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Elastic instability of steel I-section members has been investigated with regard to axial compression, major axis
bending as well as compression and major axis bending, based on the Vlasov theory of thin-walled members.
Investigations presented in this paper deal with the energy method applied to the flexural-torsional buckling
(FTB) problems of any complex loading case that for convenience of predictions is treated as a superposition of
symmetric and antisymmetric components. Firstly, the review of energy equation formulations is presented for
the elastic lateral-torsional buckling (LTB) of beams, then the most accurate beam energy equation, so-called the
classical energy equation formulated for bisymmetric I-section beams is extended to cover also the beam-column
out-of-plane stability problems, referred hereafter to FTB problems. Secondly, for the simple end boundary
conditions, the shape functions of twist rotation and minor axis displacement are chosen such that they cover
both symmetric and antisymmetric lateral-torsional buckling modes in relation to two lowest eigenvalues of the
beam LTB in major axis bending. Finally, the explicit form of the general solution is presented being dependent
upon the dimensionless bending moment equations for symmetric and antisymmetric components, and the load

factor 1, where the lower £ index identifies the load case.
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1. INTRODUCTION

The inelastic buckling strength of real steel members (members with realistic measures of material
and geometric imperfections) is nowadays presented in the form of equations in which the elastic
buckling solution of the perfect elastic member is an important model parameter. In order to relate
the member inelastic resistance to the member upper bound limit, the member elastic buckling
stress resultants are normalized with use of the respective section plastic resistances that correspond
to the formation of a plastic hinge under a single stress resultant action effect or under multiple
stress resultant action effects. The reference is made hereafter to Eurocode 3, Part 1-1 [S] for:
(1) the column buckling resistance (clause 6.3.1), (2) the LTB resistance of beams under major axis
bending (cf. the so-called General case of LTB assessment according to clause 6.3.2.2) and (3) the
FTB resistance of beam-columns under combined compression and major axis bending (cf. the so-
called General method of clause 6.3.4). The latter case of the member flexural-torsional buckling
resistance is that encompassing the former two cases of buckling resistances being the extreme
situations of the member buckling under compression and major axis bending, respectively. The
elastic FTB problem is that of a general nature for the practical assessment of inelastic buckling

resistance of real beam-columns, therefore it is the subject of investigations in this paper.

Y=

Fig. 1. Coordinate system used in beam theory

The use of energy methods in buckling problems is widely studied by Trahair [13]. Different
approaches for the evaluation of proper equations of the elastic lateral-torsional buckling of beams
was studied by Pi at al. [10] and Torkamani and Roberts [14]. The coordinate system referred to and

used hereafter is that given in Fig. 1. Two energy equations were confronted in [10] in relation to
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different description of displacement field approximations. The so-called alternative energy
equation for LTB of beams subjected to in-plane distributed load g; acting in the range from x4
to X4, of the member length, and at the distance zg; for the section shear centre, as well as to
concentrated forces @,; acting at the distance x; from the member axis origin, and at the distance

zy; from the section shear centre, was written down in the following form:

(1.1) > Iy [ELSIw™] + EL,61(9")] + Glr6[(9)2] — 2M, 8(v' ¢")]dx

+ iZi f,;[’:’zz 42i2q:6(Pp?)dx + %Zj szZQj5{[¢(ij)]2} =0

where:

E, G — Young modulus and Kirchhoff modulus of steel, L, /,,, /r — minor axis moment of inertia, warping
constant and Saint Venant torsion constant, M,, = [ 0z dA — x-coordinate dependent prebuckling major axis
bending stress resultant, 4 — cross-sectional area, L — element length, o — prebuckling stress, v — minor axis
flexural displacement (along y-axis), ¢ — mean twist rotation, § — symbol of variation of the variable in the

following parenthesis.

The results from Eq. (1.1) were compared in [10] with those obtained from the utilization of the so-

called classical energy equation used for the linear eigenproblem analysis (LEA):

(12) L IELSIW™] + E1SL(¢")2] + GLo[(N?] + 2M,5(v" §)}dx

+ 221‘ f,::llzz Qzi2qi6(p*)dx + iZj szZQj5{[¢(ij)]2} =0

Eq. (1.1) leads to an overestimation of the buckling load, sometimes unacceptable from engineering
applications point of view, if compared with that from Eq. (1.2). In FTB analysis of beam-columns
by the energy method, Eq. (1.2) is therefore used with the extension accounting for the influence of
prebuckling axial stress resultant. Eq. (1.2) is dependent linearly upon the prebuckling stress
resultant A, therefore it leads to an approximation of the buckling state within the linear buckling
analysis (LBA) and formulated in the form of linear eigenproblem analysis (LEA).

