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Abstract. The synchronisation of a complex chaotic network of permanent magnet synchronous motor systems has increasing practical impor-
tance in the field of electrical engineering. This article presents the control design method for the hybrid synchronization and parameter esti-
mation of ring-connected complex chaotic network of permanent magnet synchronous motor systems. The design of the desired control law is 
a challenging task for control engineers due to parametric uncertainties and chaotic responses to some specific parameter values. Controllers 
are designed based on the adaptive integral sliding mode control to ensure hybrid synchronization and estimation of uncertain terms. To apply 
the adaptive ISMC, firstly the error system is converted to a unique system consisting of a nominal part along with the unknown terms which 
are computed adaptively. The stabilizing controller incorporating nominal control and compensator control is designed for the error system. The 
compensator controller, as well as the adopted laws, are designed to get the first derivative of the Lyapunov equation strictly negative. To give 
an illustration, the proposed technique is applied to 4-coupled motor systems yielding the convergence of error dynamics to zero, estimation 
of uncertain parameters, and hybrid synchronization of system states. The usefulness of the proposed method has also been tested through 
computer simulations and found to be valid.
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1. Introduction

Since the pioneering work by A.C. Fowler et al. [1], com-
plex chaotic systems have become an interesting field of re-
search over the last few decades, especially synchronization
of complex natured chaotic systems have attracted the atten-
tion of many researchers. Complex systems have a broad range
of applications in industrial areas and it is very important to
understand numerous physical systems like a chaotic com-
plex system. Synchronization of complex chaotic systems is a
fascinating subject, especially in communications [2–5]. Syn-
chronization methods used for simple chaotic systems are ex-
tended for complex systems like lag synchronization [6], anti-
synchronization [7], adaptive anti-synchronization for unknown
parameters [8], hybrid synchronization (HS) and parameter
identification of chaotic systems coupled in ring topology [9]
and projective synchronization [10]. In addition, there are some
other techniques reported in the literature [11–17], which were
designed particularly for complex chaotic systems.

All the techniques mentioned above are mainly designed for
synchronization of two or more [18] complex systems, where
one is usually the drive system and the other is the response
system. The purpose of these kinds of techniques was that the
states of the response system follow the trajectories of drive
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systems. Instead of using simple techniques, the synchroniza-
tion technique for multiple coupled complex chaotic systems
can improve the protection of message signals in secure com-
munication and it also has a bright future in the communication
field. Consequently, many researchers are attracted to this field
of research and are making their efforts to analyze multiple cou-
pled systems. Wang et al. [19] evaluated adaptive combination
synchronization of complex and real dynamical systems. Zhou
et al. [20] investigated adaptive synchronization for uncertain
complex networks.

The hybrid synchronization (HS) of multiple coupled
complex dynamical systems was reported in [21], where
synchronization/anti-synchronization are achieved for complex
systems connected in the ring topology and with known param-
eters. A ring topology is shown in Fig. 1, where the states of
first system track the states of N-th system, states of the sec-
ond follow the states of the first complex chaotic systems and
so on, finally the states of the last system follow the states of
(N−1)-th complex chaotic system. Synchronization and anti-
synchronization for real chaotic systems coupled in the ring

Fig. 1. Ring topology
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topology are achieved in [21], but complex systems connected
in the ring topology is a less focused area of research.

Several different methods were reported in the literature
[21, 22] for chaotic synchronization. The active control tech-
nique is a significant and easy control method because it pro-
vides a convenient way to select and implement the controllers.
In an active control technique, the controllers are selected to
nullify the nonlinear terms, which are present in the system,
therefore, chaotic synchronization becomes a linear problem.
The direct design control method is investigated in [23]. Mean-
while, the sliding mode control (SMC) [24] is a bit difficult
approach. However, it has a lot of advantages, like the fast re-
sponse and robustness in opposition to the parameter deviation
and external disturbances.

A modification of SMC technique is the integral sliding mode
control (ISMC) [25] which combines the discontinuous control
and nominal control. The main advantage of applying the ISMC
is that it eliminates the reaching phase. So, robustness is guar-
anteed throughout the system response.

Medium power permanent magnet synchronous motors
(PMSM) are very useful in industrial applications due to their
significant features like a small size, low cost, and high torque.
Especially, the simple structure of PMSM, in which there is
no field winding present in the motor, makes it first choice for
the industrial applications. Therefore, a lot of research has been
conducted to investigate control and synchronization of real
permanent magnet synchronous motors [26–28], whereas much
less work is being done for complex variable permanent magnet
synchronous motors [29]. Recently, some new results related to
the control of PMSM were documented in [30–32]. Practically,
in PMSM, complex currents and complex voltages are present
in the dynamical model and there is a possibility that one or all
the parameters of the systems are disturbed due to noise. So, it
is practically sound to estimate the unknown parameters for HS
of PMSM systems. In this research, an effort has been made to
reach HS and identification of uncertain parameters for a com-
plex chaotic network of PMSM systems connected in the ring
topology.

2. System description

In [33] the mathematical model of a field-oriented PMSM rotor
system is given as:

did
dt

=
(−R1id +wiqLq +ud)

Ld
,

diq
dt

=
(−R1iq +widLd −wψr +uq)

Lq
,

dw
dt

=
(npψriq +npidiq(Ld −Lq)−wβ −TL)

J
.

(1)

According to this mathematical model (1) the dynamic state
variables iq, id represent currents and w is angular frequency;
ud is the direct axis and uq is the quadrature-axis component of
input stator voltages; TL is the applied load torque; J is the arctic
moment of inertia; R1 represents resistance of stator wingding;

β is the adhesive damping constant; Ld represents direct axis in-
ductance and Lq represents quadrature-axis inductance; ψr rep-
resents rotor flux and np are the total number of rotor poles.
When there is an even air gap, uniform flux distribution, and the
motor operates at no-load, the mathematical model of PMSM
can simply be presented as:

ẋ1 = (x2 − x1)(a) ,

ẋ2 = bx1 − x2 − x1x3 ,

ẋ3 = x1x2 − x3 .

(2)

This system has two complex variables x1,x2 and two constant
parameters a,b. In [22] another complex model of permanent
magnet synchronous motor is presented as:

ẋ1 = (x2 − x1)(a),

ẋ2 = bx1 − x1x3 − x2 ,

ẋ3 = 0.5(x2x1 + x2x1),

(3)

where x1, x2 are in complex conjugate form with j =
√
−1.

This system shows chaotic behavior when its constant parame-
ters are selected as b = 20,a = 11. Figures 2(a)–2(b), depict the
chaotic behavior of this system. There are many properties of
PMSM systems studied in [34]. In this research paper, we are
examining parameter identification and HS of PMSM systems
using adaptive ISMC.
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Fig. 2. (a) Chaotic behaviour of PMSM system on x1r,x2r,x3r space,
(b) Chaotic behaviour of PMSM system on x1i,x2i space

The remaining paper is organized as: in Section 3, HS control
problem formulation. In Section 4, the proposed control algo-
rithm is discussed where as, in Section 5, HS for PMSM sys-
tems is discussed. In Section 6, simulation results are discussed
and in Section 7, the paper is concluded.

