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as manual tracing turned out to be too slow to find these sec-
ondary contacts on time. The current Apple-Google exposure 
notification mechanism may enable detection of these potential 
infection chains.

In practice, a great problem is also a lack of awareness 
resulting in lack of cooperation with the health authorities as 
well as hazardous behavior. In some other cases, selfish persons 
with mild course of the disease do not quarantine and infect 
other people. Last but not least, reluctant cooperation may be 
caused by a fundamental lack of trust as well as controversial 
behavior of health authorities.

Improving the detection ratio of infected persons is crucial 
for the dynamics of the epidemic. Even if not all infection cases 
are recognized, once the replication ratio R0 falls below 1, then 
the epidemics is gradually dying out.

1.2. Automatic exposure notification.
Organizational means may help to speed up contact tracing. 
For example, there might be an obligation to leave contact data 
when visiting places such as restaurants. Unfortunately, all such 
manual methods have limited effectiveness, are slow and costly 
to process.

Another line of speeding up contact tracing is to take advan-
tage of electronic payment systems such as WeChat. As most 
payments in China for everyday chores go through WeChat 
and similar platforms integrated with communicators and social 
media, it is easy to trace back some of the contacts in a highly 
efficient way. For example, as in many cases tickets for public 
transportation are bought online via these platforms, one can 
relatively easily derive many contacts in public transportation. 
Unfortunately, in countries with online payments based on bank 
card and credit card cashless payments, the system cannot sup-

1.	 INTRODUCTION
1.1. Social distancing and exposure notification.
Contact tracing is one of the fundamental organizational mea-
sures used to fight infectious diseases. Firstly, it may enable 
an early treatment of an infected person, even before the 
first symptoms occur. Secondly, one can isolate a potentially 
infected person to prevent a further spread of the disease. This 
is particularly important in case of diseases that are difficult 
to diagnose and/or when an infection can remain unnoticed or 
misclassified long enough to miss the golden window period 
in a treatment.

Unfortunately, manual contact tracing became quite complex 
due to growing mobility of the population. In case of epidem-
ics, it turns out that traditional manual procedures quickly lag 
behind the urgent needs due to a limited manpower and the 
amount of work to be done.

Another problem is that, as in case of Covid-19, an infected 
person may be infectious before any symptoms occur. Thereby, 
when a patient A turns out to be positive, then it should be nec-
essary not only to quarantine every person B that has been in 
contact with A in a time interval [t ¡ δ1, t] for the current time t 
and δ1 determined for this particular disease. Also every person 
C that has been in contact with B in time interval [t ¡ δ2, t ] 
should quarantine. The difference δ 1 ¡ δ 2 is the time that 
elapses after a person becomes infected till the moment when 
this person becomes infectious. This situation was one of the 
initial motivations for developing contact tracing mechanisms, 
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port such functionalities without substantial technical changes 
as well as solving complex legal issues related to personal data 
processing.

The main breakthrough for automatic contact tracing was 
developing exposure notification systems based on Bluetooth 
Low Energy (BLE) protocol running on smartphones. In such 
a system each smartphone broadcasts pseudorandom identifiers 
and some encrypted metadata to its neighbors in a close prox-
imity. These data are stored by the receivers and retained for 
a possible alert. The main idea is that if data over the BLE link 
have been received, then we may suppose that the smartphones' 
holders have been in a close proximity enabling a disease trans-
mission.

After testing positive, there are two alternative ways to trace 
the contacts:
option 1: �the identifiers received and stored by the device of 

the infected person correspond to persons that have 
been in contact – these persons must be warned. This 
requires deanonymization of pseudorandom identifi-
ers of the persons to be warned.

option 2: �the identifiers sent by the infected person are revealed. 
Then a device that has stored any of these identifiers 
in the past issues a warning to its holder.

Option 1. This approach has been implemented quite fast 
in Singapore within the Trace Together Program [1]. Similar 
approaches have been also promoted in an early period of the 
pandemic in Europe. Later it has been abandoned there due to 
heavy criticism regarding privacy protection. Indeed, since it 
is necessary to deanonymize the pseudorandom identifiers by 
health authorities, the trapdoor information of all users must 
be retained. Therefore contact tracing may enable creation 
of an efficient country-wide surveillance system run by state 
authorities. Interestingly, this approach was supported at some 
moment by German Robert-Koch-Institut, despite that Germany 
was one of leaders in pushing forward personal data protection 
rules in the EU.

