
1Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137126

BULLETIN OF THE POLISH ACADEMY OF SCIENCES
TECHNICAL SCIENCES, Vol. 69(4), 2021, Article number: e137126
DOI: 10.24425/bpasts.2021.137126

as manual tracing turned out to be too slow to find these sec-
ondary contacts on time. The current Apple-Google exposure
notification mechanism may enable detection of these potential
infection chains.

In practice, a great problem is also a lack of awareness
resulting in lack of cooperation with the health authorities as
well as hazardous behavior. In some other cases, selfish persons
with mild course of the disease do not quarantine and infect
other people. Last but not least, reluctant cooperation may be
caused by a fundamental lack of trust as well as controversial
behavior of health authorities.

Improving the detection ratio of infected persons is crucial
for the dynamics of the epidemic. Even if not all infection cases
are recognized, once the replication ratio R0 falls below 1, then
the epidemics is gradually dying out.

1.2. Automatic exposure notification.
Organizational means may help to speed up contact tracing.
For example, there might be an obligation to leave contact data
when visiting places such as restaurants. Unfortunately, all such
manual methods have limited effectiveness, are slow and costly
to process.

Another line of speeding up contact tracing is to take advan-
tage of electronic payment systems such as WeChat. As most
payments in China for everyday chores go through WeChat
and similar platforms integrated with communicators and social
media, it is easy to trace back some of the contacts in a highly
efficient way. For example, as in many cases tickets for public
transportation are bought online via these platforms, one can
relatively easily derive many contacts in public transportation.
Unfortunately, in countries with online payments based on bank
card and credit card cashless payments, the system cannot sup-

1.	 INTRODUCTION
1.1. Social distancing and exposure notification.
Contact tracing is one of the fundamental organizational mea-
sures used to fight infectious diseases. Firstly, it may enable
an early treatment of an infected person, even before the
first symptoms occur. Secondly, one can isolate a potentially
infected person to prevent a further spread of the disease. This
is particularly important in case of diseases that are difficult
to diagnose and/or when an infection can remain unnoticed or
misclassified long enough to miss the golden window period
in a treatment.

Unfortunately, manual contact tracing became quite complex
due to growing mobility of the population. In case of epidem-
ics, it turns out that traditional manual procedures quickly lag
behind the urgent needs due to a limited manpower and the
amount of work to be done.

Another problem is that, as in case of Covid-19, an infected
person may be infectious before any symptoms occur. Thereby,
when a patient A turns out to be positive, then it should be nec-
essary not only to quarantine every person B that has been in
contact with A in a time interval [t ¡ δ1, t] for the current time t
and δ1 determined for this particular disease. Also every person
C that has been in contact with B in time interval [t ¡ δ2, t]
should quarantine. The difference δ 1 ¡ δ 2 is the time that
elapses after a person becomes infected till the moment when
this person becomes infectious. This situation was one of the
initial motivations for developing contact tracing mechanisms,

*e-mail: miroslaw.kutylowski@pwr.edu.pl

Manuscript submitted 2020-12-31, revised 2021-03-08, initially accepted
for publication 2021-03-08, published in August 2021

SPECIAL SECTION

© 2021 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Abstract. We analyze the Google-Apple exposure notification mechanism designed by the Apple-Google consortium and deployed on a large
number of Corona-warn apps. At the time of designing it, the most important issue was time-to-market and strict compliance with the privacy
protection rules of GDPR. This resulted in a plain but elegant scheme with a high level of privacy protection. In this paper we go into details
and propose some extensions of the original design addressing practical issues. Firstly, we point to the danger of a malicious cryptographic
random number generator (CRNG) and resulting possibility of unrestricted user tracing. We propose an update that enables verification of
unlinkability of pseudonymous identifiers directly by the user. Secondly, we show how to solve the problem of verifying the “same household”
situation justifying exempts from distancing rules. We present a solution with MIN-sketches based on rolling proximity identifiers from the
Apple-Google scheme. Thirdly, we examine the strategies for revealing temporary exposure keys. We have detected some unexpected phenom-
ena regarding the number of keys for unbalanced binary trees of a small size. These observations may be used in case that the size of the lists
of diagnosis keys has to be optimized.

Key words: contact tracing; exposure notification; privacy; verifiability; temporary exposure key; rolling proximity identifier; diagnosis key;
data sketch; Jaccard similarity.

Extensions for Apple-Google exposure
notification mechanism

Adam BOBOWSKI, Jacek CICHOŃ  , and Mirosław KUTYŁOWSKI *

Wrocław University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland

mailto:miroslaw.kutylowski@pwr.edu.pl
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0002-7742-3031
http://orcid.org/0000-0003-3192-2430

2

A. Bobowski, J. Cichoń, and M. Kutyłowski

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137126

port such functionalities without substantial technical changes
as well as solving complex legal issues related to personal data
processing.

The main breakthrough for automatic contact tracing was
developing exposure notification systems based on Bluetooth
Low Energy (BLE) protocol running on smartphones. In such
a system each smartphone broadcasts pseudorandom identifiers
and some encrypted metadata to its neighbors in a close prox-
imity. These data are stored by the receivers and retained for
a possible alert. The main idea is that if data over the BLE link
have been received, then we may suppose that the smartphones'
holders have been in a close proximity enabling a disease trans-
mission.

After testing positive, there are two alternative ways to trace
the contacts:
option 1: �the identifiers received and stored by the device of

the infected person correspond to persons that have
been in contact – these persons must be warned. This
requires deanonymization of pseudorandom identifi-
ers of the persons to be warned.

option 2: �the identifiers sent by the infected person are revealed.
Then a device that has stored any of these identifiers
in the past issues a warning to its holder.

Option 1. This approach has been implemented quite fast
in Singapore within the Trace Together Program [1]. Similar
approaches have been also promoted in an early period of the
pandemic in Europe. Later it has been abandoned there due to
heavy criticism regarding privacy protection. Indeed, since it
is necessary to deanonymize the pseudorandom identifiers by
health authorities, the trapdoor information of all users must
be retained. Therefore contact tracing may enable creation
of an efficient country-wide surveillance system run by state
authorities. Interestingly, this approach was supported at some
moment by German Robert-Koch-Institut, despite that Germany
was one of leaders in pushing forward personal data protection
rules in the EU.

In Singapore the tracing app has been augmented by a system
of contact tracing wearables. In contrast to the apps, the wear-
ables cannot connect to internet – they support only local com-
munication. In all cases, if a person is tested positive, then the
list of identifiers received and stored in the device is returned
to the Singaporean health authority. At this moment the health
authority has to derive the source of these identifiers. This is
possible since the pseudorandom temporal identifiers are cre-
ated by encrypting the user ID with a private key held by the
Singaporean Ministry of Health. So the authority can decrypt
a pseudorandom identifier and get the user ID. In turn, the real
ID is recovered by a query to to a protected database, where
links between the real ID՚s and the user ID՚s are stored.

Option 2. For the second approach the role of central author-
ities is limited – they provide necessary data to the users, but
themselves are unaware of the contacts occurred. In case of
a positive diagnosis the smartphone of an infected person
uploads relevant data to a so-called Diagnosis Server. This
server periodically creates a list of diagnosis keys originating

from infected users in the relevant period. The lists of diagnosis
keys are regularly downloaded by the apps on the smartphones
participating in the system. A diagnosis key enables recomput-
ing all pseudorandom identifiers sent by the smartphone of an
infected person in the relevant period. So, after downloading
the list of diagnosis keys an app can derive the corresponding
pseudorandom identifiers and compare them with the identifiers
received over the BLE protocol and stored internally. If a com-
mon entry or entries are detected, then an exposure notification
is issued by the app to the smartphone holder (and possibly to
a health authority).