3. HS control problem formulation

In general, N complex chaotic systems connected in a ring
topology can be configured as:

ẋ1 = f1(x1)+F1(x1)θ1 +D1(xN − x1),

ẋ2 = f2(x2)+F2(x2)θ2 +D2(x1 − x2),

...
ẋN = fN(xN)+FN(xN)θN +DN(xN−1 − xN),

(4)
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ẋ1 = f1(x1)+F1(x1)θ1 +D1(xN − x1),
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conducted to investigate control and synchronization of real
permanent magnet synchronous motors [26–28], whereas much
less work is being done for complex variable permanent magnet
synchronous motors [29]. Recently, some new results related to
the control of PMSM were documented in [30–32]. Practically,
in PMSM, complex currents and complex voltages are present
in the dynamical model and there is a possibility that one or all
the parameters of the systems are disturbed due to noise. So, it
is practically sound to estimate the unknown parameters for HS
of PMSM systems. In this research, an effort has been made to
reach HS and identification of uncertain parameters for a com-
plex chaotic network of PMSM systems connected in the ring
topology.

2. System description

In [33] the mathematical model of a field-oriented PMSM rotor
system is given as:

did
dt

=
(−R1id +wiqLq +ud)

Ld
,

diq
dt

=
(−R1iq +widLd −wψr +uq)

Lq
,

dw
dt

=
(npψriq +npidiq(Ld −Lq)−wβ −TL)

J
.

(1)

According to this mathematical model (1) the dynamic state
variables iq, id represent currents and w is angular frequency;
ud is the direct axis and uq is the quadrature-axis component of
input stator voltages; TL is the applied load torque; J is the arctic
moment of inertia; R1 represents resistance of stator wingding;

β is the adhesive damping constant; Ld represents direct axis in-
ductance and Lq represents quadrature-axis inductance; ψr rep-
resents rotor flux and np are the total number of rotor poles.
When there is an even air gap, uniform flux distribution, and the
motor operates at no-load, the mathematical model of PMSM
can simply be presented as:

ẋ1 = (x2 − x1)(a) ,

ẋ2 = bx1 − x2 − x1x3 ,

ẋ3 = x1x2 − x3 .

(2)

This system has two complex variables x1,x2 and two constant
parameters a,b. In [22] another complex model of permanent
magnet synchronous motor is presented as:

ẋ1 = (x2 − x1)(a),

ẋ2 = bx1 − x1x3 − x2 ,

ẋ3 = 0.5(x2x1 + x2x1),

(3)

where x1, x2 are in complex conjugate form with j =
√
−1.

This system shows chaotic behavior when its constant parame-
ters are selected as b = 20,a = 11. Figures 2(a)–2(b), depict the
chaotic behavior of this system. There are many properties of
PMSM systems studied in [34]. In this research paper, we are
examining parameter identification and HS of PMSM systems
using adaptive ISMC.

0

20

10

10 20

20

x
3
r

10

30

x
2
r

0

x
1
r

40

0
-10

-10

-20 -20

(a)

-15 -10 -5 0 5 10 15

x
1
i

-15

-10

-5

0

5

10

15

20

x
2
i

(b)

Fig. 2. (a) Chaotic behaviour of PMSM system on x1r,x2r,x3r space,
(b) Chaotic behaviour of PMSM system on x1i,x2i space

The remaining paper is organized as: in Section 3, HS control
problem formulation. In Section 4, the proposed control algo-
rithm is discussed where as, in Section 5, HS for PMSM sys-
tems is discussed. In Section 6, simulation results are discussed
and in Section 7, the paper is concluded.

3. HS control problem formulation

In general, N complex chaotic systems connected in a ring
topology can be configured as:

ẋ1 = f1(x1)+F1(x1)θ1 +D1(xN − x1),

ẋ2 = f2(x2)+F2(x2)θ2 +D2(x1 − x2),

...
ẋN = fN(xN)+FN(xN)θN +DN(xN−1 − xN),

(4)
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where x1,x2, ...,xN ∈ Cn, are defined as the complex state vec-
tors, xi = (xi1,xi2,xi3, ...,xin)

T , xk = xkr + jxki,k = 1,2,3, ...,N,
j =

√
−1, both subscripts r and i represent real as well as imag-

inary components from the beginning to the end of this paper,
fi : Cn → Cn are the continuous nonlinear function, θi ∈ ℜp

are unknown parameters, Fi(xi) ∈ C(n× p) are matrices, Di =
diag{di1,di2,di3...,diN}, i = 1,2,3, ...,N are N-dimensional di-
agonal matrices, as well as di j ≥ 0 represents connected terms
of Di. In Fig. 1, the complex chaotic dynamic systems are con-
nected in a ring, in which the dynamic states of the 1st system
couples the Nth, the 2nd system couples the 1st, so on, and fi-
nally, the N-th complex chaotic system couples the (N−1)-th.

The network model presented in (4) is very practical and
unique in the sense that it contains unknown constant terms θi.
The constant terms of (4) are assumed to be uncertain due to
noise or some other unwanted external disturbances. The un-
certain terms will be estimated by the proposed control algo-
rithm. In this research, we have utilized this coupling scheme
to investigate HS and it can be mathematically represented as:

ẋ1 = f1(x1)+F1(x1)θ1 +D1(xN − x1),

ẋ2 = f2(x2)+F2(x2)θ2 +D2(x1 − x2)+u1 ,

...
ẋN = f(xN)+FN(xN)θN +DN(xN−1 − xN)+uN−1 ,

(5)

where uk = ukr + juki,k = 1,2, ...,N−1 are the complex inputs.
The hybrid synchronization for multiple connected system is
defined as:

Definition 1. The chaotic dynamic system (5), we say, there
exists hybrid synchronization conceding that the controllers
ui, i = 1,2,3, ...,N−1 are selected in such a manner that all
the trajectories x1(t),x2(t), ...,xN(t)) in (5) with either initial
conditions (x1(0),x2(0), ...,xN(0)) satisfy: For the errors ei =
(ei1,ei2, ...,eiN)

T , we have

lim
t→∞

ei = lim
t→∞

xi(t)+qxi+1(t) = 0, i = 1,2,3, ...,N−1.

For the anti-synchronization we choose q = 1 and for complete
synchronization q = −1. The problem of hybrid synchroniza-
tion can be resolved by designing appropriate controllers ui to
get ei = (ei1,ei2, ...,eiN)

T → 0 asymptotically.

4. The proposed control algorithm

For the hybrid synchronization, we define the error vectors as:

e1 = x2 +qx1 ,

e2 = x3 +qx2 ,

...
eN−1 = xN +qxN−1 .

(6)

Let θ̂i be the estimate of θi and let θ̃i = θi − θ̂i be the errors in
estimating the parameters θi, i = 1,2, · · · ,N, respectively. The
first derivative of (6) yields the following:




ė1

ė2

ė3
...

ėN−1



=




f2(x2)+q f1(x1)+F2(x2)θ̂2 +qF1(x1)θ̂1

+D2(x1 − x2)+qD1(xN − x1)

f3(x3)+q f2(x2)+F3(x3)θ̂3 +qF2(x2)θ̂2

+D3(x2 − x3)+qD2(x1 − x2)

f4(x4)+q f3(x3)+F4(x4)θ̂4 +qF3(x3)θ̂3

+D4(x3 − x4)+qD3(x2 − x3)
...

fN(xN)+q fN−1(xN−1)+FN(xN)θ̂N

+qFN−1(xN−1)θ̂N−1 +DN(xN−1 − xN)

+qDN−1(xN−2 − xN−1)




+




F2(x2)θ̃2 +qF1(x1θ̃1)

F3(x3)θ̃3 +qF2(x2θ̃2)

F4(x4)θ̃4 +qF3(x3θ̃3)
...