In Singapore the tracing app has been augmented by a system 
of contact tracing wearables. In contrast to the apps, the wear-
ables cannot connect to internet – they support only local com-
munication. In all cases, if a person is tested positive, then the 
list of identifiers received and stored in the device is returned 
to the Singaporean health authority. At this moment the health 
authority has to derive the source of these identifiers. This is 
possible since the pseudorandom temporal identifiers are cre-
ated by encrypting the user ID with a private key held by the 
Singaporean Ministry of Health. So the authority can decrypt 
a pseudorandom identifier and get the user ID. In turn, the real 
ID is recovered by a query to to a protected database, where 
links between the real ID՚s and the user ID՚s are stored.

Option 2. For the second approach the role of central author-
ities is limited – they provide necessary data to the users, but 
themselves are unaware of the contacts occurred. In case of 
a positive diagnosis the smartphone of an infected person 
uploads relevant data to a so-called Diagnosis Server. This 
server periodically creates a list of diagnosis keys originating 

from infected users in the relevant period. The lists of diagnosis 
keys are regularly downloaded by the apps on the smartphones 
participating in the system. A diagnosis key enables recomput-
ing all pseudorandom identifiers sent by the smartphone of an 
infected person in the relevant period. So, after downloading 
the list of diagnosis keys an app can derive the corresponding 
pseudorandom identifiers and compare them with the identifiers 
received over the BLE protocol and stored internally. If a com-
mon entry or entries are detected, then an exposure notification 
is issued by the app to the smartphone holder (and possibly to 
a health authority).

Apart from recomputing the pseudorandom identifiers of 
a given period, a diagnosis key enables deriving the decryp-
tion keys for the encrypted metadata sent together with the 
identifiers. These metadata could be used to provide additional 
epidemic information. They can be also used to guard against 
attacks such as replaying the same identifiers at a different 
place.

A serious disadvantage of this approach is the dependence on 
participants՚ cooperation. On the other hand, it impedes the cre-
ation of a global surveillance system where all personal contacts 
are recorded and available for data processing.

1.3. Apple-Google contact tracing mechanism.
A major step in creating contact tracing solution was the plat-
form developed jointly by Apple and Google. The crucial fea-
ture of this solution is implementing critical functions in the 
operating system and not on the application level. Therefore, 
one can provide more opportunities for creating customized 
applications based on a common well designed and tested 
platform. Moreover, Apple and Google may admit to their app 
stores only official apps for contact tracing and restrict the use 
of BLE signaling otherwise.

The main assumption of the architecture developed by 
Apple-Google is relying on user՚s self-control and not on any 
central authority. They aimed to provide a pragmatic platform 
that would generate a substantial amount of data for an early 
warning, but on the other hand that would follow the principles 
of privacy protection and data minimality of GDPR [2] – as far 
as it seems to be possible.

The Apple-Google platform has been used by the Corona-
Warn-App consortium in Germany [3]. Compared to Singa-
pore, it did not prove to be effective enough. The problem was 
a substantially smaller percentage of citizens using it (in both 
countries using contact tracing products is voluntary).

1.4. DP3-T.
The solution philosophy for Apple-Google contact tracing is 
shared with the Decentralized Privacy-Preserving Proxim-
ity Tracing (DP3-T) open source project run by a number of 
European universities and research institutions (see the DP3-T 
white-paper [4]). Their goal was to develop a privacy-preserv-
ing solution together with sound arguments regarding resilience 
to different attack endangering users՚ privacy. DP3-T describes 
three decentralized exposure notification mechanisms:
●	 low-cost: this is a simplified version of the Apple-Google 

mechanism described in Section 1.5, the crucial difference is 



3

Extensions for Apple-Google exposure notification mechanism

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137126

that the daily seeds are derived in a hash chain and therefore 
it suffices to report one key per diagnosed user,

●	 unlinkable: for each (short) epoch a new seed is chosen at 
random; while reporting a diagnosed person, a Cuckoo filter 
is used instead of an explicit list of seeds,

●	 hybrid: it is a compromise between both approaches– a seed 
may be shared by a number of pseudorandom identifiers, as 
in the case of the Apple-Google platform.

1.5. Apple-Google cryptographic details.
As we shall focus on the Apple-Google platform, we recall the 
details of this concept [5].

1.5.1. Broadcasting identifiers.
●	 The time is divided into 10 minute periods. For each period 

we assign an index ENIntervalNumber based on UNIX Epoch 
time as a 32-bit little endian value:

	 ENIntervalNumber(timestamp) = timestamp/(60 ¢ 10).� (1)

In turn, 144 periods (which correspond to 24 hours) make 
a TEKRollingPeriod.