Apart from recomputing the pseudorandom identifiers of
a given period, a diagnosis key enables deriving the decryp-
tion keys for the encrypted metadata sent together with the
identifiers. These metadata could be used to provide additional
epidemic information. They can be also used to guard against
attacks such as replaying the same identifiers at a different
place.

A serious disadvantage of this approach is the dependence on
participants՚ cooperation. On the other hand, it impedes the cre-
ation of a global surveillance system where all personal contacts
are recorded and available for data processing.

1.3. Apple-Google contact tracing mechanism.
A major step in creating contact tracing solution was the plat-
form developed jointly by Apple and Google. The crucial fea-
ture of this solution is implementing critical functions in the
operating system and not on the application level. Therefore,
one can provide more opportunities for creating customized
applications based on a common well designed and tested
platform. Moreover, Apple and Google may admit to their app
stores only official apps for contact tracing and restrict the use
of BLE signaling otherwise.

The main assumption of the architecture developed by
Apple-Google is relying on user՚s self-control and not on any
central authority. They aimed to provide a pragmatic platform
that would generate a substantial amount of data for an early
warning, but on the other hand that would follow the principles
of privacy protection and data minimality of GDPR [2] – as far
as it seems to be possible.

The Apple-Google platform has been used by the Corona-
Warn-App consortium in Germany [3]. Compared to Singa-
pore, it did not prove to be effective enough. The problem was
a substantially smaller percentage of citizens using it (in both
countries using contact tracing products is voluntary).

1.4. DP3-T.
The solution philosophy for Apple-Google contact tracing is
shared with the Decentralized Privacy-Preserving Proxim-
ity Tracing (DP3-T) open source project run by a number of
European universities and research institutions (see the DP3-T
white-paper [4]). Their goal was to develop a privacy-preserv-
ing solution together with sound arguments regarding resilience
to different attack endangering users՚ privacy. DP3-T describes
three decentralized exposure notification mechanisms:
●	 low-cost: this is a simplified version of the Apple-Google

mechanism described in Section 1.5, the crucial difference is

3

Extensions for Apple-Google exposure notification mechanism

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137126

that the daily seeds are derived in a hash chain and therefore
it suffices to report one key per diagnosed user,

●	 unlinkable: for each (short) epoch a new seed is chosen at
random; while reporting a diagnosed person, a Cuckoo filter
is used instead of an explicit list of seeds,

●	 hybrid: it is a compromise between both approaches– a seed
may be shared by a number of pseudorandom identifiers, as
in the case of the Apple-Google platform.

1.5. Apple-Google cryptographic details.
As we shall focus on the Apple-Google platform, we recall the
details of this concept [5].

1.5.1. Broadcasting identifiers.
●	 The time is divided into 10 minute periods. For each period

we assign an index ENIntervalNumber based on UNIX Epoch
time as a 32-bit little endian value:

	 ENIntervalNumber(timestamp) = timestamp/(60 ¢ 10).� (1)

In turn, 144 periods (which correspond to 24 hours) make
a TEKRollingPeriod.

●	 For each TEKRollingPeriod a user՚s smartphone generates
a separate Temporary Exposure Key (TEK). The 16-byte TEK
key is computed by a cryptographic random number genera-
tor: teki = CRNG(16). No further details are specified.

●	 A TEK key is used to derive two other keys associated to the
same TEKRollingPeriod. The first one is a Rolling Proximity
Identifier Key (RPIK):

RPIKi = HKDF(teki, NULL, UTF8(“EN-RPIK”), 16),

where HKDF stands for ՚՚the HKDF function as defined by
IETF RFC 5869, using the SHA-256 hash function՚՚.

●	 The second key derived from a TEK is a so-called Associated
Encrypted Metadata Key:

	
AEMK i = HKDF(teki, NULL,
UTF8(“EN-AEMK”), 16). � (2)

●	 During a 10 minutes period the smartphone is using a ran-
domized BLE MAC address. During this period it broadcasts
a pseudorandom Rolling Proximity Identifier together with
the Associated Encrypted Metadata. The rolling proximity
identifier rpii, j for the TEKRollingPeriod i and a period j is
computed as follows:

	 rpii, j = AES(RPIKi, PaddedData j),� (3)

where PaddedData j is the following 16-byte string:

UTF8(“EN-RPI”), 0x000000000000, ENIntervalNumber(j),

where ENIntervalNumber(j) encodes the time when the
period j starts according to the formula (1). Together with
rpii, j the smartphone sends Associated Encrypted Metadata
corresponding to the TEKRollingPeriod i and the period j,
which is an AES counter mode ciphertext:

AESCTR(AEMK i, rpii, j, Metadata).

1.5.2. Recording contacts.
●	 Each active device collects the pseudorandom identifiers

received over the BLE channel. The distance between devices
can be estimated by the strength of the BLE signal. Only the
identifiers corresponding to strong signals are stored, as the rest
is likely to correspond to a safe distance. Similarly, if an identi-
fier is not received repeatedly for a number of times, then it is
ignored as the contact is likely to be too short for an infection.

●	 If according to the policies mentioned above an identifier
rpii, j should not be ignored, then it is stored together with the
time of receipt and the corresponding AESCTR ciphertext.

1.5.3. Reporting positive diagnosis.
●	 When a user is diagnosed positive, he or she should use the

app on the smartphone to send a warning to the Diagnosis
Center. Entering an authorization code obtained from the
health authority should be required in order to avoid false
warnings (e.g. preventing an attack aiming to quarantine the
people from the personal surrounding – like project team
members). The warning contains the TEK keys correspond-
ing to all days where the smartphone՚s holder has been poten-
tially infectious (e.g. 14 TEK keys). For each TEK key its
TEKRollingPeriod is provided as well.

●	 The Diagnosis Server aggregates all data received to one list
of diagnosis keys and makes it available for downloading.

●	 The user՚s app periodically downloads the current list of diag-
nosis keys. For each TEK key from the list the app derives the
corresponding rolling proximity identifiers according to the
formula (3). The results are compared with the rolling prox-
imity identifiers received by the smartphone over the BLE
channel in the reported time. A certain discrepancy between
the time of key creation and scanning is allowed. If a match
is found, then the AESCTR ciphertext may be decrypted
with the key derived with the formula (2). Finally the app
may issue an exposure notification.
The white paper [5] does not specify what kind of data (if

any) is contained in the ciphertext AESCTR, it only indicates
that this is an non-authenticated encryption mode and the plain-
text should be separately validated.

How the exposure notif ication is used is a different issue.
One option would be to leave the decision to the smartphone
owner, who voluntarily quarantines and informs a health
authority. Another option is that the app automatically sends
a notif ication to a health authority revealing in particular the
identif ier of the smartphone. Additional mechanisms might
be used when not only a contact person of an infected person
must be warned but also each contact of the contact person.

2.	 CRNG AND PRIVACY PROTECTION
BY APPLE-GOOGLE SCHEME

2.1. CRNG and strong privacy.
The Apple-Google and DP3-T designs refer to generating ran-
dom numbers as kind of a golden bullet of privacy protection.
Namely, one should take into account an advanced adversary
that can break the cryptographic schemes used to compute
the rolling proximity identifiers. Such an adversary may exist

4

A. Bobowski, J. Cichoń, and M. Kutyłowski

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137126

now (e.g., the most powerful security agencies not sharing all
research results with the public), or may emerge in near future
due to advances in cryptographic technologies. Potentially, such
an adversary might be able to derive all values used to com-
pute the rolling proximity identifiers (that is, the internal state
of a device broadcasting BLE signals) and then recompute the
identifiers sent at different times. Thereby the allegedly unlink-
able identifiers would become linkable.