Cuk and Trahair [4], and Gizejowski et al. [6] presented elastic buckling solutions for beam-
columns under unequal end moments. Bijak solved the elastic buckling problems of beams [1] and
beam-columns [2] using a modified Bubnov-Galerkin method. Many practical solutions for

contemporary design applications have been collected by Trahair et al. [17]. The effect of
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prebuckling flexural displacements on the elastic FTB behaviour is discussed by Mohri et al. [8,9]
using conventional Bubnov-Galerkin method. With use of the energy method, the stability region of
beam-columns with bisymmetric cross-sections and under combined loading represented by the
axial force, uniformly distributed transverse loads and end bending moments was studied by Van
Binh et al. [15]. Different aspects related to the formulation of buckling eigenproblems have been
recently discussed by Gizejowski and Uziak [7].

The classical energy equation is widely utilized in the finite element formulation that is not limited
to the elastic range only but also to inelastic out-of-plane buckling problems of beams and beam-
columns, e.g. refer to Bradford et al. [3]. More recently, out-of-plane problems of elastic and
inelastic buckling were formulated within the framework of nonlinear buckling analysis (NBA), e.g.
Pi and Trahair [12, 13], Pi and Bradford [11]. These aspects are not considered in the present study.
Elastic FTB problems are dealt with in this study using the classical energy method. Single loading
and combined loading cases for members with simple boundary conditions are dealt with. The
general solution is obtained by splitting any arbitrary asymmetric loading case into two
components, symmetric and antisymmetric, in order to conveniently obtain the buckling limit curve
relationship under the maximum moment and the compressive force. The symmetric and
antisymmetric bending moment equations are set to be dependent upon the load factor 1, where the
lower k index identifies the load case: k=M for unequal end moments, k= q for span uniformly
distributed loads and k=Q for span concentrated loads. The developed general solution
encompasses coefficients that are listed for different loading cases and compared with results

available in literature, wherever available.

2. PROBLEM FORMULATION

2.1. CLASSICAL ENERGY EQUATION AND ITS GENERAL SOLUTION

The classical energy conservation equation that provided a basis for the modern finite element

method of FTB analysis is a simple extension of Eq. (1.2). It has been presented by Trahair [16]:

@1 L[ ELSI")] + ELGI($")?] + GLr8[($)7] + 2M, 6 (v" §) Jdx
—IN 12 + i261(¢) dx

F1T L Qg8 (D)dx + 3 Quyg; ([ (x0))]} = 0
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where:
N = [ o dA — prebuckling axial stress resultant, i, — polar radius of gyration accounting for the Wagner

effect.

In the following, the simple member kinematic boundary conditions are dealt with, for which the
twist rotation and transverse translations along section principal axes are fully restrained at both
ends, while the flexural deflections about both section principal axes and warping are there allowed.
The buckling twist rotation and minor axis flexural displacement are globally represented by
trigonometric sinus functions, satisfying natural boundary conditions and approximating the LTB
buckled shapes under symmetric M,, and antisymmetric M,, components of the x-coordinate
dependent bending moment equation 4. It has been proven in [16] that for solving the LEA elastic
buckling problems of I-section beams under unequal end moments, the mean twist rotation ¢ is the
exact half-wave sine function while the profile of minor axis displacements v changes shape from
that of the exact half-wave for the equal and opposite end moments (uniform bending), to that of a
wave one for the equal end moments of the same direction (antisymmetric bending). Hence, such

trigonometric sinus shape functions widely used in literature are also adopted hereafter:

2.2) v = a;sin(wé) + a,sin(2wé)
(2.3) ¢ = azsin(mwé)
where:

¢ — dimensionless coordinate equal to x/L, a1, a, and a; — unknown buckled shape constants.

Substituting Egs. (2.2) and (2.3) to Eq. (2.1), the matrix LEA representation of the stability energy

based equation is obtained:
(2.4) sa"K,,a=¢6a" (K+a,K,)a=0

where:

a — vector of the unknown buckled shape constants (a” is that vector transposed):

ay
a= {az,
as
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K,, — out-of-plane stability stiffness matrix being the sum of the constitutive component K and the initial
stress component K, the latter dependent upon the reference values of prebuckling stress resultants N, and
M, as well as in-plane loads ¢.;o and O, a., — critical load factor.