●	 For each TEKRollingPeriod a user՚s smartphone generates 
a separate Temporary Exposure Key (TEK). The 16-byte TEK 
key is computed by a cryptographic random number genera-
tor: teki = CRNG(16). No further details are specified.

●	 A TEK key is used to derive two other keys associated to the 
same TEKRollingPeriod. The first one is a Rolling Proximity 
Identifier Key (RPIK):

RPIKi = HKDF(teki, NULL, UTF8(“EN-RPIK”), 16),

where HKDF stands for ՚՚the HKDF function as defined by 
IETF RFC 5869, using the SHA-256 hash function՚՚.

●	 The second key derived from a TEK is a so-called Associated 
Encrypted Metadata Key:

	
AEMK i = HKDF(teki, NULL,
UTF8(“EN-AEMK”), 16). � (2)

●	 During a 10 minutes period the smartphone is using a ran-
domized BLE MAC address. During this period it broadcasts 
a pseudorandom Rolling Proximity Identifier together with 
the Associated Encrypted Metadata. The rolling proximity 
identifier rpii, j for the TEKRollingPeriod i and a period j is 
computed as follows:

	 rpii, j = AES(RPIKi, PaddedData j),� (3)

where PaddedData j is the following 16-byte string:

UTF8(“EN-RPI”), 0x000000000000, ENIntervalNumber( j),

where ENIntervalNumber( j)  encodes the time when the 
period j starts according to the formula (1). Together with 
rpii, j the smartphone sends Associated Encrypted Metadata 
corresponding to the TEKRollingPeriod i and the period j, 
which is an AES counter mode ciphertext:

AESCTR(AEMK i, rpii, j, Metadata).

1.5.2. Recording contacts.
●	 Each active device collects the pseudorandom identifiers 

received over the BLE channel. The distance between devices 
can be estimated by the strength of the BLE signal. Only the 
identifiers corresponding to strong signals are stored, as the rest 
is likely to correspond to a safe distance. Similarly, if an identi-
fier is not received repeatedly for a number of times, then it is 
ignored as the contact is likely to be too short for an infection.

●	 If according to the policies mentioned above an identifier 
rpii, j should not be ignored, then it is stored together with the 
time of receipt and the corresponding AESCTR ciphertext.

1.5.3. Reporting positive diagnosis.
●	 When a user is diagnosed positive, he or she should use the 

app on the smartphone to send a warning to the Diagnosis 
Center. Entering an authorization code obtained from the 
health authority should be required in order to avoid false 
warnings (e.g. preventing an attack aiming to quarantine the 
people from the personal surrounding – like project team 
members). The warning contains the TEK keys correspond-
ing to all days where the smartphone՚s holder has been poten-
tially infectious (e.g. 14 TEK keys). For each TEK key its 
TEKRollingPeriod is provided as well.

●	 The Diagnosis Server aggregates all data received to one list 
of diagnosis keys and makes it available for downloading.

●	 The user՚s app periodically downloads the current list of diag-
nosis keys. For each TEK key from the list the app derives the 
corresponding rolling proximity identifiers according to the 
formula (3). The results are compared with the rolling prox-
imity identifiers received by the smartphone over the BLE 
channel in the reported time. A certain discrepancy between 
the time of key creation and scanning is allowed. If a match 
is found, then the AESCTR ciphertext may be decrypted 
with the key derived with the formula (2). Finally the app 
may issue an exposure notification.
The white paper [5] does not specify what kind of data (if 

any) is contained in the ciphertext AESCTR, it only indicates 
that this is an non-authenticated encryption mode and the plain-
text should be separately validated.

How the exposure notif ication is used is a different issue. 
One option would be to leave the decision to the smartphone 
owner, who voluntarily quarantines and informs a health 
authority. Another option is that the app automatically sends 
a notif ication to a health authority revealing in particular the 
identif ier of the smartphone. Additional mechanisms might 
be used when not only a contact person of an infected person 
must be warned but also each contact of the contact person.

2.	 CRNG AND PRIVACY PROTECTION  
BY APPLE-GOOGLE SCHEME

2.1. CRNG and strong privacy.
The Apple-Google and DP3-T designs refer to generating ran-
dom numbers as kind of a golden bullet of privacy protection. 
Namely, one should take into account an advanced adversary 
that can break the cryptographic schemes used to compute 
the rolling proximity identifiers. Such an adversary may exist 
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now (e.g., the most powerful security agencies not sharing all 
research results with the public), or may emerge in near future 
due to advances in cryptographic technologies. Potentially, such 
an adversary might be able to derive all values used to com-
pute the rolling proximity identifiers (that is, the internal state 
of a device broadcasting BLE signals) and then recompute the 
identifiers sent at different times. Thereby the allegedly unlink-
able identifiers would become linkable.