Estimating resilience of cryptographic schemes is always
based on currently available knowledge on cryptanalytic state-
of-the-art. We neither know for sure what are the capabilities
of the most powerful cryptanalysts now nor we can predict
the technical progress in the future. As the BLE signals can
be systematically captured and stored for a future use, users՚
location privacy may be eventually violated. So unless there are
some effective countermeasures implemented, it may be hard
to deny that deploying contact tracing may have a side effect
of creating a large scale surveillance system.

However, if rolling proximity identifiers are created from
random numbers chosen anew each day, then linking between
different days becomes impossible, regardless of the progress
of cryptanalytical techniques. Therefore, despite the necessity to
provide more data related to a diagnosed person, the proposed
schemes refresh the cryptographic seeds at random. While the
low-cost design from DP3-T is not involving a CRNG, there is
a clear recommendation in [4] to move to the unlinkable or at
least to the hybrid design, where the cryptographic material is
refreshed frequently. According to the Apple-Google design, for
each day a fresh random seed is chosen. This prevents linking the
rolling proximity identifiers of the same device when two differ-
ent days are concerned no matter how powerful the adversary is.

2.2. CRNG reality and tracing threats.
A solution based on a CRNG looks nice in theory, but in prac-
tice it may become a treacherous trapdoor. Namely, according
to the current good practices, a CRNG should be implemented
as a pseudorandom random number generator (PRNG) device
using a (potentially imperfect) source of entropy and a secret
seed. The seed and the entropy input are processed by one-way
functions so that some output bits are generated as well as an
update to the internal state of the PRNG.

A quite realistic threat is that the PRNG is pretending to
work in this way, but in fact it is deterministic and ignores the
entropy input. For standard designs of CRNG it is easy to build
such PRNG. If the attacker can determine the initial seed of the
PRNG, then he will be able to derive all random bits used by the
device. On the other hand, an observer having no access to the
internal state cannot determine whether the output comes from
a genuine CRNG or from a PRNG ignoring the entropy. So it
is necessary to conclude that from the technical point of view
the CRNG is a particularly vulnerable element of the system.

2.3. Defense.
An audit of the app՚s code and of the random number generator
from the operating system may not convince every user. Some
of them may be afraid of the manufacturers colluding with the
auditors and supervision authorities in order to create a large

scale surveillance system. A good approach against such fears
is local verifiability – procedures enabling a user to check pri-
vacy safeguards by himself.

The scheme proposed by Apple-Google can be easily sup-
plemented with such privacy safeguards verifiable by a user:
●	 The user inputs a user seed u to his device D. As a rule, the

user has to generate u outside D in order to remain indepen-
dent from D. The user seed should have enough entropy to
prevent guessing u by the attacker.

●	 In parallel to deriving the TEK keys, the device com-
putes user rolling modifiers. Namely, for the jth period of
a TEKRollingPeriod i it computes a 16 byte modifier

mi, j = C(C(i, u), j),

where C is a cryptographic random number generator.
●	 The definition of rolling proximity identifiers changes to

	 rpii, j = Hash(mi, j, AES(RPIKi, PaddedData j)).� (4)

●	 In case of a positive diagnosis, apart from the TEK keys,
the device D should upload also the seed C(i, u) for each
day concerned.

●	 Recomputing the rolling proximity identifiers corresponding
to infected persons is based on the equation (4).
Note that an adversary that corrupts the CRNG cannot link

two rolling proximity identifiers if a Correlated Input Secure
functions Hash and C are used [7]. Moreover, he cannot even
link the keys C(i, u) and C(i 0, u) from the list of diagnosed
keys for i 0  6= i. Roughly speaking, a function F is correlated
input secure, if for given inputs α, β and values h1, h2 it is
infeasible to decide whether there is a parameter u such that
h1 = F(C1(u), α) and h2 = F(C2(u), β), where C1 and C2
are some simple circuits given as part of the input. This is
exactly the problem a powerful adversary aims to solve: for
two rolling proximity identifiers r1, r2 the adversary can com-
pute the candidate arguments AES(RPIKi, PaddedData j) and
AES(RPIKi 0, PaddedDataj 0) and then ask if there are matching
parameters mi, j, mi 0, j 0 obtained via PRNG from the same seed
such that

r1 = Hash(mi, j, AES(RPIKi, PaddedDataj)) ,
r2 = Hash(mi 0, j 0, AES(RPIKi 0, PaddedDataj 0)) .

The user can check that the computation of the rolling prox-
imity identifiers involved the modifiers in the way described.
The verification procedure for a given day i is as follows:
1.	the user records the rolling proximity identifiers of the own

device D (preferably, some other computing device should
be used),

2.	the user chooses at random j1, …, jk and inputs them to D,
3.	D returns the values

rpi 0i, j = AES(RPIKi, PaddedData j),

for j = j1, …, jk,
4.	the user recomputes mi, j from u and checks whether

rpii, j = Hash(mi, j, rpi 0i, j),

for j = j1, …, jk.

5

Extensions for Apple-Google exposure notification mechanism

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137126

Note that probing a device does not create any additional threat
in case of a malicious user running an attack

A. Bobowski, J. Cichoń, M. Kutyłowski

of the most powerful cryptanalysts now nor we can predict the
technical progress in the future. As the BLE signals can be
systematically captured and stored for a future use, users’ lo-
cation privacy may be eventually violated. So unless there are
some effective countermeasures implemented, it may be hard
to deny that deploying contact tracing may have a side effect
of creating a large scale surveillance system.

However, if rolling proximity identifiers are created from
random numbers chosen anew each day, then linking be-
tween different days becomes impossible, regardless of the
progress of cryptanalytical techniques. Therefore, despite the
necessity to provide more data related to a diagnosed person,
the proposed schemes refresh the cryptographic seeds at ran-
dom. While the low-cost design from DP3-T is not involv-
ing a CRNG, there is a clear recommendation in [4] to move
to the unlinkable or at least to the hybrid design, where the
cryptographic material is refreshed frequently. According to
the Apple-Google design, for each day a fresh random seed is
chosen. This prevents linking the rolling proximity identifiers
of the same device when two different days are concerned no
matter how powerful the adversary is.

2.2. CRNG reality and tracing threats. A solution based on
a CRNG looks nice in theory, but in practice it may become
a treacherous trapdoor. Namely, according to the current good
practices, a CRNG should be implemented as a pseudorandom
random number generator (PRNG) device using a (potentially
imperfect) source of entropy and a secret seed. The seed and
the entropy input are processed by a one-way functions so that
some output bits are generated as well as an update to the in-
ternal state of the PRNG.

A quite realistic threat is that in fact the PRNG is pretending
to work in this way, but in fact it is deterministic and ignores
the entropy input. For standard designs of CRNG it is easy to
build such PRNG. If moreover the attacker can determine the
initial seed of the PRNG, then he will be able to derive all ran-
dom bits used by the device. On the other hand, an observer
having no access to the internal state cannot determine whether
the output comes from a genuine CRNG or from a PRNG ig-
noring the entropy. So it is necessary to conclude that from the
technical point of view the CRNG is a particularly vulnerable
element of the system.