The stiffness matrix components are of the following form:

- component K:

l[niilz f01 sin*médé 0 0 ]|
4
K= symm. %f; sin?2médé 0
4 2
symm. symm. %fol sin?médé§ + nLﬂfol cos?médé§

- component K :

l[— ”ZLN" fol cos?m&dé 0 - ETZ fol My, (8)sin*médéE ]|
K, =| symm. - 4”ZN° fol cos?2médé — ‘LLszol M,o(&) sin 7 sin 2n¢ dé |
[ n?Noid 1 2
symm. symm. - Tfo cos’médé

For nonzero values of the buckled shape constants, the critical load factor is calculated from the
condition of equating the determinant of the out-of-plane stability stiffness matrix K,, to zero. For
hand calculations, it is more convenient to operate on the out-of-plane stability stiffness, instead on
the stiffness matrix components, in order to directly derive the relationship between M, max and N. It
describes directly the stability limit curve, instead evaluating the critical load factor a.- and then
finding the pair of critical values of M), max = atexMy0max and N = a..No. The stability limit curve gives
the critical values of a single stress resultant for two extreme points of that curve, namely N = N, for
My max = 0 and M, max = M. for N=0, where N is the minor axis flexural critical force and M., is
the critical moment of lateral-torsional buckling. Expanding the determinant of the out-of-plane
stiffness matrix K, and notifying that for adopted shape functions K,,(1,2) = K,,(2,1) = 0, one can

obtain:

_ _ [Kop(13)]” [Kop(2'3)]z} —
(2.5) detK,, = 0 - K,,(3,3) { Kop(1,1) + Kop(22) J 0

where for load cases of end moments and/or span loads applied at the shear centre:
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— diagonal terms are structured from the constitutive stiffness components:

K,p(1,1) == EIZf sin? n&d& — f cos?m&d§ = n—(n Bl _ N) N, (1 —Nﬁ):—;

6m*El, 4miN 4m2El, 2m?
1{010(2,2)—1 ud f sin? 2médé — = f cos? 2médé =2 (HL—Z—N) N, (1—N—m)%
K,p(33) == Elwf sin? wédé + Mf cos? wédé —n—(n Elw 4 61 — lON)

nZ

lONT (1 - N_T)Z

— nonzero off-diagonal terms are those related to the initial stress resultant stiffness components:

up(l 3) = 0p(3 1) = _f [Mys(f)]Sln ﬂfdf - _f [ ya(S()]Sln ﬂfdf = T ys max/s

Kop(23) = Kop(3,2) = =22 [ [ Mo () |sin nésin2ngds — 2= [[Myq(§)]sin nésin2nédg =
% My max
L ya,maxfia

and Myg max, Myq max — maximum absolute values of symmetric and antisymmetric moment components,

scaling the elementary action field moment effects, I; = | ! [ML@)] sin? (ré)d& — symmetric moment

0Mysa

Mya(f)]

integral, I, —f [ sin (mé)sin(2né)dé — antisymmetric moment integral, N,, — second lowest

bifurcation load equal to 4N..

Rearranging Eq. (2.5) for load cases of end moments and/or span loads applied at the section shear

centre, the following general relationship is obtained:

2 2
.2 _ i _ (ZMys maxls) (ZMya,maxla)
(2.6) NN, (1-10) = R e

It has to be notified that for » symmetric and m antisymmetric moment components, the integrals
constituting the off-diagonal terms of the out-of-plane stiffness matrix K,, are the summation of »
integrals for symmetric moments M,,;;(¢) and m integrals for antisymmetric moments M,,, ;(£).
Introducing the maximum first order moment M, .« and regarding that the critical moment M., for

the uniform bending is given by:

(2.7) My = loy/ NN,

Eq. (2.6) takes the form:
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N

2 2 2
My max i=n Mys,imax ) 1_N_z ( j=m Mya,jmax ) — _N _N
(2.83') < Mcr,0 ) [( =1 My max ZISL) + 1—0.251\% ijl My max ZIa] - (1 Nz) (1 NT)

or in the shortened form, similar to that obtained for the lateral-torsional buckling of beams:

(2.8b) (MY—‘“)Z L

CpcMcro) F(N)

where:

M,, max — maximum absolute value of the combined action moment effect scaling the field moment effects,
F(N) = (1 — Nﬁ) (1 - Nl) — coefficient representing the effect of out-of-plane buckling under compressive
z T

force on the LTB buckling moment, C, — factor converting arbitrary moment gradient cases into an

equivalent uniform moment case.

The equivalent uniform moment factor C. depends upon the moment distributions M,,s(¢) and
M,,4(&). Moreover, it is varying with the minor axis critical force utilization ratio N/N; as given

below:

N =

N

. . 2 1-— _ ) 2
(2.92) 1 [(Mys.max yi=n Mys,imax ZIsi) + Ny (Mya,max Z} =m Mya jmax Zlaj) ]

- N =
Che My max i=1 My s max 1—0.25N— My max 7 1 My a,max
z

or in the shortened form, by using the factors Cj, for the conversion of Mys(§) and Cy, for the

conversion of M,,q(&):