Estimating resilience of cryptographic schemes is always 
based on currently available knowledge on cryptanalytic state-
of-the-art. We neither know for sure what are the capabilities 
of the most powerful cryptanalysts now nor we can predict 
the technical progress in the future. As the BLE signals can 
be systematically captured and stored for a future use, users՚ 
location privacy may be eventually violated. So unless there are 
some effective countermeasures implemented, it may be hard 
to deny that deploying contact tracing may have a side effect 
of creating a large scale surveillance system.

However, if rolling proximity identifiers are created from 
random numbers chosen anew each day, then linking between 
different days becomes impossible, regardless of the progress 
of cryptanalytical techniques. Therefore, despite the necessity to 
provide more data related to a diagnosed person, the proposed 
schemes refresh the cryptographic seeds at random. While the 
low-cost design from DP3-T is not involving a CRNG, there is 
a clear recommendation in [4] to move to the unlinkable or at 
least to the hybrid design, where the cryptographic material is 
refreshed frequently. According to the Apple-Google design, for 
each day a fresh random seed is chosen. This prevents linking the 
rolling proximity identifiers of the same device when two differ-
ent days are concerned no matter how powerful the adversary is.

2.2. CRNG reality and tracing threats.
A solution based on a CRNG looks nice in theory, but in prac-
tice it may become a treacherous trapdoor. Namely, according 
to the current good practices, a CRNG should be implemented 
as a pseudorandom random number generator (PRNG) device 
using a (potentially imperfect) source of entropy and a secret 
seed. The seed and the entropy input are processed by one-way 
functions so that some output bits are generated as well as an 
update to the internal state of the PRNG.

A quite realistic threat is that the PRNG is pretending to 
work in this way, but in fact it is  deterministic and ignores the 
entropy input. For standard designs of CRNG it is easy to build 
such PRNG. If the attacker can determine the initial seed of the 
PRNG, then he will be able to derive all random bits used by the 
device. On the other hand, an observer having no access to the 
internal state cannot determine whether the output comes from 
a genuine CRNG or from a PRNG ignoring the entropy.  So it 
is necessary to conclude that  from the technical point of view 
the CRNG is a particularly vulnerable element  of the system. 

2.3. Defense.
An audit of the app՚s code and of the random number generator 
from the operating system may not convince every user. Some 
of them may be afraid of the manufacturers colluding with the 
auditors and supervision authorities in order to create a large 

scale surveillance system. A good approach against such fears 
is local verifiability – procedures enabling a user to check pri-
vacy safeguards by himself.

The scheme proposed by Apple-Google can be easily sup-
plemented with such privacy safeguards verifiable by a user:
●	 The user inputs a user seed u to his device D. As a rule, the 

user has to generate u outside D in order to remain indepen-
dent from D. The user seed should have enough entropy to 
prevent guessing u by the attacker.

●	 In parallel to deriving the TEK keys, the device com-
putes user rolling modifiers. Namely, for the jth period of 
a TEKRollingPeriod i it computes a 16 byte modifier

mi, j = C(C(i, u), j),

where C is a cryptographic random number generator.
●	 The definition of rolling proximity identifiers changes to

	 rpii, j = Hash(mi, j, AES(RPIKi, PaddedData j)).� (4)

●	 In case of a positive diagnosis, apart from the TEK keys, 
the device D should upload also the seed C(i, u) for each 
day concerned.

●	 Recomputing the rolling proximity identifiers corresponding 
to infected persons is based on the equation (4).
Note that an adversary that corrupts the CRNG cannot link 

two rolling proximity identifiers if a Correlated Input Secure 
functions Hash and C are used [7]. Moreover, he cannot even 
link the keys C(i, u) and C(i 0, u) from the list of diagnosed 
keys for i 0  6= i. Roughly speaking, a function F is correlated 
input secure, if for given inputs α, β and values h1, h2 it is 
infeasible to decide whether there is a parameter u such that 
h1 = F(C1(u), α) and h2 = F(C2(u), β), where C1 and C2 
are some simple circuits given as part of the input. This is 
exactly the problem a powerful adversary aims to solve: for 
two rolling proximity identifiers r1, r2 the adversary can com-
pute the candidate arguments AES(RPIKi, PaddedData j) and 
AES(RPIKi 0, PaddedDataj 0) and then ask if there are matching 
parameters mi, j, mi 0, j 0 obtained via PRNG from the same seed 
such that

r1 = Hash(mi, j, AES(RPIKi, PaddedDataj)) ,
r2 = Hash(mi 0, j 0, AES(RPIKi 0, PaddedDataj 0)) .