2.3. Defense. An audit of the app’s code and of the random
number generator from the operating system may not convince
every user. Some of them may be afraid of the manufacturers
colluding with the auditors and supervision authorities in order
to create a large scale surveillance system. A good approach
against such fears is local verifiability – procedures enabling
a user to check privacy safeguards by himself.

The scheme proposed by Apple-Google can be easily sup-
plemented with such privacy safeguards verifiable by a user:

• The user inputs a user seed u to his device D. As a rule, the
user has to generate u outside D in order to remain indepen-
dent from D. The user seed should have enough entropy to
prevent guessing u by the attacker.

• In parallel to deriving the TEK keys, the device com-
putes user rolling modifiers. Namely, for the jth period of
a TEKRollingPeriod i it computes a 16 byte modifier

mi, j =C(C(i,u), j)

where C is a cryptographic random number generator.
• The definition of rolling proximity identifiers changes to

rpii, j = Hash(mi, j,AES(RPIKi,PaddedData j)) (4)

• In case of a positive diagnosis, apart from the TEK keys,
the device D should upload also the seed C(i,u)or each day
concerned.

• Recomputing the rolling proximity identifiers corresponding
to infected persons is based on the equation (4).

Note that an adversary that corrupts the CRNG cannot link two
rolling proximity identifiers if a Correlated Input Secure func-
tions Hash and C are used [7]. Moreover, he cannot even link
the keys C(i,u) and C(i′,u) from the list of diagnosed keys
for i′ �= i. Roughly speaking, a function F is correlated in-
put secure, if for given inputs α , β and values h1, h2 it is
infeasible to decide whether there is a parameter u such that
h1 = F(C1(u),α) and h2 = F(C2(u),β), where C1 and C2 are
some simple circuits given as part of the input. This is ex-
actly the problem a powerful adversary aims to solve: for
two rolling proximity identifiers r1,r2 the adversary can com-
pute the candidate arguments AES(RPIKi,PaddedData j) and
AES(RPIKi′ ,PaddedData j′) and then ask if there are match-
ing parameters mi, j, mi′, j′ obtained via PRNG from the same
seed such that

r1 = Hash(mi, j,AES(RPIKi,PaddedData j),

r2 = Hash(mi′, j′ ,AES(RPIKi′ ,PaddedData j′).

The user can check that the computation of the rolling prox-
imity identifiers involved the modifiers in the way described.
The verification procedure for a given day i is as follows:

1. the user records the rolling proximity identifiers of the own
device D (preferably, some other computing device should
be used),

2. the user chooses at random j1, . . . , jk and inputs them to D,
3. D returns the values

rpi′i, j = AES(RPIKi,PaddedData j)

for j = j1, . . . , jk,
4. the user recomputes mi, j from u and checks whether

rpii, j = Hash(mi, j,rpi′i, j)

for j = j1, . . . , jk.

Note that probing a device does not create any additional threat
in case of a malicious user running an attack A to derive the
internal state of his own device. Indeed, if D is running the
original protocol, then the user can create the input for A by
setting a seed u and recomputing the rolling proximity iden-
tifiers according to (4). Obviously, then one can emulate the
attack A on the modified rolling proximity identifiers and the
data received from the verification procedure.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

 to derive the
internal state of his own device. Indeed, if D is running the
original protocol, then the user can create the input for

A. Bobowski, J. Cichoń, M. Kutyłowski

of the most powerful cryptanalysts now nor we can predict the
technical progress in the future. As the BLE signals can be
systematically captured and stored for a future use, users’ lo-
cation privacy may be eventually violated. So unless there are
some effective countermeasures implemented, it may be hard
to deny that deploying contact tracing may have a side effect
of creating a large scale surveillance system.

However, if rolling proximity identifiers are created from
random numbers chosen anew each day, then linking be-
tween different days becomes impossible, regardless of the
progress of cryptanalytical techniques. Therefore, despite the
necessity to provide more data related to a diagnosed person,
the proposed schemes refresh the cryptographic seeds at ran-
dom. While the low-cost design from DP3-T is not involv-
ing a CRNG, there is a clear recommendation in [4] to move
to the unlinkable or at least to the hybrid design, where the
cryptographic material is refreshed frequently. According to
the Apple-Google design, for each day a fresh random seed is
chosen. This prevents linking the rolling proximity identifiers
of the same device when two different days are concerned no
matter how powerful the adversary is.

2.2. CRNG reality and tracing threats. A solution based on
a CRNG looks nice in theory, but in practice it may become
a treacherous trapdoor. Namely, according to the current good
practices, a CRNG should be implemented as a pseudorandom
random number generator (PRNG) device using a (potentially
imperfect) source of entropy and a secret seed. The seed and
the entropy input are processed by a one-way functions so that
some output bits are generated as well as an update to the in-
ternal state of the PRNG.

A quite realistic threat is that in fact the PRNG is pretending
to work in this way, but in fact it is deterministic and ignores
the entropy input. For standard designs of CRNG it is easy to
build such PRNG. If moreover the attacker can determine the
initial seed of the PRNG, then he will be able to derive all ran-
dom bits used by the device. On the other hand, an observer
having no access to the internal state cannot determine whether
the output comes from a genuine CRNG or from a PRNG ig-
noring the entropy. So it is necessary to conclude that from the
technical point of view the CRNG is a particularly vulnerable
element of the system.

2.3. Defense. An audit of the app’s code and of the random
number generator from the operating system may not convince
every user. Some of them may be afraid of the manufacturers
colluding with the auditors and supervision authorities in order
to create a large scale surveillance system. A good approach
against such fears is local verifiability – procedures enabling
a user to check privacy safeguards by himself.

The scheme proposed by Apple-Google can be easily sup-
plemented with such privacy safeguards verifiable by a user:

• The user inputs a user seed u to his device D. As a rule, the
user has to generate u outside D in order to remain indepen-
dent from D. The user seed should have enough entropy to
prevent guessing u by the attacker.

• In parallel to deriving the TEK keys, the device com-
putes user rolling modifiers. Namely, for the jth period of
a TEKRollingPeriod i it computes a 16 byte modifier

mi, j =C(C(i,u), j)

where C is a cryptographic random number generator.
• The definition of rolling proximity identifiers changes to

rpii, j = Hash(mi, j,AES(RPIKi,PaddedData j)) (4)

• In case of a positive diagnosis, apart from the TEK keys,
the device D should upload also the seed C(i,u)or each day
concerned.

• Recomputing the rolling proximity identifiers corresponding
to infected persons is based on the equation (4).

Note that an adversary that corrupts the CRNG cannot link two
rolling proximity identifiers if a Correlated Input Secure func-
tions Hash and C are used [7]. Moreover, he cannot even link
the keys C(i,u) and C(i′,u) from the list of diagnosed keys
for i′ �= i. Roughly speaking, a function F is correlated in-
put secure, if for given inputs α , β and values h1, h2 it is
infeasible to decide whether there is a parameter u such that
h1 = F(C1(u),α) and h2 = F(C2(u),β), where C1 and C2 are
some simple circuits given as part of the input. This is ex-
actly the problem a powerful adversary aims to solve: for
two rolling proximity identifiers r1,r2 the adversary can com-
pute the candidate arguments AES(RPIKi,PaddedData j) and
AES(RPIKi′ ,PaddedData j′) and then ask if there are match-
ing parameters mi, j, mi′, j′ obtained via PRNG from the same
seed such that

r1 = Hash(mi, j,AES(RPIKi,PaddedData j),

r2 = Hash(mi′, j′ ,AES(RPIKi′ ,PaddedData j′).