FN(xN)θ̃N

+qFN−1(xN−1θ̃N−1)




+




1 0 0 · · · 0
q 1 0 · · · 0
0 q 1 · · · 0
...

...
...

...
...

0 0 · · · q 1







u1

u2
...

uN−1



. (7)

By choosing:




u1

u2
...

uN−1



=




1 0 0 · · · 0
q 1 0 · · · 0
0 q 1 · · · 0
...

...
...

...
...

0 0 · · · q 1




−1


+




e2

e3
...

eN−1

v



−A




(8)

where, v is the new input vector and

A =




f2(x2)+q f1(x1)+F2(x2)θ̂2 +qF1(x1)θ̂1

+D2(x1 − x2)+qD1(xN − x1)

f3(x3)+q f2(x2)+F3(x3)θ̂3 +qF2(x2)θ̂2

+D3(x2 − x3)+qD2(x1 − x2)

f4(x4)+q f3(x3)+F4(x4)θ̂4 +qF3(x3)θ̂3

+D4(x3 − x4)+qD3(x2 − x3)
...

fN(xN)+q fN−1(xN−1)+FN(xN)θ̂N

+qFN−1(xN−1)θ̂N−1 +DN(xN−1 − xN)

+qDN−1(xN−2 − xN−1)




. (9)

and replacing (8) in (7) the error dynamic system presented in
(7) becomes as:

ė1 = e2 +F2(x2)θ̃2 +qF1(x1)θ̃1 ,

ė2 = e3 +F3(x3)θ̃3 +qF2(x2)θ̃2 ,

ė3 = e4 +F4(x4)θ̃4 +qF3(x3)θ̃3 ,

...

ėN−2 = eN−1+FN−1(xN−1)θ̃N−1+qFN−2(xN−2)θ̃N−2,

ėN−1 = v+FN(xN)θ̃N +qFN−1(xN−1)θ̃N−1 .

(10)

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137056 3



3

Hybrid synchronization and parameter estimation of a complex chaotic network of permanent magnet synchronous motors using adaptive...

Bull. Pol. Acad. Sci. Tech. Sci. 69(3) 2021, e137056

Hybrid synchronization and parameter estimation of a complex chaotic network . . .

where x1,x2, ...,xN ∈ Cn, are defined as the complex state vec-
tors, xi = (xi1,xi2,xi3, ...,xin)

T , xk = xkr + jxki,k = 1,2,3, ...,N,
j =

√
−1, both subscripts r and i represent real as well as imag-

inary components from the beginning to the end of this paper,
fi : Cn → Cn are the continuous nonlinear function, θi ∈ ℜp

are unknown parameters, Fi(xi) ∈ C(n× p) are matrices, Di =
diag{di1,di2,di3...,diN}, i = 1,2,3, ...,N are N-dimensional di-
agonal matrices, as well as di j ≥ 0 represents connected terms
of Di. In Fig. 1, the complex chaotic dynamic systems are con-
nected in a ring, in which the dynamic states of the 1st system
couples the Nth, the 2nd system couples the 1st, so on, and fi-
nally, the N-th complex chaotic system couples the (N−1)-th.

The network model presented in (4) is very practical and
unique in the sense that it contains unknown constant terms θi.
The constant terms of (4) are assumed to be uncertain due to
noise or some other unwanted external disturbances. The un-
certain terms will be estimated by the proposed control algo-
rithm. In this research, we have utilized this coupling scheme
to investigate HS and it can be mathematically represented as:

ẋ1 = f1(x1)+F1(x1)θ1 +D1(xN − x1),

ẋ2 = f2(x2)+F2(x2)θ2 +D2(x1 − x2)+u1 ,

...
ẋN = f(xN)+FN(xN)θN +DN(xN−1 − xN)+uN−1 ,

(5)

where uk = ukr + juki,k = 1,2, ...,N−1 are the complex inputs.
The hybrid synchronization for multiple connected system is
defined as:

Definition 1. The chaotic dynamic system (5), we say, there
exists hybrid synchronization conceding that the controllers
ui, i = 1,2,3, ...,N−1 are selected in such a manner that all
the trajectories x1(t),x2(t), ...,xN(t)) in (5) with either initial
conditions (x1(0),x2(0), ...,xN(0)) satisfy: For the errors ei =
(ei1,ei2, ...,eiN)

T , we have

lim
t→∞

ei = lim
t→∞

xi(t)+qxi+1(t) = 0, i = 1,2,3, ...,N−1.

For the anti-synchronization we choose q = 1 and for complete
synchronization q = −1. The problem of hybrid synchroniza-
tion can be resolved by designing appropriate controllers ui to
get ei = (ei1,ei2, ...,eiN)

T → 0 asymptotically.

4. The proposed control algorithm

For the hybrid synchronization, we define the error vectors as:

e1 = x2 +qx1 ,

e2 = x3 +qx2 ,

...
eN−1 = xN +qxN−1 .

(6)

Let θ̂i be the estimate of θi and let θ̃i = θi − θ̂i be the errors in
estimating the parameters θi, i = 1,2, · · · ,N, respectively. The
first derivative of (6) yields the following:




ė1

ė2

ė3
...

ėN−1



=




f2(x2)+q f1(x1)+F2(x2)θ̂2 +qF1(x1)θ̂1

+D2(x1 − x2)+qD1(xN − x1)

f3(x3)+q f2(x2)+F3(x3)θ̂3 +qF2(x2)θ̂2

+D3(x2 − x3)+qD2(x1 − x2)

f4(x4)+q f3(x3)+F4(x4)θ̂4 +qF3(x3)θ̂3

+D4(x3 − x4)+qD3(x2 − x3)
...

fN(xN)+q fN−1(xN−1)+FN(xN)θ̂N

+qFN−1(xN−1)θ̂N−1 +DN(xN−1 − xN)

+qDN−1(xN−2 − xN−1)




+




F2(x2)θ̃2 +qF1(x1θ̃1)

F3(x3)θ̃3 +qF2(x2θ̃2)

F4(x4)θ̃4 +qF3(x3θ̃3)
...

FN(xN)θ̃N

+qFN−1(xN−1θ̃N−1)




+




1 0 0 · · · 0
q 1 0 · · · 0
0 q 1 · · · 0
...

...
...

...
...

0 0 · · · q 1







u1

u2
...

uN−1



. (7)

By choosing:




u1

u2
...

uN−1



=




1 0 0 · · · 0
q 1 0 · · · 0
0 q 1 · · · 0
...

...
...

...
...

0 0 · · · q 1




−1


+




e2

e3
...

eN−1

v



−A




(8)

where, v is the new input vector and

A =




f2(x2)+q f1(x1)+F2(x2)θ̂2 +qF1(x1)θ̂1

+D2(x1 − x2)+qD1(xN − x1)

f3(x3)+q f2(x2)+F3(x3)θ̂3 +qF2(x2)θ̂2

+D3(x2 − x3)+qD2(x1 − x2)

f4(x4)+q f3(x3)+F4(x4)θ̂4 +qF3(x3)θ̂3

+D4(x3 − x4)+qD3(x2 − x3)
...

fN(xN)+q fN−1(xN−1)+FN(xN)θ̂N

+qFN−1(xN−1)θ̂N−1 +DN(xN−1 − xN)

+qDN−1(xN−2 − xN−1)




. (9)

and replacing (8) in (7) the error dynamic system presented in
(7) becomes as:

ė1 = e2 +F2(x2)θ̃2 +qF1(x1)θ̃1 ,

ė2 = e3 +F3(x3)θ̃3 +qF2(x2)θ̃2 ,

ė3 = e4 +F4(x4)θ̃4 +qF3(x3)θ̃3 ,

...