The user can check that the computation of the rolling prox-
imity identifiers involved the modifiers in the way described. 
The verification procedure for a given day i is as follows:
1.	the user records the rolling proximity identifiers of the own 

device D (preferably, some other computing device should 
be used),

2.	the user chooses at random j1, …, jk and inputs them to D,
3.	D returns the values

rpi 0i, j = AES(RPIKi, PaddedData j),

for j = j1, …, jk,
4.	the user recomputes mi, j from u and checks whether

rpii, j = Hash(mi, j, rpi 0i, j),

for j = j1, …, jk.
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Note that probing a device does not create any additional threat 
in case of a malicious user running an attack 
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of the most powerful cryptanalysts now nor we can predict the
technical progress in the future. As the BLE signals can be
systematically captured and stored for a future use, users’ lo-
cation privacy may be eventually violated. So unless there are
some effective countermeasures implemented, it may be hard
to deny that deploying contact tracing may have a side effect
of creating a large scale surveillance system.

However, if rolling proximity identifiers are created from
random numbers chosen anew each day, then linking be-
tween different days becomes impossible, regardless of the
progress of cryptanalytical techniques. Therefore, despite the
necessity to provide more data related to a diagnosed person,
the proposed schemes refresh the cryptographic seeds at ran-
dom. While the low-cost design from DP3-T is not involv-
ing a CRNG, there is a clear recommendation in [4] to move
to the unlinkable or at least to the hybrid design, where the
cryptographic material is refreshed frequently. According to
the Apple-Google design, for each day a fresh random seed is
chosen. This prevents linking the rolling proximity identifiers
of the same device when two different days are concerned no
matter how powerful the adversary is.

2.2. CRNG reality and tracing threats. A solution based on
a CRNG looks nice in theory, but in practice it may become
a treacherous trapdoor. Namely, according to the current good
practices, a CRNG should be implemented as a pseudorandom
random number generator (PRNG) device using a (potentially
imperfect) source of entropy and a secret seed. The seed and
the entropy input are processed by a one-way functions so that
some output bits are generated as well as an update to the in-
ternal state of the PRNG.

A quite realistic threat is that in fact the PRNG is pretending
to work in this way, but in fact it is deterministic and ignores
the entropy input. For standard designs of CRNG it is easy to
build such PRNG. If moreover the attacker can determine the
initial seed of the PRNG, then he will be able to derive all ran-
dom bits used by the device. On the other hand, an observer
having no access to the internal state cannot determine whether
the output comes from a genuine CRNG or from a PRNG ig-
noring the entropy. So it is necessary to conclude that from the
technical point of view the CRNG is a particularly vulnerable
element of the system.

2.3. Defense. An audit of the app’s code and of the random
number generator from the operating system may not convince
every user. Some of them may be afraid of the manufacturers
colluding with the auditors and supervision authorities in order
to create a large scale surveillance system. A good approach
against such fears is local verifiability – procedures enabling
a user to check privacy safeguards by himself.

The scheme proposed by Apple-Google can be easily sup-
plemented with such privacy safeguards verifiable by a user:

• The user inputs a user seed u to his device D. As a rule, the
user has to generate u outside D in order to remain indepen-
dent from D. The user seed should have enough entropy to
prevent guessing u by the attacker.

• In parallel to deriving the TEK keys, the device com-
putes user rolling modifiers. Namely, for the jth period of
a TEKRollingPeriod i it computes a 16 byte modifier

mi, j =C(C(i,u), j)

where C is a cryptographic random number generator.
• The definition of rolling proximity identifiers changes to

rpii, j = Hash(mi, j,AES(RPIKi,PaddedData j)) (4)

• In case of a positive diagnosis, apart from the TEK keys,
the device D should upload also the seed C(i,u)or each day
concerned.

• Recomputing the rolling proximity identifiers corresponding
to infected persons is based on the equation (4).