The user can check that the computation of the rolling prox-
imity identifiers involved the modifiers in the way described.
The verification procedure for a given day i is as follows:

1. the user records the rolling proximity identifiers of the own
device D (preferably, some other computing device should
be used),

2. the user chooses at random j1, . . . , jk and inputs them to D,
3. D returns the values

rpi′i, j = AES(RPIKi,PaddedData j)

for j = j1, . . . , jk,
4. the user recomputes mi, j from u and checks whether

rpii, j = Hash(mi, j,rpi′i, j)

for j = j1, . . . , jk.

Note that probing a device does not create any additional threat
in case of a malicious user running an attack A to derive the
internal state of his own device. Indeed, if D is running the
original protocol, then the user can create the input for A by
setting a seed u and recomputing the rolling proximity iden-
tifiers according to (4). Obviously, then one can emulate the
attack A on the modified rolling proximity identifiers and the
data received from the verification procedure.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

 by
setting a seed u and recomputing the rolling proximity iden-
tifiers according to (4). Obviously, then one can emulate the
attack

A. Bobowski, J. Cichoń, M. Kutyłowski

of the most powerful cryptanalysts now nor we can predict the
technical progress in the future. As the BLE signals can be
systematically captured and stored for a future use, users’ lo-
cation privacy may be eventually violated. So unless there are
some effective countermeasures implemented, it may be hard
to deny that deploying contact tracing may have a side effect
of creating a large scale surveillance system.

However, if rolling proximity identifiers are created from
random numbers chosen anew each day, then linking be-
tween different days becomes impossible, regardless of the
progress of cryptanalytical techniques. Therefore, despite the
necessity to provide more data related to a diagnosed person,
the proposed schemes refresh the cryptographic seeds at ran-
dom. While the low-cost design from DP3-T is not involv-
ing a CRNG, there is a clear recommendation in [4] to move
to the unlinkable or at least to the hybrid design, where the
cryptographic material is refreshed frequently. According to
the Apple-Google design, for each day a fresh random seed is
chosen. This prevents linking the rolling proximity identifiers
of the same device when two different days are concerned no
matter how powerful the adversary is.

2.2. CRNG reality and tracing threats. A solution based on
a CRNG looks nice in theory, but in practice it may become
a treacherous trapdoor. Namely, according to the current good
practices, a CRNG should be implemented as a pseudorandom
random number generator (PRNG) device using a (potentially
imperfect) source of entropy and a secret seed. The seed and
the entropy input are processed by a one-way functions so that
some output bits are generated as well as an update to the in-
ternal state of the PRNG.

A quite realistic threat is that in fact the PRNG is pretending
to work in this way, but in fact it is deterministic and ignores
the entropy input. For standard designs of CRNG it is easy to
build such PRNG. If moreover the attacker can determine the
initial seed of the PRNG, then he will be able to derive all ran-
dom bits used by the device. On the other hand, an observer
having no access to the internal state cannot determine whether
the output comes from a genuine CRNG or from a PRNG ig-
noring the entropy. So it is necessary to conclude that from the
technical point of view the CRNG is a particularly vulnerable
element of the system.

2.3. Defense. An audit of the app’s code and of the random
number generator from the operating system may not convince
every user. Some of them may be afraid of the manufacturers
colluding with the auditors and supervision authorities in order
to create a large scale surveillance system. A good approach
against such fears is local verifiability – procedures enabling
a user to check privacy safeguards by himself.

The scheme proposed by Apple-Google can be easily sup-
plemented with such privacy safeguards verifiable by a user:

• The user inputs a user seed u to his device D. As a rule, the
user has to generate u outside D in order to remain indepen-
dent from D. The user seed should have enough entropy to
prevent guessing u by the attacker.

• In parallel to deriving the TEK keys, the device com-
putes user rolling modifiers. Namely, for the jth period of
a TEKRollingPeriod i it computes a 16 byte modifier

mi, j =C(C(i,u), j)

where C is a cryptographic random number generator.
• The definition of rolling proximity identifiers changes to

rpii, j = Hash(mi, j,AES(RPIKi,PaddedData j)) (4)

• In case of a positive diagnosis, apart from the TEK keys,
the device D should upload also the seed C(i,u)or each day
concerned.

• Recomputing the rolling proximity identifiers corresponding
to infected persons is based on the equation (4).

Note that an adversary that corrupts the CRNG cannot link two
rolling proximity identifiers if a Correlated Input Secure func-
tions Hash and C are used [7]. Moreover, he cannot even link
the keys C(i,u) and C(i′,u) from the list of diagnosed keys
for i′ �= i. Roughly speaking, a function F is correlated in-
put secure, if for given inputs α , β and values h1, h2 it is
infeasible to decide whether there is a parameter u such that
h1 = F(C1(u),α) and h2 = F(C2(u),β), where C1 and C2 are
some simple circuits given as part of the input. This is ex-
actly the problem a powerful adversary aims to solve: for
two rolling proximity identifiers r1,r2 the adversary can com-
pute the candidate arguments AES(RPIKi,PaddedData j) and
AES(RPIKi′ ,PaddedData j′) and then ask if there are match-
ing parameters mi, j, mi′, j′ obtained via PRNG from the same
seed such that

r1 = Hash(mi, j,AES(RPIKi,PaddedData j),

r2 = Hash(mi′, j′ ,AES(RPIKi′ ,PaddedData j′).

The user can check that the computation of the rolling prox-
imity identifiers involved the modifiers in the way described.
The verification procedure for a given day i is as follows:

1. the user records the rolling proximity identifiers of the own
device D (preferably, some other computing device should
be used),

2. the user chooses at random j1, . . . , jk and inputs them to D,
3. D returns the values

rpi′i, j = AES(RPIKi,PaddedData j)

for j = j1, . . . , jk,
4. the user recomputes mi, j from u and checks whether

rpii, j = Hash(mi, j,rpi′i, j)

for j = j1, . . . , jk.

Note that probing a device does not create any additional threat
in case of a malicious user running an attack A to derive the
internal state of his own device. Indeed, if D is running the
original protocol, then the user can create the input for A by
setting a seed u and recomputing the rolling proximity iden-
tifiers according to (4). Obviously, then one can emulate the
attack A on the modified rolling proximity identifiers and the
data received from the verification procedure.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

 on the modified rolling proximity identifiers and the
data received from the verification procedure.

3.	 SOCIAL DISTANCING SMART MANAGEMENT
In this section we show that on top of the contact tracing mech-
anism one can build other functionalities that might be useful
for management of social distancing. The goal is to maximize
the effect of distancing and at the same time provide tools that
enable to lift certain restrictions.

3.1. Same-epidemic-situation evidence mechanism.
Our goal in this subsection is to create an electronic evidence for
two people of being in the same household or otherwise staying
long enough in a close proximity, so that one can assume that
these people are already in the same epidemic situation. In this
case, they can be allowed to stay in a close proximity regard-
less of the social distancing rules. However, in order to secure
against misusing this exempt, the case should be easy to verify
in a reliable way.

As in some situations unconditional social distancing rules
do not contribute to safety but increase the cost and burden
of social distancing, some intermediate solutions have been
adopted. For instance, in Germany in April 2020 it was forbid-
den to meet in public places in groups of more than 2 people.
At the same time, there was no limit for people living in the
same household.

This simplified approach has many disadvantages, the main
are discrepancy between the formal status and the real situation as
well as limited verifiability that are necessary if this policy has to
be really enforced (especially in countries, where residence regis-
tration procedures do not reflect the real situation, e.g., in Poland).