1
2 _N 212
(2 9b) 1 (Mys,maxL) + 1 Nz (Mya,max 1 )
. - N
Che My max Cps 1—0.25N— My max Cha
z
where:
1 i=n Mysimax 1 1 2 1 j=mMya,jmax 1 1 .
— =) =2l and — = Y/ T 2X2LREE —— = 21,; — conversion factors for the
Cps =1 Mys,max Cbs,i’ Cbs,i st Cha j=1 Mya,max Cbu,j7 Cba,j a

symmetric and antisymmetric moment diagram components.
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When span loads are applied away from the section shear centre, the term K, (3,3) of the stiffness
matrix K,, in Eq. (2.5) needs to include additional term K,,r related to distributed and/or

concentrated loads:

. N\ m?
(2.10) K,p(3,3) = i2Ny (1 - N—T) ot Kopr
where:
Kopr = Kopq = qz24L fol sin?(m€)d¢ = 0.5q,24L — term related to the uniformly distributed load (UDL)
over the entire length of the member; Kopp = Kopg = Zj QZjZstinz(anj) — term related to the

concentrated loads (CLs) applied at the xy; = &yL coordinate (summation needed for multiple concentrated

loads).

Substituting Eq. (2.10) to Eq. (2.5) and rearranging, as it has been done earlier, Eq. (2.8b) becomes

the following one:

2
(211) (m) 1 1+ (F Mys max hCpF

CpcM Fv i2 _N
bcMcr,0 (N) lONT(l NT)

or in the form of Eq. (2.8b) in which for a single type of the span load:

1
N 2
r(IVIys,ma\xL)zI 1_N_z (Mya,max 1 )2]
1 I Mymax Cps/ " 1-025p- \ Mymax Cha I
—_—— Z
(2 1 2) c - Mysmax hCpp I
bc 1+{F—-Z N
I i3nr(1-xr) |
where:
2L KopF - . o ) .
Cor = v coefficient dependent upon the in-span load distribution, Kop s — term defined in
FMys,max

Eq. (2.10) as Kop g Or Kop g, {r = zp/h — dimensionless coordinate of load application away from the
section shear centre, /# — section depth, Mg 2 — maximum moment generated by the symmetric in-span

load component.



www.czasopisma.pan.pl P@N www.journals.pan.pl
_/

644 M.A. GIZEJOWSKI, A.M. BARSZCZ, Z. STACHURA

2.2. PRACTICAL APPLICATIOS AND VERIFICATION

In this subchapter, some important load cases are dealt with. Eq. (2.9b) is used to present the
particular solutions for unequal end moments and for span uniformly distributed loads of unequal
values in two half-lengths as well as concentrated loads of unequal values in two span half-lengths,

as it is shown in Table 1.

Table 1. Loading cases considered

Loading case Component Loading component

(MyM,s :0.5(1+I[/M)MyM ‘\MyMs
symmetric IR -,IAL_ J X

My 'I/MMyM‘\ L
M )@ L 2J 7 -
\l/ 1 (MyMa_O-s(l'V’M)MyM /VM}'M,a
z . . by
antisymmetric I \_?_ X
z
95=0.5(11y)g;
q symmetric )
m’ wiqz L T
Z
q 0SL . osL T 7 92=05(1-y7)q:
L
2 antisymmetric é@ }M
05sL  , o0sL 3=
7 7
z
v ¥ 050990,
0, symmetric X X @ *
‘Z +Wo<?z m 1A
0 IR . VAN z
L T 205090,
L ' antisymmetric }g X a *
z m :_HL—X Ca
zZ

For load cased considered herein, the maximum moment coordinate &yax and the maximum moment

. . M M
itself My oy, the maximum moment factors —22=2% X2
: M

as well as the dimensionless bending
y,max My,max

Mys(§)  Mya(§)

moment equations o for symmetric and antisymmetric components are presented in

2
ysmax  Myamax

Table A in the Appendix.
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Let us first consider the very basic load case of unequal end moments, indicated by symbol M in
Table 1, for which M,, ..y = M,,y. For this load case, Cuk and Trahair [4] presented the following

relationship for the conversion factor:

3
1 _ Mymsmax 1 MyM a,max 1 _ N
(2.13a) L —+( ) 2 (1-05752)

Cbc MyM,max Cbs MyM,max Cba

where:

Cp = 1, Cp, = 2.50 — conversion factors for symmetric (uniform) and antisymmetric bending moment

1+ M 1— . . . .
Yymsmax _ 140y MyMamax _ % — coefficients dependent upon the moment gradient ratio.

M
components, = ,
MyM,max 2 MyM,max

Recently, Gizejowski at al. [6] developed a refinement to Eq. (2.13a) that gives the following

relationship:

(2.13b) Lo lim Ly (1“””)3

Che 2 Cps 2

in which G, = 2.64, instead of 2.50 like in Eq. (2.13a).