Note that an adversary that corrupts the CRNG cannot link two
rolling proximity identifiers if a Correlated Input Secure func-
tions Hash and C are used [7]. Moreover, he cannot even link
the keys C(i,u) and C(i′,u) from the list of diagnosed keys
for i′ �= i. Roughly speaking, a function F is correlated in-
put secure, if for given inputs α , β and values h1, h2 it is
infeasible to decide whether there is a parameter u such that
h1 = F(C1(u),α) and h2 = F(C2(u),β ), where C1 and C2 are
some simple circuits given as part of the input. This is ex-
actly the problem a powerful adversary aims to solve: for
two rolling proximity identifiers r1,r2 the adversary can com-
pute the candidate arguments AES(RPIKi,PaddedData j) and
AES(RPIKi′ ,PaddedData j′) and then ask if there are match-
ing parameters mi, j, mi′, j′ obtained via PRNG from the same
seed such that

r1 = Hash(mi, j,AES(RPIKi,PaddedData j),

r2 = Hash(mi′, j′ ,AES(RPIKi′ ,PaddedData j′).

The user can check that the computation of the rolling prox-
imity identifiers involved the modifiers in the way described.
The verification procedure for a given day i is as follows:

1. the user records the rolling proximity identifiers of the own
device D (preferably, some other computing device should
be used),

2. the user chooses at random j1, . . . , jk and inputs them to D,
3. D returns the values

rpi′i, j = AES(RPIKi,PaddedData j)

for j = j1, . . . , jk,
4. the user recomputes mi, j from u and checks whether

rpii, j = Hash(mi, j,rpi′i, j)

for j = j1, . . . , jk.

Note that probing a device does not create any additional threat
in case of a malicious user running an attack A to derive the
internal state of his own device. Indeed, if D is running the
original protocol, then the user can create the input for A by
setting a seed u and recomputing the rolling proximity iden-
tifiers according to (4). Obviously, then one can emulate the
attack A on the modified rolling proximity identifiers and the
data received from the verification procedure.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016
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of the most powerful cryptanalysts now nor we can predict the
technical progress in the future. As the BLE signals can be
systematically captured and stored for a future use, users’ lo-
cation privacy may be eventually violated. So unless there are
some effective countermeasures implemented, it may be hard
to deny that deploying contact tracing may have a side effect
of creating a large scale surveillance system.

However, if rolling proximity identifiers are created from
random numbers chosen anew each day, then linking be-
tween different days becomes impossible, regardless of the
progress of cryptanalytical techniques. Therefore, despite the
necessity to provide more data related to a diagnosed person,
the proposed schemes refresh the cryptographic seeds at ran-
dom. While the low-cost design from DP3-T is not involv-
ing a CRNG, there is a clear recommendation in [4] to move
to the unlinkable or at least to the hybrid design, where the
cryptographic material is refreshed frequently. According to
the Apple-Google design, for each day a fresh random seed is
chosen. This prevents linking the rolling proximity identifiers
of the same device when two different days are concerned no
matter how powerful the adversary is.

2.2. CRNG reality and tracing threats. A solution based on
a CRNG looks nice in theory, but in practice it may become
a treacherous trapdoor. Namely, according to the current good
practices, a CRNG should be implemented as a pseudorandom
random number generator (PRNG) device using a (potentially
imperfect) source of entropy and a secret seed. The seed and
the entropy input are processed by a one-way functions so that
some output bits are generated as well as an update to the in-
ternal state of the PRNG.

A quite realistic threat is that in fact the PRNG is pretending
to work in this way, but in fact it is deterministic and ignores
the entropy input. For standard designs of CRNG it is easy to
build such PRNG. If moreover the attacker can determine the
initial seed of the PRNG, then he will be able to derive all ran-
dom bits used by the device. On the other hand, an observer
having no access to the internal state cannot determine whether
the output comes from a genuine CRNG or from a PRNG ig-
noring the entropy. So it is necessary to conclude that from the
technical point of view the CRNG is a particularly vulnerable
element of the system.

2.3. Defense. An audit of the app’s code and of the random
number generator from the operating system may not convince
every user. Some of them may be afraid of the manufacturers
colluding with the auditors and supervision authorities in order
to create a large scale surveillance system. A good approach
against such fears is local verifiability – procedures enabling
a user to check privacy safeguards by himself.

The scheme proposed by Apple-Google can be easily sup-
plemented with such privacy safeguards verifiable by a user:

• The user inputs a user seed u to his device D. As a rule, the
user has to generate u outside D in order to remain indepen-
dent from D. The user seed should have enough entropy to
prevent guessing u by the attacker.

• In parallel to deriving the TEK keys, the device com-
putes user rolling modifiers. Namely, for the jth period of
a TEKRollingPeriod i it computes a 16 byte modifier

mi, j =C(C(i,u), j)

where C is a cryptographic random number generator.
• The definition of rolling proximity identifiers changes to

rpii, j = Hash(mi, j,AES(RPIKi,PaddedData j)) (4)

• In case of a positive diagnosis, apart from the TEK keys,
the device D should upload also the seed C(i,u)or each day
concerned.