ėN−2 = eN−1+FN−1(xN−1)θ̃N−1+qFN−2(xN−2)θ̃N−2,

ėN−1 = v+FN(xN)θ̃N +qFN−1(xN−1)θ̃N−1 .

(10)
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where x1,x2, ...,xN ∈ Cn, are defined as the complex state vec-
tors, xi = (xi1,xi2,xi3, ...,xin)

T , xk = xkr + jxki,k = 1,2,3, ...,N,
j =

√
−1, both subscripts r and i represent real as well as imag-

inary components from the beginning to the end of this paper,
fi : Cn → Cn are the continuous nonlinear function, θi ∈ ℜp

are unknown parameters, Fi(xi) ∈ C(n× p) are matrices, Di =
diag{di1,di2,di3...,diN}, i = 1,2,3, ...,N are N-dimensional di-
agonal matrices, as well as di j ≥ 0 represents connected terms
of Di. In Fig. 1, the complex chaotic dynamic systems are con-
nected in a ring, in which the dynamic states of the 1st system
couples the Nth, the 2nd system couples the 1st, so on, and fi-
nally, the N-th complex chaotic system couples the (N−1)-th.

The network model presented in (4) is very practical and
unique in the sense that it contains unknown constant terms θi.
The constant terms of (4) are assumed to be uncertain due to
noise or some other unwanted external disturbances. The un-
certain terms will be estimated by the proposed control algo-
rithm. In this research, we have utilized this coupling scheme
to investigate HS and it can be mathematically represented as:

ẋ1 = f1(x1)+F1(x1)θ1 +D1(xN − x1),

ẋ2 = f2(x2)+F2(x2)θ2 +D2(x1 − x2)+u1 ,

...
ẋN = f(xN)+FN(xN)θN +DN(xN−1 − xN)+uN−1 ,

(5)

where uk = ukr + juki,k = 1,2, ...,N−1 are the complex inputs.
The hybrid synchronization for multiple connected system is
defined as:

Definition 1. The chaotic dynamic system (5), we say, there
exists hybrid synchronization conceding that the controllers
ui, i = 1,2,3, ...,N−1 are selected in such a manner that all
the trajectories x1(t),x2(t), ...,xN(t)) in (5) with either initial
conditions (x1(0),x2(0), ...,xN(0)) satisfy: For the errors ei =
(ei1,ei2, ...,eiN)

T , we have

lim
t→∞

ei = lim
t→∞

xi(t)+qxi+1(t) = 0, i = 1,2,3, ...,N−1.

For the anti-synchronization we choose q = 1 and for complete
synchronization q = −1. The problem of hybrid synchroniza-
tion can be resolved by designing appropriate controllers ui to
get ei = (ei1,ei2, ...,eiN)

T → 0 asymptotically.

4. The proposed control algorithm

For the hybrid synchronization, we define the error vectors as:

e1 = x2 +qx1 ,

e2 = x3 +qx2 ,

...
eN−1 = xN +qxN−1 .

(6)

Let θ̂i be the estimate of θi and let θ̃i = θi − θ̂i be the errors in
estimating the parameters θi, i = 1,2, · · · ,N, respectively. The
first derivative of (6) yields the following:
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ėN−1



=




f2(x2)+q f1(x1)+F2(x2)θ̂2 +qF1(x1)θ̂1

+D2(x1 − x2)+qD1(xN − x1)

f3(x3)+q f2(x2)+F3(x3)θ̂3 +qF2(x2)θ̂2

+D3(x2 − x3)+qD2(x1 − x2)

f4(x4)+q f3(x3)+F4(x4)θ̂4 +qF3(x3)θ̂3
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
. (7)
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


(8)
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ė2 = e3 +F3(x3)θ̃3 +qF2(x2)θ̃2 ,
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To apply the ISMC, firstly we have to define the nominal system
for (10):

ė1 = e2 ,

ė2 = e3 ,

ė3 = e4 ,

...
ėN−2 = eN−1 ,

ėN−1 = vo .

(11)

To stabilize the error system in (11), the Hurwitz sliding sur-

face is designed as: σo = (1 +
d
dt
)N−2e1 = e1 + c1e2 + ...+

cN−3eN−1, where the coefficients ci are chosen in such a way
that σo becomes Hurwitz polynomial. The time derivative of the
above sliding surface will be like this σ̇o = e2 + c1e3 + c2e4 +
...+ cN−3eN−1 + vo. By choosing vo = −e2 − c1e3 − c2e4 −
...− cN−3eN−1 − kσo,k > 0, we have σ̇o =−kσo, consequently
σo → 0, which gives e1,e2, ...,eN−1 → 0. In consequence sys-
tem (11) is asymptotically stable. Moreover, by designing slid-
ing surfaces for the above system (10) as: σ = σo + z where z
in this equation is an integral parameter which shall be com-
puted subsequently. To avert reaching phase set z(0) such that
σ(0) = 0. The time derivative of this sliding manifold will be
as following:

σ̇ = σ̇o + ż

= ė1 + c1ė2 + ...+ cN−3ėN−2 + ėN−1 + v+ ż

= e2 +
N−1

∑
i=3

ci−2ei + v+ ż+qF1(x1)θ̃1

+
(
(1+qc1)F2(x2)θ̃2

)

+
N−4

∑
i=1

(ci +qci+1)Fi+2(xi+2)θ̃i+2

+
(
(cN−3 +q)FN−1(xN−1)θ̃N−1

)
+FN(xN)θ̃N . (12)

The new input term v in (12) is defined as v = vs +v0, where v0
is the nominal input vector and the other term vs is a compen-
sator input vector which will be computed later. The Lyapunov
stability function for (12) is defined as:

V =
1
2

{
σT σ + θ̃ T

1 θ̃1 + θ̃ T
2 θ̃2

}
+

N−4

∑
i=1

θ̃ T
i+2θ̃i+2

+ θ̃ T
N−1θ̃N−1 + θ̃ T

N θ̃N (13)

by properly defining the adaptive laws θ̃i, θ̂i, i = 1,2,3, ...,N,
and computing the compensator input vector vs such that the
fist derivative of (13) can be achieved as V̇ < 0.

Theorem 1. For the Lyapunov equation as described in (13) it
is possible to get V̇ < 0 conceding that θ̃i, θ̂i, i = 1,2,3, ...,N
and vs are chosen as:

ż =−e2 −
N−1

∑
i=3

ci−2ei − vo,

vs =−kσ − ksign(σ),

˙̃θ1 =−qFT
1 (x1)σ − k1θ̃1,

˙̂θ1 =− ˙̃θ1 ,

˙̃θ2 =−(1+qc1)FT
2 (x2)σ − k2θ̃2,

˙̂θ2 =− ˙̃θ2 ,

˙̃θi+2 =−(ci +qci+1)FT
i+1(xi+2)σ − kN−1 − ki+2θ̃i+2,

˙̂θi+2 =− ˙̂θi+2, i = 1, ...,N−4,
˙̃θN−1 =−(cN−3 +q)F6TN−1σ − kN−1θ̃N−1,

˙̂θN−1 =− ˙̃θN−1,

˙̃θN =−FT
N (xN)σ − kN θ̃N ,

˙̂θNc =− ˙̃θN .