Egs. (2.13a,b) are different from that presented herein by Eq. (2.9b). The difference is not only
related to the format of the conversion factor equation but also to the form of components related to

antisymmetric bending. Using Eq. (2.9b) and the direct integration of conversion factors, one can

get% =2I,=2 flMWI—’S(s)sin2 (mé)dé = 1, therefore C,s = 1 as in Egs. (2.12a,b), but for the
bs

0 MyM,s,max

. 1M . .
moment component related to antisymmetry CL =2 fo MyM—’a(f)sm (m&)sin(2mé)dé = % ,
ba yM,a,max

2
therefore Cpq = 93% = 2.78, instead of 2.50 or 2.64 mentioned above.

Figure 2 shows the comparison of C, as a function of the moment gradient ratio 1, and the critical
force utilization ratio N/N,. Solid lines indicates the present solution with C,, = 2.78, dashed line
the solution of Gizejowski et al. [6] and finally dotted line indicates that of Cuk and Trahair [4]. For
Yy = 1 (uniform bending), all three solutions coincide and are identical with the closed form
solution. The comparison is therefore made for nonuniform bending cases in Fig. 2 for both i, = 0

(in-plane moment applied over one support) and ¥, = —1 (in-plane moments of the same value
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and direction, applied over both supports). It is clearly visible that the solutions represented by Egs.
(2.13a,b) are different from that of Eq. (9a). The differences become more pronounced when the

moment gradient ratio travels from positive to negative values, with the greatest difference for

Yy =-1

0.6

v—-v-v-r'vrrr-‘..==:-_._

0.5

£ 03
L
v
0.2 Present | Gizejowski | Cuk and e .:."--.___
vm study et al. (2016) | Trahair (1981) . ==
0.1 00| —— | ===--- cessene
_] 0 —— | e ———— |  eeesesee
0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Fig. 2. Comparison of equivalent uniform moment factors for unequal end moments

The presented above solving procedure for a single load component (symbol in Table 1), giving one
symmetric component and one antisymmetric component of the bending moment diagram, remains
the same for more complex load cases, composed of several load components. Bijak [2] solved the
flexural-torsional buckling problem of beam-columns under unequal end moments combined with
UDL, using differential equilibrium equations and the modified Bobnov-Galerkin method. Such a
more complex load case is a combination of load cases M and q indicated in Table 1. It consists of
two symmetric moment components M,y(E) = My and My o(E) = Myygmax € (1 — &), and one
antisymmetric moment component M,uo(&) = Myua(1 — 2&). Using the developed energy method,

one can get:

1 Zfl MyMs(f) sin (T[f)df‘l‘ Zfl Myqs(g) sin (T[f)df _ MyMsmaX 2(1 + 2) Myq,s,max —

Chs 0 My s,ma; ys,max Mys,max
M[ﬂ_l_z(l +i)‘u]
Mys max 2 3 2

1 1MyMa($) 32 Mymamax _ 32
o= 4f0 Vo sin (&) sin(2mwé)dé = P T
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where M, max = 1M, and the positive sign of u is referred to M,y max a0d M, ; max being of the same sign.

Integrating the elementary conversion factors into 1/Cp. according to Eq. (2.9b), the resultant
conversion factor may be drawn independently in two ranges of u. Fig. 3 shows the graphs for these

two ranges of x > 0 in Fig. 3a and x <0 in Fig. 3b.

a) b)
1.0 . 1.0 P
i _‘_:___'___:._.,»ussffﬁ:\l‘-:--a:. —_— 00
0.8 _....—.: ....... /’_,.— 08 F-==: '__—_<_~_____._..\_ SERp S IR -0.5
. /’v T T ... l\ [ | P— _10
//,_ . . = 15
0.6 |- 0.6 | N, — - —-20
% A o
2 \/ Y 5 .\K/
QO R ) P
S04 T ool =04
N S N
----- 1.0 :',:"
0.2 == 1.5 0.2 %
— =20
0.0 0.0
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0
Ym 2%

Fig. 3. Comparison of the moment conversion factor 1/Cj. for combined load cases M and q; a) symmetric

components of the same signs (¢ > 0), b) symmetric components of the opposite signs (u < 0)

Conversion factors Cjs and Cy, are calculated for all single load cases indicated in Table 1 by
symbols q and Q, using moment relationships given in Table A in the Appendix, and carrying out
the integration in several ranges of ¢ variable, whereas indicated. The results of present study are
shown in Table 2 for all the end moments and span shear centre load cases considered. To the best
authors’ knowledge, the results in darkened cells have not been reported earlier in literature.