We propose a simple mechanism for an app based on the
Apple-Google contact tracing mechanism. The key component
is a probabilistic sketch data structure equivalent to the popular
MinHash schema (see [8]). This data structure has been designed
for somewhat different purposes, however, it is well suited for
our purposes. For a given stream of data {S}i it holds a fixed
number of registers, say R1, …Rk. Each register is initially
empty, and later it may store exactly one element of the stream.
Assume that an element ei arrives. Then we compute the values

w1 = Hash1(ei), …, wk = Hashk(ei),

where Hash1, …, Hashk are independent cryptographic hash
functions. Then for i ∙ k the current contents e of Ri is replaced
with ei if and only if wi < Hash i(e). For the later discussion,
the hash values will be treated as binary numbers from the
interval [0, 1).

Building up data sketches. For the purpose of the same epi-
demic situation evidence each app holds a sketch based on

the received rolling proximity identifiers. There are separate
sketches – one per day. A sketch is erased once it is older than
ts days, where ts is a parameter determined depending on the
policy. Also the number k of registers in a sketch is a design
parameter.

The received rolling proximity identifiers are inserted into
a sketch in the following way:
●	 let r be the rolling proximity identifier received, let ri, j be the

rolling proximity identifier computed by the app for broad-
casting at this moment,

●	 the item to be inserted in the sketch is

	 f (r, ri, j) = fgrprt(Sort(r, ri, j)).� (5)

where fgrprt is for instance a cryptographic hash truncated
to a relevant number of bits.
Note that if a device A is in a proximity of device B, then

A and B receive mutually their rolling proximity identifiers.
Since the rolling proximity identifiers change at A and B at the
same time (up to small differences resulting from hardware dis-
crepancies), A and B attempt to insert the same entry computed
according to (5) to their sketches.

Properties of the sketches. For a while let us consider a single
register of a sketch for a single day.

Note that if the devices A and B stay in a close proximity
for a longer time, then their apps systematically try to enter the
same entries into their data sketches. Whether a pair (r, r 0) will
finally result in an entry placed in a sketch depends very much
on the value of fi(r, r 0). As the sketches of A and B are influ-
enced by rolling proximity identifiers sent by third parties, it
may happen that fi(r, r 0) is small enough to be inserted into one
of the sketches, while it looses against an entry already stored in
the other sketch. Observe that such an entry does not originate
from a contact between A and B. However, if Hash(r, r 0) is
small, then it is likely that it will be inserted in both sketches.

Let
£
RA

1 , …, RA
k
¤
 and

£
RB

1 , …, RB
k
¤
 be the vectors of sketches

of devices A and B. Let
s(A, B) =  1

k
 ¢ j{i : RA

i  = RB
i }j.

Then s(A, B) is an approximation of the Jaccard similarity
between the sets of all values f (r, r 0) computed by both devices.
Recall that the Jaccard similarity between finite sets X and Y
is defined as

X \ Y
X [ Y

.

Assume for instance that that a fraction pA of all pairs composed
by A correspond to the contacts with B. Similarly, assume that
a fraction pB of the contacts of B is with A (as the total number
of contacts of A and B may differ, in general pA need not to be
equal to pB). Then the Jaccard similarity between the observed
sets is pA pB

pA + pB ¡ pA pB
.

So, if pA, pB > 1/2, then s(A, B) > 1/3 with very high probabil-
ity. From this formula we also deduce that if pA = pB = ε ¼ 0,
then s(A, B) ¼ 1/2ε.

6

A. Bobowski, J. Cichoń, and M. Kutyłowski

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137126

Note that we may take the parameter values such as k = 256
and the fingerprints consisting of 40 bits. Then the resulting
sketch for one day will have the size of only 10 kB. If the
sketches are kept for 14 days, then it will result in only 140 kB
memory usage. So definitely, there is room for even larger
choice of parameters taking into account the people that reg-
ularly meet a bigger group of people than just a few family
members.

Inspection. The last procedure to be described is the case
when the persons holding devices A and B are controlled
whether they are in the same epidemic situation. The simplest
solution would be to present the sketches by A and B to the
controller. However, this is not the right solution due to the
principle of data minimality: the controller gets an estimation
of the number of rolling proximity identifiers received (see
Section 3.2).

Any scheme for showing similarity of the sketches without
revealing them would work. For example the following steps
may be executed by A and B and a controller C:
1.	A, B and C choose collectively a random element κ ,
2.	A and B transform their sketches using the element κ ; name-

ly, for an entry e the transformed value is Hash(e, κ),
3.	A and B present the transformed sketches to C over separate

encrypted channels,
4.	C checks what is the fraction of common entries in the re-

ceived transformed sketches. This fraction is computed sep-
arately for each daily sketch. Thereby the controller learns
Jaccard similarity of the sketches and makes a decision based
on the current policy.

3.2. Intensity of contacts.
As a side product, the data sketch\-es introduced in Section 3.1
can be used for estimating the number of contacts of a device.
This is quite important since the infection risk depends very
much on the number of people one has met in a given period.
Namely, let us consider once again the sequence w1, …, wk
of hashes computed from values stored in registers R1, …Rk.
Then, for each i = 1, …, k the number w1 is a realization of
a random variable with distribution min{U1, …, Un}, where
Ui are independent random variables with the uniform distri-
bution on the interval [0, 1] and n is the number of distinct
contacts. Therefore the density function of the random variable
wi is given by the formula f (x) = n(1 ¡ x)n ¡ 1. The standard
maximum likelihood estimator method yields the following
estimator of n:

n ̂  =  – k

i = 1

k
∑ ln(1 ¡ wi)

n ̂ is a consistent estimator of n, that is, it converges in proba-
bility to the true value n, as the sample size k goes to infinity.
Fig. 1 presents the results of the experiments carried out to test
the precision of this estimator. The figure shows the values of
the quotient n ̂/n for n from 1 to 1000 with fixed k = 128. For
each n, the experiment was repeated 10 times. Let us notice
that the precision of the estimator n ̂ increases with the increase

of the k parameter. The conducted experiments show that for
k ¸ 128 the accuracy of this estimator is of 25% order, which
should be sufficient for our needs. In these experiments, less
than 1% of the results differed from n by more than 25%.

A data sketch has the advantage that the decision to change
the sketch is memoryless and depends only on the current roll-
ing proximity identifiers. Hence, it is not necessary to remem-
ber if a given pair (r, r 0) has been already used.

3.3. Quarantine.
A potentially infected person might be obliged to quarantine.
Typically this means the requirement not to leave a fixed place.
However, the essential target is different: the number of con-
tacts with this person should be reduced to what is really neces-
sary. So in case of COVID-19, there is no reason to ban leaving
home as long as the person concerned avoids coming to a closer
distance with others.

Fortunately, contact tracing platform makes creation of
such a system relatively simple. However, for supervision of
a quarantined person a second device H (e.g., a smartphone)
provided by the health authority is necessary. The solution is
based on the following assumptions concerning a person P in
quarantine:
1.	contact tracing is enabled on D and H including creation of

the data sketches according to Section 3.1,
2.	D is kept by the person P all the time,
3.	D is not shielded in a Faraday cage,
4.	device H remains in the range of D all the time.
If these assumptions are met, then it suffices to run the control
procedure described in Section 3.1 for the devices D and H. The
sketches should store no entries other than the common ones for
D and H except for maybe a few accidental entries. Fulfilling
the assumptions can be enforced in the following way:
ad �1 and 4 – A logging mechanism prevents P from any opera-

tion on H, i.e. switching it off. On the other hand, enabling
contact tracing by D is witnessed by H. Namely, the sketches
created by H must contain entries corresponding to D. In
order to make cheating harder, H will send and receive roll-
ing proximity identifiers rarely, at unpredictable moments.