(14)

Proof. Since:

V̇ = σ T σ̇ + θ̃ T
1

˙̃θ1 + θ̃ T
2

˙̃θ2

+
N−4

∑
i=1

θ̃ T
i+2

˙̃θi+2 + θ̃ T
N−1

˙̃θN−1 + θ̃ T
N

˙̃θN

= σT

{
e2 +

N−1

∑
i=3

ci−2ei + vo + vs + ż

}
+ θ̃ T

1

{
˙̃θ1 +qFFT

1 (x1)σ
}

+ θ̃ T
2

{
˙̃θ2 +(1+qc1)FT

2 (x2)σ
}

+
N−4

∑
i=1

θ̃ T
i+2

{
˙̃θi+2 +(ci +qci+1)FT

i+2(xi+2)σ
}

+ θ̃ T
N−1

{
˙̃θN−1 +(cN−3 +q)FT

N−1(xN−1)σ
}

+ θ̃ T
N

{
˙̃θN +FT

N (xN)σ
}
. (15)

By replacing (14) in (15) we get:

V̇ =−kσ2 −
N

∑
i=1

kiθ̃ T
i θ̃i − kσT sign(σ), k > 0. (16)

This shows σ and θ̃i → 0 consequently
ei → 0, i = 1,2,3, ..,N−1.

5. HS of ring-connected complex PMSM systems

In this section, we investigate HS of N-coupled complex PMSM
systems connected in ring topology. Assuming N = 4, the cou-
pled complex PMSM systems in a ring topology can be repre-
sented as:
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ż =−e2 −
N−1

∑
i=3

ci−2ei − vo,

vs =−kσ − ksign(σ),

˙̃θ1 =−qFT
1 (x1)σ − k1θ̃1,

˙̂θ1 =− ˙̃θ1 ,

˙̃θ2 =−(1+qc1)FT
2 (x2)σ − k2θ̃2,

˙̂θ2 =− ˙̃θ2 ,

˙̃θi+2 =−(ci +qci+1)FT
i+1(xi+2)σ − kN−1 − ki+2θ̃i+2,

˙̂θi+2 =− ˙̂θi+2, i = 1, ...,N−4,
˙̃θN−1 =−(cN−3 +q)F6TN−1σ − kN−1θ̃N−1,

˙̂θN−1 =− ˙̃θN−1,

˙̃θN =−FT
N (xN)σ − kN θ̃N ,

˙̂θNc =− ˙̃θN .

(14)

Proof. Since:

V̇ = σ T σ̇ + θ̃ T
1

˙̃θ1 + θ̃ T
2

˙̃θ2

+
N−4

∑
i=1

θ̃ T
i+2

˙̃θi+2 + θ̃ T
N−1

˙̃θN−1 + θ̃ T
N

˙̃θN

= σT

{
e2 +

N−1

∑
i=3

ci−2ei + vo + vs + ż
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N
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This shows σ and θ̃i → 0 consequently
ei → 0, i = 1,2,3, ..,N−1.

5. HS of ring-connected complex PMSM systems

In this section, we investigate HS of N-coupled complex PMSM
systems connected in ring topology. Assuming N = 4, the cou-
pled complex PMSM systems in a ring topology can be repre-
sented as:
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To apply the ISMC, firstly we have to define the nominal system
for (10):

ė1 = e2 ,

ė2 = e3 ,

ė3 = e4 ,

...
ėN−2 = eN−1 ,

ėN−1 = vo .

(11)

To stabilize the error system in (11), the Hurwitz sliding sur-

face is designed as: σo = (1 +
d
dt
)N−2e1 = e1 + c1e2 + ...+

cN−3eN−1, where the coefficients ci are chosen in such a way
that σo becomes Hurwitz polynomial. The time derivative of the
above sliding surface will be like this σ̇o = e2 + c1e3 + c2e4 +
...+ cN−3eN−1 + vo. By choosing vo = −e2 − c1e3 − c2e4 −
...− cN−3eN−1 − kσo,k > 0, we have σ̇o =−kσo, consequently
σo → 0, which gives e1,e2, ...,eN−1 → 0. In consequence sys-
tem (11) is asymptotically stable. Moreover, by designing slid-
ing surfaces for the above system (10) as: σ = σo + z where z
in this equation is an integral parameter which shall be com-
puted subsequently. To avert reaching phase set z(0) such that
σ(0) = 0. The time derivative of this sliding manifold will be
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= ė1 + c1ė2 + ...+ cN−3ėN−2 + ėN−1 + v+ ż
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N−1

∑
i=3

ci−2ei + v+ ż+qF1(x1)θ̃1

+
(
(1+qc1)F2(x2)θ̃2

)

+
N−4

∑
i=1

(ci +qci+1)Fi+2(xi+2)θ̃i+2

+
(
(cN−3 +q)FN−1(xN−1)θ̃N−1

)
+FN(xN)θ̃N . (12)

The new input term v in (12) is defined as v = vs +v0, where v0
is the nominal input vector and the other term vs is a compen-
sator input vector which will be computed later. The Lyapunov
stability function for (12) is defined as:

V =
1
2

{
σT σ + θ̃ T

1 θ̃1 + θ̃ T
2 θ̃2

}
+

N−4

∑
i=1

θ̃ T
i+2θ̃i+2

+ θ̃ T
N−1θ̃N−1 + θ̃ T

N θ̃N (13)

by properly defining the adaptive laws θ̃i, θ̂i, i = 1,2,3, ...,N,
and computing the compensator input vector vs such that the
fist derivative of (13) can be achieved as V̇ < 0.
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}
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Hybrid synchronization and parameter estimation of a complex chaotic network . . .

ẋ11 = a(x12 − x11)+d11(x41 − x11),

ẋ12 = bx11 − x12 − x11x13 +d12(x42 − x12),

ẋ13 = 0.5(x̄11x12 + x11x̄12)− x13 +d13(x43 − x13),

ẋ21 = a(x22 − x21)+d21(x11 − x21)+µ11 ,

ẋ22 = bx21 − x22 − x21x23 +d22(x12 − x22)+µ12 ,

ẋ23 = 0.5(x̄21x22 + x21x̄22)− x23 +d23(x13 − x23)+µ13 ,

ẋ31 = a(x32 − x31)+d31(x21 − x31)+µ21 ,

ẋ32 = bx31 − x32 − x31x33 +d32(x22 − x32)+µ22 ,

ẋ33 = 0.5(x̄31x32 + x31x̄32)− x33 +d33(x23 − x33)+µ23 ,

ẋ41 = a(x42 − x41)+d41(x31 − x41)+µ31 ,

ẋ42 = bx41 − x42 − x41x43 +d42(x32 − x42)+µ32 ,

ẋ43 = 0.5(x̄41x42 + x41x̄42)− x43 +d33(x33 − x43)+µ33 ,

(17)

where, xk1 = xk1r + jxk1i, xk2 = xk2r + jxk2i are complex and
xk3 = xk3r are real, x̄k1, x̄k2 denote the complex conjugate vari-
ables of xk1, xk2, k = 1,2,3,4 and a, b are unknown real terms.