Mohri et al. [8] solved the stability problems for loads shown in Table 1 but only for the cases
giving the symmetric bending moment diagram (for ¥, = 13 = 1o = 1 as indicated in the present

Ci

study). The general solution presented in [8] is dependent upon two coefficients: C; = N being the
1

bending moment diagram conversion factor and C, = C, /%N) being the factor associated with the
1

span load acting away from the section shear centre. These coefficients account for the effect of
prebuckling deflections through 4 and the effect of N on the in-plane behaviour through G(N).

Constants C; and C, are dependent upon the load case. One can notice that the former one may be
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directly compared with Cp, of the present study (cf. Table 2). The conclusion is that for span shear
centre loads, giving the symmetric moment diagrams (zero values of 1/Cp, factors), solutions

presented in this study practically coincide with those predicted in earlier studies.

Table 2. Conversion factors

Symbol of Cys for symmetric component Cy, for antisymmetric component
fond case Present study Mohri at al. [8] Present study
M 1.00 1.00 2.78
q 1.15 1.13 1.43
Ql 1.38 1.36 0.00
Q2a 1.12 1.10 1.74
Q2b 1.05 1.05 1.81

Figure 4 shows the comparison of C,, for all the load cases considered in Table 1 as a function of
two parameters, namely the load ratio ¥ (respectively 1y, Pgand P, ) and the critical force
utilization ratio N/N,. Solid lines indicates the M-case, dashed line the g-case and finally dotted

and dotted-dashed lines indicate the Q-cases.

-1.0 -0.8  -0.6 -04  -02 0.0 0.2 0.4 0.6 0.8 1.0
w

Fig. 4. Comparison of equivalent uniform moment factors for in-span shear centre loads

The off-shear load effect has been widely discussed in literature [16,17]. In this paper, the load
height effect is introduced via the conversion factor, cf. Eq. (2.12). It is clear that the effect of off-
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shear-centre span load plays either stabilizing or destabilizing role for buckling of beams and beam-
columns, depending upon the sign of zr and the direction of the span load. In Fig. 5, the conversion
factors are compared for unequal end moments and UDL of equal values at both member half-
lengths, different proportion of moments Magmax and M,qme: being of negative and positive signs
and different placement of off-shear centre UDL loads.

Exemplary IPE 360 steel section is considered for the member of 6000 mm in length. The following

M
parameters are used: my, = % =1.396; ny, = % =0.856; nygy = % =0249 ; n=
cr,0 z T
M h . i .
% = 1.756. Results of the calculated conversion factor are shown in Fig. 6 for i), = —1, in
oNT

Fig. 7 for ¢, = 0 and in Fig. 8 for ,; = 1. Solid lines represent the top flange UDL while dashed
line — bottom flange UDL and the results for the shear centre UDL are shown by dotted lines.

6.0
wyu=-1.0
5.0 $p=1plh
sessses 0.0
4.0 -0.5
+0.5
3.0

1/C,,

2.0

1.0

0.0

-1.0 -08 -06 -04 -02 00 02 04 06 08 10
u

Fig. 5. Comparison of equivalent uniform moment factor for equal and of the same direction end moments,

and span UDL applied away from the shear centre

For end moments producing the antisymmetric moment diagram and span UDL, one can observe
that for the shear centre load the curve is symmetric with regard to the vertical axis of ¢ = 0. When
the load is applied to the top flange, the negative u values are associated with the negative sign of ¢
and the negative sign of z,. As a result, the obtained values of 1/Cy. are lower than those obtained
for the shear centre load and the bottom flange load, in the latter case being of the highest value
(destabilizing effect). For positive values of 1 and the top flange UDL, the sign of z, remains the
same but ¢. has now the positive sign. As a result, the obtained values of 1/Cj. are higher than those
obtained for the shear centre load and the bottom flange load, in the latter case being of the lowest
value (stabilizing effect). Moreover, it is observed that the destabilizing effect becomes the same as

the stabilizing one for positive and negative x of the same absolute value.
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For a single end moment and span UDL (Fig. 6), one can observe that for the shear centre load the

curve is no longer symmetric with regard to the vertical axis of # = 0. The influence of the span

UDL applied away from the shear centre is in this case similar to that of equal end moments of the

same direction (cf. Fig. 5). For 4 < 0 and the top flange UDL, values of 1/C;. are lower than those

obtained for the shear centre load and the bottom flange load, the latter being of the highest value

(destabilizing effect). For 4 > 0 and the top flange UDL, the obtained values of 1/Cj, are higher

than those obtained for the shear centre load and the bottom flange load, in the latter case being of

the lowest value (stabilizing effect). Moreover, it is observed that the destabilizing effect is no

longer of that producing the stabilization for positive and negative x of the same absolute value.

