov stability theory, it follows that Si (t) → 0, (i = 1, 2, 3, 4) as
t → ∞.

Hence, we conclude that ε i (t) → 0, (i = 1, 2, 3, 4) as t → ∞.
This completes the proof. 2

Next, we carry out MATLAB simulations to illustrate the ISMC design for
the self-synchronization of the newmultistable double-scroll hyperchaoticmodels
(15) and (16).

The parameters are taken as in the hyperchaos case, viz. (a, b, c) = (4, 20, 1).
Let us take the sliding constants for MATLAB simulations as αi = 0.2,

βi = 10 and µi = 12 for i = 1, 2, 3, 4.
Let us consider the initial state of the drive system (15) as

y1 = 3.2, y2 = 10.4, y3 = 14.8, y4 = 2.9. (27)

Let us take the initial state of the slave system (16) as

z1 = 8.5, z2 = 2.1, z3 = 9.7, z4 = 11.6. (28)

The sliding controller design based complete self-synchronization between
the new multistable double-scroll hyperchaos models (15) and (16) is illustrated
in Figs. 15–19.
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Figure 15: MATLAB plot showing synchronization between y1 and z1 for the multistable
hyperchaotic systems (15) and (16)

Figure 16: MATLAB plot showing synchronization between y2 and z2 for the multistable
hyperchaotic systems (15) and (16)
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Figure 17: MATLAB plot showing synchronization between y3 and z3 for the multistable
hyperchaotic systems (15) and (16)

Figure 18: MATLAB plot showing synchronization between y4 and z4 for the multistable
hyperchaos systems (15) and (16)
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Figure 19: MATLAB plot showing synchronization errors with time-history for the
multistable hyperchaotic systems (15) and (16)

5. Circuit simulation of the new 4-D Hyperchaotic system with Hidden Attractors

In this work, we design an electronic circuit using MultiSim to implement
the proposed multistable double-scroll hyperchaotic system (5), and verify our
findings based on MultiSim simulations.

For this purpose, we consider the new hyperchaotic system with hidden at-
tractor whose circuit design is shown in Fig. 20.

For implementation, the four state variables y1, y2, y3, y4 of the hyperchaotic
system (5) are rescaled as follows:

Y1 =
1
2
y1, Y2 =

1
2
y2, Y3 =

1
2
y3, Y4 =

1
2
y4 . (29)

As a result, we transform the hyperchaotic system (5) into the following
rescaled system:




Ẏ1 = −a(Y1 + Y2) + cY4 ,

Ẏ2 = −Y2 − 2aY1Y3 ,

Ẏ3 =
b
2 + 2aY1Y2 ,

Ẏ4 = Y2 .

(30)
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(a)

(b)

Figure 20: Circuit design of the hyperchaotic system (30) (a) Y1 signal and Y2 signal, (b)
Y3 signal and Y4 signal
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Applying the Kirchhoff laws, the circuit presented in Fig. 20 is described by
the following equations:




Ẏ1 = −
1

C1R1
Y1 −

1
C1R2

Y2 +
1

C1R3
Y4 ,

Ẏ2 = −
1

C2R4
Y2 −

1
C2R5

Y1Y3 ,

Ẏ3 =
1

C3R6
V1 +

1
C3R7

Y1Y2 ,

Ẏ4 =
1

C4R8
Y2 .

(31)

In (31), Y1,Y2,Y3 and Y4 correspond to the voltages on the integrators U1A,
U2A, U3A and U7A, respectively. The values of components in the circuit are
selected as: R3 = R4 = R8 = 400 kΩ, R5 = R7 = 50 kΩ, R6 = 40 kΩ, R1 = R2 =
R9 = R10 = R11 = R12 = R13 = R14 = 100 kΩ, C1 = C2 = C3 = C4 = 1 nF.

Figures 21–24 depict the MultiSIM outputs of the hyperchaotic circuit (30).
Comparing these figures with the MATLAB simulations of the hyperchaotic
system (5) depicted in Figs. 2–5, a good qualitative agreement is observed.

Figure 21: MultiSim circuit simulation showing the multistable double-scroll hyper-
chaotic attractor of (30) in (Y1,Y2)-plane
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Figure 22: MultiSim circuit simulation showing the multistable double-scroll hyper-
chaotic attractor of (30) in (Y2,Y3)-plane

Figure 23: MultiSim circuit simulation showing the multistable double-scroll hyper-
chaotic attractor of (30) in (Y3,Y4)-plane
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Figure 24: MultiSim circuit simulation showing the multistable double-scroll hyper-
chaotic attractor of (30) in (Y1,Y4)-plane

Figures 25–28 show the Fourier spectral analysis for the four state variables
Y1,Y2,Y3 and Y4 of the hyperchaotic circuit (30). The frequency range is 5 kHz,

Figure 25: The spectral distribution of the Y1 signal of the multistable double-scroll
hyperchaotic attractor of (30)
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and the maximum peak is 1.8 kHz. It corresponds to a prevailing frequency of
the implementing oscillating loop. The power spectra of the produced signals are
broadband, which are very typical of hyperchaotic signals.

Figure 26: The spectral distribution of the Y2 signal of the multistable double-scroll
hyperchaotic attractor of (30)

Figure 27: The spectral distribution of the Y3 signal of the multistable double-scroll
hyperchaotic attractor of (30)
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Figure 28: The spectral distribution of the Y4 signal of the multistable double-scroll
hyperchaotic attractor of (30)

6. Conclusions

A new 4-D multistable double-scroll hyperchaotic system with no balance
point was reported in this research work. A rigorous bifurcation study of the new
hyperchaotic model was presented for the dynamic analysis of the new system
with respect to the three parameters. A probability density distribution analy-
sis of the new hyperchaotic model was also presented. We demonstrated that
the new nonlinear hyperchaotic system has multistability with coexisting attrac-
tors. As control application, global hyperchaos self-synchronization for the new
hyperchaotic systems via sliding controller was presented. As an engineering ap-
plication, we designed aMultiSim electronic circuit for the new 4-D hyperchaotic
system. We also analyzed the power spectral density (PSD) of the state variables
of the hyperchaotic system using MultiSim.
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