In (17), if the paramaters a and b are uncertain and their esti-
mates are â and b̂ respectively, the error in estimation of uncer-
tain parameters can be described as: ã = a− â, b̃ = b− b̂, then
(17) can be written in vector form as:

ẋ1r = f1r +F1rθ̂ +F1rθ̃ +D1G1r ,

ẋ1i = f1i +F1iθ̂ +F1iθ̃ +D1G1i ,

ẋ2r = f2r +F2rθ̂ +F2rθ̃ +D2G2r +µ1r ,

ẋ2i = f2i +F2iθ̂ +F2iθ̃ +D2G2i +µ1i ,

ẋ3r = f3r +F3rθ̂ +F3rθ̃ +D3G3r +µ2r ,

ẋ3i = f3i +F3iθ̂ +F3iθ̃ +D3G3i +µ2i ,

ẋ4r = f4r +F4rθ̂ +F4rθ̃ +D4G4r +µ3r ,

ẋ4i = f4i +F4iθ̂ +F4iθ̃ +D3G4i +µ3i ,

(18)

where

fkr =




0
−xk2r − xk1rxk3

0.5(xk1rxk2r + xk1ixk2i)− xk3


 ,

fki =




0
−xk2r − xk1rxk3

0


 , k = 1,2,3,4;

Fkr =




xk2r − xk1r 0
0 xk1r

0 0


 ,

Fki =




xk2i − xk1i 0
0 xk1i

0 0


 ,

(19)

G1r =




x41r − x11r

x42r − x12r

x4r − x13


 , G1i =




x41i − x11i

x42i − x12i

0


 ,

G2r =




x11r − x21r

x12r − x22r

x13 − x43


 , G2i =




x11i − x21i

x12i − x22i

0


 ,

G3r =




x21r − x31r

x22r − x32r

x23 − x33


 , G3i =




x21i − x31i

x22i − x32i

0


 ,

G4r =




x31r − x41r

x32r − x42r

x33 − x43


 , G4i =




x31i − x41i

x32i − x42i

x33 − x43


 ,

ulr =




ul1r

ul2r

ulr


 , uli =




ul1i

ul2i

0


 , l = 1,2,3,

θ̂ =

[
â
b̂

]
, θ̃ =

[
ã
b̃

]
.

(19)

Defining the error as: ek = ekr + jeki = xk+1 + qxk =
x(k+1)r +qxkr + jx(k+1)i +qxki, this gives ekr = x(k+1)r + qxkr
and, eki = x(k+1)i +qxki, k = 1,2,3. The error dynamics of this
system becomes as:



ė1r

ė2r

ė3r


=



( f2r +q f1r)+(F2r +qF1rθ̂)+D2G2r +qD1G1r)

( f3r +q f2r)+(F3r +qF2rθ̂)+D3G3r +qD2G2r)

( f4r +q f3r)+(F4r +qF3rθ̂)+D4G4r +qD3G3r)




+




F2r +qF1r

F3r +qF2r

F4r +qF3r


+




I 0 0
−qI I 0

0 −qI I







µ1r

µ2r

µ3r


 ,




ė1i

ė2i

ė3i


=



( f2i +q f1i)+(F2i +qF1iθ̂)+D2G2i +qD1G1i)

( f3i +q f2i)+(F3i +qF2iθ̂)+D3G3i +qD2G2i)

( f4i +q f3i)+(F4i +qF3iθ̂)+D4G4i +qD3G3i)




+




F2i +qF1i

F3i +qF2i

F4i +qF3i


+




I 0 0
−qI I 0

0 −qI I







µ1i

µ2i

µ3i




(20)

by choosing,




µ1r

µ2r

µ3r


=




I 0 0
−qI I 0

0 −qI I



−1


(Fqr1)
(Fqr2)
(Fqr3)


+




e2r

e3r

Vr


 ,




µ1i

µ2i

µ3i


=




I 0 0
−qI I 0

0 −qI I



−1


(Fqi1)
(Fqi2)
(Fqi3)


+




e2i

e3i

Vi


 ,

(21)

where
Fqr1 = ( f2r +q f1r)+(F2r +qF1rθ̂)+D2G2r +qD1G1r Fqr2 =
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ẋ11 = a(x12 − x11)+d11(x41 − x11),

ẋ12 = bx11 − x12 − x11x13 +d12(x42 − x12),

ẋ13 = 0.5(x̄11x12 + x11x̄12)− x13 +d13(x43 − x13),

ẋ21 = a(x22 − x21)+d21(x11 − x21)+µ11 ,

ẋ22 = bx21 − x22 − x21x23 +d22(x12 − x22)+µ12 ,

ẋ23 = 0.5(x̄21x22 + x21x̄22)− x23 +d23(x13 − x23)+µ13 ,

ẋ31 = a(x32 − x31)+d31(x21 − x31)+µ21 ,

ẋ32 = bx31 − x32 − x31x33 +d32(x22 − x32)+µ22 ,

ẋ33 = 0.5(x̄31x32 + x31x̄32)− x33 +d33(x23 − x33)+µ23 ,

ẋ41 = a(x42 − x41)+d41(x31 − x41)+µ31 ,

ẋ42 = bx41 − x42 − x41x43 +d42(x32 − x42)+µ32 ,

ẋ43 = 0.5(x̄41x42 + x41x̄42)− x43 +d33(x33 − x43)+µ33 ,

(17)

where, xk1 = xk1r + jxk1i, xk2 = xk2r + jxk2i are complex and
xk3 = xk3r are real, x̄k1, x̄k2 denote the complex conjugate vari-
ables of xk1, xk2, k = 1,2,3,4 and a, b are unknown real terms.

In (17), if the paramaters a and b are uncertain and their esti-
mates are â and b̂ respectively, the error in estimation of uncer-
tain parameters can be described as: ã = a− â, b̃ = b− b̂, then
(17) can be written in vector form as:

ẋ1r = f1r +F1rθ̂ +F1rθ̃ +D1G1r ,

ẋ1i = f1i +F1iθ̂ +F1iθ̃ +D1G1i ,

ẋ2r = f2r +F2rθ̂ +F2rθ̃ +D2G2r +µ1r ,

ẋ2i = f2i +F2iθ̂ +F2iθ̃ +D2G2i +µ1i ,

ẋ3r = f3r +F3rθ̂ +F3rθ̃ +D3G3r +µ2r ,

ẋ3i = f3i +F3iθ̂ +F3iθ̃ +D3G3i +µ2i ,

ẋ4r = f4r +F4rθ̂ +F4rθ̃ +D4G4r +µ3r ,

ẋ4i = f4i +F4iθ̂ +F4iθ̃ +D3G4i +µ3i ,

(18)

where

fkr =




0
−xk2r − xk1rxk3

0.5(xk1rxk2r + xk1ixk2i)− xk3


 ,

fki =




0
−xk2r − xk1rxk3

0


 , k = 1,2,3,4;

Fkr =




xk2r − xk1r 0
0 xk1r

0 0


 ,

Fki =




xk2i − xk1i 0
0 xk1i

0 0


 ,

(19)

G1r =




x41r − x11r

x42r − x12r

x4r − x13


 , G1i =




x41i − x11i

x42i − x12i

0


 ,

G2r =




x11r − x21r

x12r − x22r

x13 − x43


 , G2i =




x11i − x21i

x12i − x22i

0


 ,

G3r =




x21r − x31r

x22r − x32r

x23 − x33


 , G3i =




x21i − x31i

x22i − x32i

0


 ,

G4r =




x31r − x41r

x32r − x42r

x33 − x43


 , G4i =




x31i − x41i

x32i − x42i

x33 − x43


 ,

ulr =




ul1r

ul2r

ulr


 , uli =




ul1i

ul2i

0


 , l = 1,2,3,

θ̂ =

[
â
b̂

]
, θ̃ =

[
ã
b̃

]
.