6.0

5.0

4.0

3.0

1/C,,
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0.0

-1.0 -08 -06 -04 -02 00 02 04 06 08 10
"

Fig. 6. Comparison of equivalent uniform moment factor for one end moment and span UDL applied away

from the shear centre
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Fig. 7. Comparison of equivalent uniform moment factor for equal and of the opposite direction end

moments, and span UDL applied away from the shear centre
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For equal and opposite end moments and span UDL (Fig. 7), one can observe that for the shear
centre load the curve and the influence of the span UDL applied away from the shear centre in this

case is similar to that of a single end moment (cf. Fig. 6).

3. SUMMARY AND CONCLUSIONS

A linear stability model for the flexural-torsional buckling of beam-columns was presented. The
formulation is based on the classical energy equation, presented in the form of LEA and solved
analytically for different load cases presented in Table 1. The novelty of present study yields from
the fact that any complex load case composed of end moments and span loads is represented by a
combination of symmetric and antisymmetric components, therefore the field moment M, (&) due
to applied end moments is a sum of symmetric and antisymmetric components, M,(¢) and
Myva(€) respectively, and the filed moment due to applied span loads F; (Fz; symbol refers to
components ¢-; and Q) is also a sum of symmetric and antisymmetric components, M,x({) and
Myr($) respectively. The field moments are presented as functions of load factors Yy, g, g
describing the moment diagrams asymmetry under single loads of end moments, span UDL and
span CL, the last two unequal in both half-lengths. Moment dependent conversion factors Cj,
(referred to the symmetric moment components) and Cp, (referred to the antisymmetric moment
components) have been evaluated for single load cases. Factors Cj; were compared to those existing
in the literature and a good agreement have been shown. To the best authors’ knowledge, factors
Ch, have not yet been presented in the literature for span loads.

More complex load cases were also dealt with on the example of unequal end moments and span
UDL over the entire member length. Two different span load signs were considered, namely
positive when its direction coincides with the positive direction of the z-axis (the bending moment
is of the opposite sign to that produced by end moments) and negative when the load is directed
oppositely. The effect of load height was also investigated showing that the off-shear load has either
destabilizing effect or stabilizing effect on the critical moment. This was conveniently looked at
through the observations of the influence of load sign and load height coordinate sign on the
resultant moment conversion factor 1/Cj.

The developed elastic buckling interaction curves N-M, play an important role in the buckling
resistance assessment of imperfect members using the so-called General method (GM) introduced
in the clause 6.3.4 of current Eurocode 3 [5]. This method has been effectively used only for simple

member loads since the general solution for elastic buckling interaction equation of beam-columns
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under compression and major axis bending was not widely investigated in the literature. The present

study is a starting point for further investigations into the improvement of herein developed

solution, replacing the linear eigenproblem formulation (LEA) by its nonlinear eigenproblem

counterpart (NEA).

13.

14.

15.

16.
17.
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Appendix
Table A. Description of bending moment equations for load cases from Table 1
S b 1 k Mys,max MyS (g)
ymbo M M
indicating Enax My, max Y max YoTax Range
load case” My max My, ()
My,max Mya,max
1+ ¥u 1 f<1
M 0 M, — -
> M 1-2¢ £<1
1+, ( )
2 46(1-¢ &<1
) B+wy)
q 3+Yg q.L* (3 + Ipq)
3 S 16 1—1/1q2 85(1-28) §<1/2
(3+w,) 8(1 — 3¢ +282) E>1/2
28 §<1/2
1
Q1 : gL 21-9) £>1/2
2 4
0 S -
3¢ §<1/3
3 1+,
2 Tr 0, 1 1/3<&<2/3
3(1-¢) £§=>2/3
1 L
Q2a 3 Q; (2+vy)
3¢ £<1/3
L.12% 3(1-2 1/3 2/3
2 24 v, a-29 /3<é<2/
-31-9) §=2/3

48 §<1/4
1+

1
34 1/4<&<3/4

4(1-8) §>3/4
1 L
Q2b n leé (3+1vo)