Fig. 1. Plot of experimental values of n ̂/n for n from 1 to 1000 where
k = 128. The gray area indicates values between 0.75 and 1.25

1.4

1.2

1.0

0.8

0.6

200 400 600 800 1000

7

Extensions for Apple-Google exposure notification mechanism

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137126

A failure to receive a rolling proximity identifier witnesses
a misbehavior.

ad �2 – Verification can be based on (automatic) calls to D at
random moments that must be answered in person by P.
Moreover, one can deploy an automatic trigger that starts
audio recording if the voice characteristics do not match the
known characteristics of the voice of P.

ad �3 – Receiving rolling proximity identifiers of third persons
may be prevented by shielding all signals by a Faraday cage.
To ensure shielding H as well, both devices might be inside
the cage. However, H may monitor the signal strength. As
the person in quarantine might be obliged to keep D and H
at some minimal distance, an attempt to cheat would require
some skills to provide appropriate Faraday cage – small
enough to carry and reducing the signal strength between D
and H. While this is technically possible, most users have
no sophisticated engineering experience to cheat in this way.

4.	 MANAGING THE DAILY KEYS
According to the Apple-Google design, TEK keys of a diag-
nosed person form a certain period have to be uploaded to the
Diagnosis Center. The number of these keys equals the num-
ber of days when this person could be infectious. In case of
COVID-19 this number was set to 14, however it may change
according to new statistics and virus mutations.

One of the consequences of a separate TEK key for each day
is that an exposed user cannot determine whether the contacts
with an infected person on days i and j (as indicated by the
diagnosis keys and the stored rolling proximity identifiers) can
be attributed to one or two different persons.

This approach might be justified by the need of privacy pro-
tection. However, this argument can be challenged: for a given
TEK key τ a person P can see for which 10-minute periods the
rolling proximity identifiers derived from τ has been received
by P. This typically indicates who might have been the infec-
tious person. On the other hand, from the epidemic point of
view the probability of disease transmission could be different
depending on whether two TEK keys from two different days
correspond to the same person or to two different persons. On
the other hand, the separate TEK per day policy eases descrip-
tion of the scheme.

Reducing the blacklist size. In case of the DP3-T low-cost
solution it suffices to show a single TEK key on the list of
diagnosis keys per person. This is a clear advantage against
the Apple-Google mechanism, but the price paid is that leak-
ing a single TEK key means lack of privacy from the day of
this TEK key. However, there is a compromise between two
approaches. Namely, the time can be divided into k day periods,
called TEK-periods. For each TEK-period we choose at random
a master key m. Then the TEK keys are derived in the same way
as in case of the low-cost DP3-T: the ith TEK key teki for i > 1
is defined as teki = Hash(teki ¡ 1), while tek1 = m.

Let us assume that the infection period for which the TEK
keys must be derived consists of q days. In general this period
need not be contained in a single TEK-period. If k ¸ q, then

each infection period is contained in one or two TEK-periods.
Then it suffices to provide the teki key from the first period for
the day when the infection period starts, and the tek1 key for
the second TEK-period.

The last approach has one disadvantage: all TEK keys from
the second period are revealed, including those that are not
in the infection period concerned. There is a simple remedy
for that, however the price to pay is the number of keys to be
transmitted to the diagnosis center. Namely, for each TEK-pe-
riod we choose m and m0 at random. Then we compute f0 = m
and fi + 1 = Hash(fi) for i > 1, bk = m0 and bi = Hash(bi + 1) for
i < k. Finally, teki = Hash(fi, bi).

Observe that now 4 keys have to be posted on the list of diag-
nosis keys per one diagnosed person. This is still much better
than k = 14 in case of the Apple-Google mechanism. However,
there is a subtle problem. It may happen that within an infec-
tion period a given person spent first a days in region A and
then b days in region B. In this case we would like to partition
the infection period in two intervals (corresponding to stay in,
respectively, region A and B) and provide the diagnosis keys
corresponding to each interval in the regional diagnosis key
lists. The solution presented above enables linking these key
on the diagnosis lists, while Apple-Google solution is immune
against such problems.

A standard approach that can be applied is creating a binary
tree with k leaves. In such a tree we put a master secret m in
the root and compute the labels downwards: for a node with
a label z, the label of its right son is Hash(z, 0) and the label
of its left son is Hash(z, 1). The labels of k leaves are the daily
TEK keys. If this is a balanced binary tree for k equal to power
of two, then in order to reveal the labels of a suffix or a prefix
of the list of leaves, it suffices to present at most logk labels.
As two trees may be involved for a given infection period, this
results in an upper bound of 2logk labels.

The things become more complicated when we are talking
about k՚s that are not powers of 2 and if we are interested exclu-
sively in small values of k. In this case the tree cannot be fully
balanced. The question we state is what is the number of labels
(on average) that one has to show given different choices for k
and different choices to balance the tree. We examine the situ-
ation by a exhaustive search through the set of trees.

The first set of experiments concerns the strategy where
we attempt to balance the tree as much as possible. That is, if
a (sub)tree T should have an odd number of leaves `, then the
first ` ¡ 1

2 leaves are assigned to the left subtree and ` + 1
2 leaves

are assigned to the right subtree.
Table 1 presents the experimental results for this case. The

entries in the table denote the average number of labels that
have to be shown to reconstruct the TEK keys of a given infec-
tion period of length q. Each row of the table corresponds to
a fixed value of k while for a column the value q is fixed.

Table 2 shows the results where we do not attempt to bal-
ance the tree and consider arbitrary trees. Moreover, we are not
examining the average case but the worst case.

As we can see from the tables, there are some intriguing
phenomena that would be hard to predict. For instance, having

8

A. Bobowski, J. Cichoń, and M. Kutyłowski

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137126

Table 1
Average number of keys required for covering infection period of length q: balanced trees strategy

number
of leaves

the length of the infection period q:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
k = 2: 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
k = 3: 1.33 2.0 2.33 2.67 3.0 3.33 3.67 4.0 4.33 4.67 5.0 5.33 5.67 6.0 6.33 6.67 7.0 7.33
k = 4: 1.5 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0 5.25 5.5 5.75 6.0
k = 5: 1.4 2.0 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4
k = 6: 1.5 2.0 2.33 2.5 2.83 3.0 3.17 3.33 3.5 3.67 3.83 4.0 4.17 4.33 4.5 4.67 4.83 5.0
k = 7: 1.43 2.0 2.0 2.43 2.71 3.0 3.14 3.29 3.43 3.57 3.71 3.86 4.0 4.14 4.29 4.43 4.57 4.71
k = 8: 1.5 2.0 2.25 2.5 2.88 3.0 3.12 3.25 3.38 3.5 3.62 3.75 3.88 4.0 4.12 4.25 4.38 4.5
k = 9: 1.44 2.0 2.44 2.67 3.0 3.22 3.22 3.33 3.44 3.56 3.67 3.78 3.89 4.0 4.11 4.22 4.33 4.44