(19)

Defining the error as: ek = ekr + jeki = xk+1 + qxk =
x(k+1)r +qxkr + jx(k+1)i +qxki, this gives ekr = x(k+1)r + qxkr
and, eki = x(k+1)i +qxki, k = 1,2,3. The error dynamics of this
system becomes as:



ė1r

ė2r

ė3r


=



( f2r +q f1r)+(F2r +qF1rθ̂)+D2G2r +qD1G1r)

( f3r +q f2r)+(F3r +qF2rθ̂)+D3G3r +qD2G2r)

( f4r +q f3r)+(F4r +qF3rθ̂)+D4G4r +qD3G3r)




+




F2r +qF1r

F3r +qF2r

F4r +qF3r


+




I 0 0
−qI I 0

0 −qI I







µ1r

µ2r

µ3r


 ,




ė1i

ė2i

ė3i


=



( f2i +q f1i)+(F2i +qF1iθ̂)+D2G2i +qD1G1i)

( f3i +q f2i)+(F3i +qF2iθ̂)+D3G3i +qD2G2i)

( f4i +q f3i)+(F4i +qF3iθ̂)+D4G4i +qD3G3i)




+




F2i +qF1i

F3i +qF2i

F4i +qF3i


+




I 0 0
−qI I 0

0 −qI I







µ1i

µ2i

µ3i




(20)

by choosing,




µ1r

µ2r

µ3r


=




I 0 0
−qI I 0

0 −qI I



−1


(Fqr1)
(Fqr2)
(Fqr3)


+




e2r

e3r

Vr


 ,




µ1i

µ2i

µ3i


=




I 0 0
−qI I 0

0 −qI I



−1


(Fqi1)
(Fqi2)
(Fqi3)


+




e2i

e3i

Vi


 ,

(21)

where
Fqr1 = ( f2r +q f1r)+(F2r +qF1rθ̂)+D2G2r +qD1G1r Fqr2 =
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( f3r + q f2r)+ (F3r + qF2rθ̂)+D3G3r + qD2G2r Fqr3 = ( f4r +

q f3r)+(F4r +qF3rθ̂)+D4G4r +qD3G3r
Fqi1 = ( f2i + q f1i) + (F2i + qF1iθ̂) + D2G2i + qD1G1i Fqi2 =

( f3i + q f2i) + (F3i + qF2iθ̂) + D3G3i + qD2G2i Fqi3 = ( f4i +

q f3i)+(F4i −+F3iθ̂)+D4G4i +qD3G3i.
The system (20) becomes:




ė1r

ė2r

ė3r


=




e2r

e3r

Vr


+




F2r +qF1r

F3r +qF2r

F4r +qF3r


 θ̃ ,




ė1i

ė2i

ė3i


=




e2i

e3i

Vi


+




F2i +qF1i

F3i +qF2i

F4i +qF3i


 θ̃

(22)

taking the nominal system for (22) as:



ė1r

ė2r

ė3r


=




e2r

e3r

Vr0


 ,




ė1i

ė2i

ė3i


=




e2i

e3i

Vi0




(23)

and defining the sliding surface for nominal system (23) as:

σ0r = e1r +2e2r + e3r ,

σ0i = e1i +2e2i + e3i
(24)

then the first derivative of (24) becomes as:

σ̇0r = ė1r +2ė2r + ė3r = e2r +2e3r + v0r ,

σ̇0i = ė1i +2ė2i + ė3i = e2i +2e3i + v0i
(25)

by choosing,

v0r =−e2r −2e3r − k1sign(σ0r), k1 > 0,

v0i =−e2i −2e3i − k2sign(σ0i), k2 > 0
(26)

we have,

σ̇0r =−k1σ0r − k1sign(σ0r),

σ̇0i =−k2σ0i − k2sign(σ0i).
(27)

In consequence, the nominal system (24) is asymptotically sta-
ble. The sliding surface for error dynamics presented in (22) is
defined as:

σr = σ0r + zr = e1r +2e2r + e3r + zr ,

σi = σ0i + zi = e1i +2e2i + e3i + zi ,
(28)

where zr, zi are some itegral terms computed later. Now to avert
the reaching phase, take up zr(0), zi(0) such that σr(0) = 0,
σi(0) = 0. Choosing vr = v0r + vsr, vi = voi + vi, where, v0r,v0i
are the nominal inputs and vsr,vsi are compensator terms which

will be computed later. The first derivative of (28) can be de-
rived as:

σ̇r = σ̇0r + żr = ė1r +2ė2r + ė3r + żr

= e2r +(F2r +qF1r)θ̃ +2e3r +2(F3r +qF2r)θ̃ +(F4r

+qF3r)θ̃ + v0r + vsr + żr

σ̇i = σ̇0i + żi = ė1i +2ė2i + ė3i + żi

= e2i +(F2i +qF1i)θ̃ +2e3i +2(F3i +qF2i)θ̃ +(F4i

+qF3i)θ̃ + v0i + vsi + żi

(29)

The Lyapunov stability function for (29) can be defined as:

V =
1
2

σT
r σr +

1
2

σT
i σi +

1
2

θ̃ T θ̃ . By properly defining the adap-

tive laws θ̃ , θ̂ and computing vsr, vsi, it is possible to get first
derivative of Lyapunov stability function as V̇ < 0.

Theorem 2. For the Lyapunov equation V =
1
2

σT
r σr +

1
2

σT
i σi +

1
2

θ̃ T θ̃ it is possible to get V̇ < 0 conceding that the

adaptive laws ˙̂θ , ˙̃θ and the values of vsr, vi are chosen as:

żr =−ė2r −2e3r − v0r,vsr =−k−3σr − k3sign(σr)

żi =−ė2i −2e3i − v0r,vsi =−k−4σi − k4sign(σi)

˙̃θ =−σ T
r {(F2r +qF1r)

T +2(F3r +qF2r)
T +(F4r +qF3r)

T}
−σT

i {(F2i +qF1i)
T +2(F3i +qF2i)

T +(F4i +qF3i)
T}−K5θ̃

˙̂θ =− ˙̃θ ,ki > 0, i = 1, · · · ,5.
(30)

Proof. Since:

V̇ = σ T
r σ̇r +σT

i σ̇i + θ̃ T ˙̃θ ,

V̇ = σ T
r {e2r +(F2r +qF1r)θ̃ +2e3r +2(F3r)+qF2r)θ̃

+(F4r +qF3r)θ̃ + v0r + vsr + żr}+σT
i {e2i +(F2i +qF1i)θ̃

+2e3i +2(F3i +qF2i)θ̃ +(F4i +qF3i)θ̃ + v0i + vsi + ż}

+ θ̃ T ˙̃θ (31)

V̇ = σT
r {e2r +2e3r + v0r + vsr + żr}+σT

i {e2i +2e3i + v0i + vsi

+ żi}+ θ̃ T [ ˙̃θ +σT
r {(F2r +qF1r)

T +2(F3r +qF2r)
T +(F4r

+qF3r)
T}+σT

i {(F2i +qF1i)
T +2(F3i +qF2i)

T

+(F4i +qFT
3i )}].