4 F<1/4
1= 2(1 - 26) 1/4 <& <3/4
3+,

-41-9 §=3/4
7'Q1 —load Q. applied at Xo=L/2 (symmetric load case with no antisymmetric component)
Q2a —load Q, applied at xo = L/3 and ¥, Q, applied at L-xp=2L/3
Q2b —load Q, applied at L/4 and load ¥, Q, applied at L-xpo= 3L/4
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Table B. Description of bending moment equations for the combination of unequal end moments
and uniformly distributed load over the whole member length
. 4ty —1 o 4ty —1
Smax 81 8u
Range u <¢M— MZIPM_l 0 Mgl_lp"” ‘u>ﬂ
4 4 4
1+ 1+ 1+ 1+
Mysmax max (% ; % + 1) M Zsz ( sz +1) M
1; (1
" ma " CTEE Vi
ymax Up+ 1y — D m 164 m
16u
Myq,s,max 2u 0 2u
Mg max max(1 + Yy 1+ Py + 20) 1+ Yy +2u
M}’M,s,max 1+ wM 1 1—+ wM
My max max(1+ ;1 + Py, +2u) 1+yy +2u
1+lpM_1+¢'M 1+"pm_
Mysmax | M3X (— — + “) max (—2 1y | 14y . 8u(l + vy +2p)
Mymax | max [1 (4p + 11171 —-1)° H 1+yy 2 2 H Teu+ (u+yy - 12
2
My max ¢! —( :bMJz/Z — 1- Bu(1 — )
My max | max [1 % ] 2 16u + (4u + 1y — 1)?
My (§) 1+yy +8u§(1 -8 1 1+y +8uE1—-9)
My max max(1+¥y; 1+ Py +20) 1+ +2u
M
i ya (5) 1-2¢
yamax
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GIETNO-SKRETNE WYBOCZENIE SPREZYSTE DWUTEOWYCH ELEMENTOW STALOWYCH NIESTEZONYCH

POMIEDZY SKRAJNYMI PODPORAMI

Stowa kluczowe: element stalowy, przekrdj dwuteowy bisymetryczny, zachowanie sprezyste, zwichrzenie, klasyczne
réwnanie energii, wyboczenie gigtno-skretne

STRESZCZENIE:

Na podstawie teorii pretéw cienkosciennych Wiasowa w artykule przedstawiono zagadnienia statecznosci sprezystej
stalowych elementéw o przekrojach dwuteowych bisymetrycznych, poddanych $ciskaniu i zginaniu wzgledem osi
wickszej bezwladnosci przekroju. Poniewaz rozwiagzanie $ciste zagadnienia zwichrzenia oraz wyboczenia gigtno-
skretnego elementow sciskanych i zginanych mozna wyznaczy¢ tylko w odniesieniu do prostych przypadkéw obciazen,
w przypadkach bardziej ztozonych obcigzen wykorzystuje si¢ metody przyblizone — zaréwno analityczne jak
i numeryczne. Badania przedstawione w pracy dotycza analitycznej metody energetycznej odniesionej do dowolnego
ztozonego przypadku obcigzenia, ktory traktuje si¢ jako superpozycje symetrycznej i antysymetrycznej czgsci
obcigzenia.
W pierwszej kolejnosci przedstawiono rézne sformutowania, tak zwane alternatywne i klasyczne, réwnan dotyczacych
energii odksztalcenia i obcigzenia w wypadku zwichrzenia sprezystego belek zginanych. Doktadniejsze klasyczne
réwnanie energii sformutowane dla belek zginanych o przekroju dwuteowym bisymetrycznym rozszerzono o wpltyw
sity podtuznej S$ciskajacej w celu rozwiazania problemu gietno-skretnego wyboczenia elementow $ciskanych
izginanych oraz przedstawiono w postaci funkcji pochodnych kata skrecenia ¢ i przemieszczenia liniowego v.
Nastepnie, po przyjeciu funkcji ksztattu kata skrecenia ¢ oraz przemieszczenia v tak, aby obejmowaty postacie
zwichrzenia belki odpowiadajace symetrycznemu i antysymetrycznemu rozkladowi momentu zginajacego,
wyprowadzono macierzowe kryterium utraty statecznosci preta w ujeciu liniowego problemu wartosci wlasnych (LEA).
Ostatecznie przedstawiono jawna posta¢ rozwigzania liniowego problemu wartosci wlasnych zalezng od symetrycznej
i antysymetrycznej czesci momentu zginajacego. Otrzymane rozwigzanie porownano z wynikami uzyskanymi z innych
badan i stwierdzono dobrg zgodnos¢.
Opracowane krzywe statecznosci sprezystej elementow S$ciskanych i zginanych odgrywaja wazna rol¢ w ocenie
nosnosci wyboczeniowej nieidealnych elementow $ciskanych i zginanych przy uzyciu tak zwanej metody ogodlnej
(z ang. General Method), wprowadzonej w eurokodzie stalowym EN 1993-1-1:2005. Metodg t¢ stosuje si¢ skutecznie
tylko w przypadku prostych obciazen pretow, poniewaz ogolne rozwiazanie réwnania statecznosci sprezystej
elementow $ciskanych i zginanych nie bylo szeroko badane w literaturze. Artykut jest punktem wyjscia do dalszych
badan nad ulepszeniem opracowanego rozwiazania, polegajacym na zastapieniu liniowej formuty problemu wartosci
wiasnych (LEA) jej odpowiednikiem wynikajacym z nieliniowego problemu wartosci wiasnych (NEA).
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