• Recomputing the rolling proximity identifiers corresponding
to infected persons is based on the equation (4).

Note that an adversary that corrupts the CRNG cannot link two
rolling proximity identifiers if a Correlated Input Secure func-
tions Hash and C are used [7]. Moreover, he cannot even link
the keys C(i,u) and C(i′,u) from the list of diagnosed keys
for i′ �= i. Roughly speaking, a function F is correlated in-
put secure, if for given inputs α , β and values h1, h2 it is
infeasible to decide whether there is a parameter u such that
h1 = F(C1(u),α) and h2 = F(C2(u),β ), where C1 and C2 are
some simple circuits given as part of the input. This is ex-
actly the problem a powerful adversary aims to solve: for
two rolling proximity identifiers r1,r2 the adversary can com-
pute the candidate arguments AES(RPIKi,PaddedData j) and
AES(RPIKi′ ,PaddedData j′) and then ask if there are match-
ing parameters mi, j, mi′, j′ obtained via PRNG from the same
seed such that

r1 = Hash(mi, j,AES(RPIKi,PaddedData j),

r2 = Hash(mi′, j′ ,AES(RPIKi′ ,PaddedData j′).

The user can check that the computation of the rolling prox-
imity identifiers involved the modifiers in the way described.
The verification procedure for a given day i is as follows:

1. the user records the rolling proximity identifiers of the own
device D (preferably, some other computing device should
be used),

2. the user chooses at random j1, . . . , jk and inputs them to D,
3. D returns the values

rpi′i, j = AES(RPIKi,PaddedData j)

for j = j1, . . . , jk,
4. the user recomputes mi, j from u and checks whether

rpii, j = Hash(mi, j,rpi′i, j)

for j = j1, . . . , jk.

Note that probing a device does not create any additional threat
in case of a malicious user running an attack A to derive the
internal state of his own device. Indeed, if D is running the
original protocol, then the user can create the input for A by
setting a seed u and recomputing the rolling proximity iden-
tifiers according to (4). Obviously, then one can emulate the
attack A on the modified rolling proximity identifiers and the
data received from the verification procedure.
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setting a seed u and recomputing the rolling proximity iden-
tifiers according to (4). Obviously, then one can emulate the
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data received from the verification procedure.

4 Bull. Pol. Ac.: Tech. XX(Y) 2016

 on the modified rolling proximity identifiers and the 
data received from the verification procedure.

3.	 SOCIAL DISTANCING SMART MANAGEMENT
In this section we show that on top of the contact tracing mech-
anism one can build other functionalities that might be useful 
for management of social distancing. The goal is to maximize 
the effect of distancing and at the same time provide tools that 
enable to lift certain restrictions.

3.1. Same-epidemic-situation evidence mechanism.
Our goal in this subsection is to create an electronic evidence for 
two people of being in the same household or otherwise staying 
long enough in a close proximity, so that one can assume that 
these people are already in the same epidemic situation. In this 
case, they can be allowed to stay in a close proximity regard-
less of the social distancing rules. However, in order to secure 
against misusing this exempt, the case should be easy to verify 
in a reliable way.

As in some situations unconditional social distancing rules 
do not contribute to safety but increase the cost and burden 
of social distancing, some intermediate solutions have been 
adopted. For instance, in Germany in April 2020 it was forbid-
den to meet in public places in groups of more than 2 people. 
At the same time, there was no limit for people living in the 
same household.

This simplified approach has many disadvantages, the main 
are discrepancy between the formal status and the real situation as 
well as limited verifiability that are necessary if this policy has to 
be really enforced (especially in countries, where residence regis-
tration procedures do not reflect the real situation, e.g., in Poland).

We propose a simple mechanism for an app based on the 
Apple-Google contact tracing mechanism. The key component 
is a probabilistic sketch data structure equivalent to the popular 
MinHash schema (see [8]). This data structure has been designed 
for somewhat different purposes, however, it is well suited for 
our purposes. For a given stream of data {S}i it holds a fixed 
number of registers, say R1, …Rk. Each register is initially 
empty, and later it may store exactly one element of the stream. 
Assume that an element ei arrives. Then we compute the values

w1 = Hash1(ei), …, wk = Hashk(ei),

where Hash1, …, Hashk are independent cryptographic hash 
functions. Then for i ∙ k the current contents e of Ri is replaced 
with ei if and only if wi < Hash i(e). For the later discussion, 
the hash values will be treated as binary numbers from the 
interval [0, 1).