By replacing the values of adaptive laws ˙̃θ , ˙̂θ and the values
of vsr, vi proposed in (30), the above system (31) becomes:

V̇ =−k1σT
r σr − k2σT

i σi − k2θ̃ T θ̃ − k3σT
r sign(σr)

− k4σT
i sign(σi)< 0. (32)

This shows that the designed sliding surfaces σr, σi and adap-
tive laws θ̃ → 0; therefore, ekr,eki → 0, k = 1,2,3,4. The con-
vergence of error system to zero ensures HS of coupled com-
plex chaotic permanent magnet motors systems connected in
ring topology.
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6. Simulation results and discussion

Simulation results were presented by taking the following ini-
tial conditions, x1(0) = (1+2 j,3+6 j,5)T , x2(0) = (4−2 j,1+
2 j,8)T , x3(0) = (−3+4 j,−2+5 j,−1)T , x4(0) = (5−5 j,4−
2 j,3)T . Figure 3(a) displays the concurrence of both the real
and imaginary parts of synchronization error dynamics e11r,
e12r, e13r, e11i, e12i to zero, Fig. 3(b) displays the concurrence
of real as well as imaginary parts of synchronization error dy-
namics e21r, e22r, e23r, e21i, e22i to zero, Fig. 3(c) displays the
concurrence of real as well as imaginary parts of synchroniza-
tion error dynamics e31r, e32r, e33r, e31i, e32i to zero. Figure 4
depicts that dynamic states of all the systems are synchronized.
Figure 5(a) shows the convergence of anti-synchronization er-
ror dynamics e11r, e12r, e13r, e11i, e12i to zero, Fig. 5(b) shows
the convergence of anti-synchronization error dynamics e21r,
e22r, e23r, e21i, e22i to zero, Fig. 5(c) shows the convergence of
anti-synchronization error dynamics e31r, e32r, e33r, e31i, e32i to
zero. Anti-synchronization phenomena of all the systems con-
nected in the ring connection is depicted in Fig. 6(a–e). From
this, it is very clear that the dynamic states of second systems
are anti-synchronized with the dynamic states of the first sys-
tem. The states of the third system are anti-synchronized with
the second system but these are synchronized with the first sys-
tem due to the connection arrangement. Similarly, the states of
the fourth system are anti-synchronized with the third system
but are synchronized with the second system. Figure 6(f) shows
that the estimated parameters â, b̂ converge to their true values
a, b respectively.
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Fig. 3. Convergence of real as well as imaginary parts of syn-
chronization error dynamics e11r,e12r,e13r,e11i,e12i, (b) Conver-
gence of real as well as imaginary parts of synchronization errors
e21r,e22r,e23r,e21i,e22i, (c) Convergence of real as well as imaginary

parts of synchronization errors e31r,e32r,e33r,e31i,e32i
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Fig. 4. (a) Synchronization of real parts of system states
x11r,x21r,x31r,x41r, (b) Synchronization of imaginary parts of system
states x11i,x21i,x31i,x41i, (c) Synchronization of real parts of system
states x12r,x22r,x32r,x42r,(d) Synchronization of imaginary parts of
system states x12i,x22i,x32i,x42i,(e) Synchronization of system states

x13,x23,x33,x43

0 5 10 15 20 25

Time(s)

0

10

20

30

40

50

60

e
1

1
r,e

1
2

r,e
1

3
r,e

1
1

i,e
1

2
i

e
11r

e
12r

e
13r

e
11i

e
12i

(a)

0 5 10 15 20 25

Time(s)

-40

-30

-20

-10

0

10

20

30

40

50

60

e
2

1
r,e

2
2

r,e
2

3
r,e

2
1

i,e
2

2
i

e
21r

e
22r

e
23r

e
21i

e
22i

(b)

0 5 10 15 20 25

Time(s)

-80

-60

-40

-20

0

20

40

e
3

1
r,e

3
2

r,e
3

3
r,e

3
1

i,e
3

2
i

e
31r

e
32r

e
33r

e
31i

e
32i

(c)

Fig. 5. (a) Convergence of real and imaginary parts of anti-
synchronization errors e11r,e12r,e13r,e11i,e12i, (b) Convergence
of real and imaginary parts of anti-synchronization errors
e21r,e22r,e23r,e21i,e22i, (c) Convergence of real and imaginary

parts of anti-synchronization errors e31r,e32r,e33r,e31i,e32i
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6. Simulation results and discussion

Simulation results were presented by taking the following ini-
tial conditions, x1(0) = (1+2 j,3+6 j,5)T , x2(0) = (4−2 j,1+
2 j,8)T , x3(0) = (−3+4 j,−2+5 j,−1)T , x4(0) = (5−5 j,4−
2 j,3)T . Figure 3(a) displays the concurrence of both the real
and imaginary parts of synchronization error dynamics e11r,
e12r, e13r, e11i, e12i to zero, Fig. 3(b) displays the concurrence
of real as well as imaginary parts of synchronization error dy-
namics e21r, e22r, e23r, e21i, e22i to zero, Fig. 3(c) displays the
concurrence of real as well as imaginary parts of synchroniza-
tion error dynamics e31r, e32r, e33r, e31i, e32i to zero. Figure 4
depicts that dynamic states of all the systems are synchronized.
Figure 5(a) shows the convergence of anti-synchronization er-
ror dynamics e11r, e12r, e13r, e11i, e12i to zero, Fig. 5(b) shows
the convergence of anti-synchronization error dynamics e21r,
e22r, e23r, e21i, e22i to zero, Fig. 5(c) shows the convergence of
anti-synchronization error dynamics e31r, e32r, e33r, e31i, e32i to
zero. Anti-synchronization phenomena of all the systems con-
nected in the ring connection is depicted in Fig. 6(a–e). From
this, it is very clear that the dynamic states of second systems
are anti-synchronized with the dynamic states of the first sys-
tem. The states of the third system are anti-synchronized with
the second system but these are synchronized with the first sys-
tem due to the connection arrangement. Similarly, the states of
the fourth system are anti-synchronized with the third system
but are synchronized with the second system. Figure 6(f) shows
that the estimated parameters â, b̂ converge to their true values
a, b respectively.
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Fig. 3. Convergence of real as well as imaginary parts of syn-
chronization error dynamics e11r,e12r,e13r,e11i,e12i, (b) Conver-
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Fig. 5. (a) Convergence of real and imaginary parts of anti-
synchronization errors e11r,e12r,e13r,e11i,e12i, (b) Convergence
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Fig. 6. (a) Anti-synchronization of real parts of system states
x11r,x21r,x31r,x41r, (b) Anti-synchronization of real parts of system
states x12r,x22r,x32r,x42r, (c) Anti-synchronization of real parts of
system states x13,x23,x33,x43, (d) Anti-synchronization of imaginary
parts of system states x11i,x21i,x31i,x41i, (e) Anti-synchronization of
imaginary parts of system states x12i,x22i,x32i,x42i, (f) Convergence

of estimated parameters â, b̂ to their true values a,b

7. Conclusion

The synchronization of complex chaotic PMSM systems is of
increased practical importance in the field of electrical engi-
neering. This article presents the control design method for HS
and parameter identification of ring-connected complex per-
manent magnet synchronous motor (PMSM) systems. Design
of the desired control law is a challenging task for control
engineering applications due to parametric uncertainties and
chaotic response to some specific parameter values. In order to
achieve HS and to estimate the unknown parameters for com-
plex PMSM systems, an adaptive integral sliding mode con-
trol is proposed. To apply adaptive ISMC, the error system is
firstly converted to a unique system, consisting of nominal part
together with some unknown terms which are computed adap-
tively. The stabilizing controller incorporating nominal control
and compensator control is designed for the error system. On
the other hand, the compensation controller and the adapted
laws are designed to get the first derivative of the Lyapunov

equation strictly negative. Simulation results verify the appro-
priatness of the proposed technique by showing the conver-
gence of error dynamics to zero and HS of system states. More-
over, this work can be extended further by incorporating cou-
pling delays.
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