k = 10: 1.5 1.9 2.5 2.6 2.8 3.1 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4
k = 11: 1.45 2.0 2.27 2.55 2.73 2.91 3.27 3.45 3.55 3.64 3.73 3.82 3.91 4.0 4.09 4.18 4.27 4.36
k = 12: 1.5 2.0 2.25 2.58 2.83 3.0 3.17 3.5 3.58 3.58 3.75 3.83 3.92 4.0 4.08 4.17 4.25 4.33
k = 13: 1.46 2.0 1.92 2.38 2.77 2.92 3.08 3.38 3.62 3.69 3.69 3.85 3.92 4.0 4.08 4.15 4.23 4.31
k = 14: 1.5 2.0 2.0 2.43 2.79 3.0 3.14 3.36 3.57 3.57 3.71 3.79 3.93 4.0 4.07 4.14 4.21 4.29
k = 15: 1.47 2.0 2.2 2.4 2.8 3.0 2.93 3.13 3.33 3.6 3.67 3.8 3.87 4.0 4.07 4.13 4.2 4.27
k = 16: 1.5 2.0 2.25 2.38 2.81 3.0 3.12 3.25 3.5 3.62 3.81 3.88 4.0 4.0 4.06 4.12 4.19 4.25
k = 17: 1.47 2.0 2.47 2.59 2.88 3.18 3.35 3.41 3.59 3.76 3.94 4.06 4.12 4.18 4.12 4.18 4.24 4.29
k = 18: 1.5 2.0 2.5 2.61 2.83 3.17 3.28 3.33 3.44 3.67 3.83 4.06 4.11 4.22 4.28 4.22 4.28 4.33
k = 19: 1.47 1.95 2.53 2.58 2.63 3.0 3.26 3.42 3.47 3.63 3.84 3.95 4.16 4.21 4.32 4.37 4.32 4.37
k = 20: 1.5 2.0 2.5 2.6 2.7 2.95 3.25 3.45 3.5 3.6 3.8 3.95 4.05 4.2 4.25 4.35 4.4 4.4

Table 2
The maximum number of labels to be shown for a given number of leaves k in a tree and infection period q.

The results concern the optimal tree found

number
of leaves

the length of the infection period q:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k = 2: 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11
k = 3: 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8
k = 4: 2 2 3 3 4 3 4 4 5 4 5 5 6 5 6 6 7 6 7
k = 5: 2 3 3 4 4 4 5 4 5 5 5 6 5 6 6 6 7 6 7
k = 6: 2 3 3 3 4 4 4 5 5 4 5 5 5 6 6 5 6 6 6
k = 7: 2 2 3 3 3 4 4 5 4 5 5 4 5 5 6 5 6 6 5
k = 8: 2 2 3 3 4 3 4 4 5 4 5 5 6 4 5 5 6 5 6
k = 9: 2 3 3 4 4 5 4 5 5 5 6 5 6 6 7 5 6 6 6

k = 10: 2 3 3 4 4 4 5 4 5 5 5 6 5 6 6 6 7 5 6
k = 11: 2 3 3 3 4 4 5 5 4 5 5 5 6 6 5 6 6 6 7
k = 12: 2 3 3 3 4 4 4 5 5 4 5 5 5 6 6 5 6 6 6
k = 13: 2 2 3 3 4 4 4 4 5 5 4 5 5 6 6 6 6 6 6
k = 14: 2 2 3 3 3 4 4 5 4 5 5 4 5 5 6 5 6 6 5
k = 15: 2 2 3 3 4 3 4 4 5 5 5 6 4 5 5 6 5 6 6
k = 16: 2 2 3 3 4 3 4 4 5 4 5 5 6 4 5 5 6 5 6
k = 17: 2 3 3 4 4 5 4 5 5 6 5 6 6 7 5 6 6 6 7
k = 18: 2 3 3 4 4 5 4 5 5 5 6 5 6 6 7 5 6 6 6
k = 19: 2 3 3 4 4 4 5 4 5 5 6 6 6 6 6 7 5 6 6
k = 20: 2 3 3 4 4 4 5 4 5 5 5 6 5 6 6 6 7 5 6

9

Extensions for Apple-Google exposure notification mechanism

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137126

the infection period q = 14, the right choice for k is 15. This
holds also for balanced trees and the average value instead of
the worst case value. Perhaps even more surprising is the fact
that in this case the number of labels in the worst case is the
same as number of labels in every case, for the scheme with
forward and backward keys fi, bi. Of course, the average case
is much better than 4.

5.	 CONCLUSIONS
The general idea of Apple-Google platform for exposure notifi-
cation is elegant, simple, transparent and therefore likely to be
widely accepted by average users. Effectiveness of such tools
has been proven in some countries, where initial frantic search
for the infection chains has been replaced by a systematic data
acquisition taking advantage of possibilities given by wearable
user devices. Despite high density of population in countries
such as Singapore strict controls have proved to be extremely
helpful in reducing the number of infections.

We have shown that there are still unexplored additional
potentials in the Apple-Google platform. Our main contribution
is a possibility to automatically verify that two persons stay
together in the same household or are in a continuous contact
due to other reason like professional activities. In this case there
should be no restriction for them to meet and stay together in
other places.

The issue not discussed in depth so far are potential func-
tionalities based on the Associated Encrypted Metadata. As
already mentioned, they can be used against relay attacks,
but presumably there are many other opportunities. The key

is to f ind the most relevant choice given a limited bit size
available.

REFERENCES
	 [1]	 Ministry of Health and Government Technology Agency (Gov-

Tech), Trace Together Programme, [Online]. Available: https://
www.tracetogether.gov.sg.

	 [2]	 The European Parliament and the Council of the European Union:
Regulation (EU) 2016/679 of the European Parliament and of the
Council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free move-
ment of such data, and repealing Directive 95/46/ec (General Data
Protection Regulation). Official Journal of the European Union,
L119.1, 4.5.2016.

	 [3]	 Corona-Warn-App Consortium, [Online]. Available: https://www.
coronawarn.app/en/.

	 [4]	 Carmela Troncoso et. al, “Decentralized Privacy-Preserving Prox-
imity Tracing,” [Online]. Available: https://github.com/DP-3T/
documents/blob/master/DP3T%20White%20Paper.pdf.

	 [5]	 Apple & Google, “Exposure Notification Cryptography Speci-
fication,” [Online]. Available: https://covid19-static.cdn-apple.
com/applications/covid19/current/static/contact-tracing/pdf/Ex-
posureNotification-CryptographySpecificationv1.2.pdf?1.

	 [6]	 D. Shumow and N. Ferguson, “On the Possibility of a Back Door
in the NIST SP800-90 Dual Ec Prng,” [Online]. Available: http://
rump2007.cr.yp.to/15-shumow.pdf.

	 [7]	 V. Goyal, A. O’Neill, and V. Rao, “Correlated-input secure hash
functions,” Theory of Cryptography Conference (TCC), 2011,
pp. 182‒200.

	 [8]	 A.Z. Broder, “On the resemblance and containment of documents,”
Proceedings. Compression and Complexity of SEQUENCES 1997,
Italy, 1997, pp. 21‒29.

https://www.tracetogether.gov.sg
https://www.tracetogether.gov.sg
https://www.coronawarn.app/en/
https://www.coronawarn.app/en/
https://github.com/DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf
https://github.com/DP-3T/documents/blob/master/DP3T%20White%20Paper.pdf
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ExposureNotification-CryptographySpecificationv1.2.pdf?1
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ExposureNotification-CryptographySpecificationv1.2.pdf?1
https://covid19-static.cdn-apple.com/applications/covid19/current/static/contact-tracing/pdf/ExposureNotification-CryptographySpecificationv1.2.pdf?1
http://rump2007.cr.yp.to/15-shumow.pdf
http://rump2007.cr.yp.to/15-shumow.pdf