Building up data sketches. For the purpose of the same epi-
demic situation evidence each app holds a sketch based on 

the received rolling proximity identifiers. There are separate 
sketches – one per day. A sketch is erased once it is older than 
ts days, where ts is a parameter determined depending on the 
policy. Also the number k of registers in a sketch is a design 
parameter.

The received rolling proximity identifiers are inserted into 
a sketch in the following way:
●	 let r be the rolling proximity identifier received, let ri, j be the 

rolling proximity identifier computed by the app for broad-
casting at this moment,

●	 the item to be inserted in the sketch is

	 f (r, ri, j) = fgrprt(Sort(r, ri, j)).� (5)

where fgrprt is for instance a cryptographic hash truncated 
to a relevant number of bits.
Note that if a device A is in a proximity of device B, then 

A and B receive mutually their rolling proximity identifiers. 
Since the rolling proximity identifiers change at A and B at the 
same time (up to small differences resulting from hardware dis-
crepancies), A and B attempt to insert the same entry computed 
according to (5) to their sketches.

Properties of the sketches. For a while let us consider a single 
register of a sketch for a single day.

Note that if the devices A and B stay in a close proximity 
for a longer time, then their apps systematically try to enter the 
same entries into their data sketches. Whether a pair (r, r 0) will 
finally result in an entry placed in a sketch depends very much 
on the value of  fi(r, r 0). As the sketches of A and B are influ-
enced by rolling proximity identifiers sent by third parties, it 
may happen that  fi(r, r 0) is small enough to be inserted into one 
of the sketches, while it looses against an entry already stored in 
the other sketch. Observe that such an entry does not originate 
from a contact between A and B. However, if Hash(r, r 0) is 
small, then it is likely that it will be inserted in both sketches.

Let 
£
RA

1 , …, RA
k
¤
 and 

£
RB

1 , …, RB
k
¤
 be the vectors of sketches 

of devices A and B. Let
s(A, B) =  1

k
 ¢ j{i : RA

i  = RB
i }j.

Then s(A, B) is an approximation of the Jaccard similarity 
between the sets of all values f (r, r 0) computed by both devices. 
Recall that the Jaccard similarity between finite sets X and Y 
is defined as

X \ Y
X [ Y

.

Assume for instance that that a fraction pA of all pairs composed 
by A correspond to the contacts with B. Similarly, assume that 
a fraction pB of the contacts of B is with A (as the total number 
of contacts of A and B may differ, in general pA need not to be 
equal to pB). Then the Jaccard similarity between the observed 
sets is pA pB

pA + pB ¡ pA pB
.

So, if pA, pB > 1/2, then s(A, B) > 1/3 with very high probabil-
ity. From this formula we also deduce that if pA = pB = ε ¼ 0, 
then s(A, B) ¼ 1/2ε.
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Note that we may take the parameter values such as k = 256 
and the fingerprints consisting of 40 bits. Then the resulting 
sketch for one day will have the size of only 10 kB. If the 
sketches are kept for 14 days, then it will result in only 140 kB 
memory usage. So definitely, there is room for even larger 
choice of parameters taking into account the people that reg-
ularly meet a bigger group of people than just a few family 
members.

Inspection. The last procedure to be described is the case 
when the persons holding devices A and B are controlled 
whether they are in the same epidemic situation. The simplest 
solution would be to present the sketches by A and B to the 
controller. However, this is not the right solution due to the 
principle of data minimality: the controller gets an estimation 
of the number of rolling proximity identifiers received (see 
Section 3.2).

Any scheme for showing similarity of the sketches without 
revealing them would work. For example the following steps 
may be executed by A and B and a controller C:
1.	A, B and C choose collectively a random element κ ,
2.	A and B transform their sketches using the element κ ; name-

ly, for an entry e the transformed value is Hash(e, κ),
3.	A and B present the transformed sketches to C over separate 

encrypted channels,
4.	C checks what is the fraction of common entries in the re-

ceived transformed sketches. This fraction is computed sep-
arately for each daily sketch. Thereby the controller learns 
Jaccard similarity of the sketches and makes a decision based 
on the current policy.

3.2. Intensity of contacts.
As a side product, the data sketch\-es introduced in Section 3.1 
can be used for estimating the number of contacts of a device. 
This is quite important since the infection risk depends very 
much on the number of people one has met in a given period. 
Namely, let us consider once again the sequence w1, …, wk 
of hashes computed from values stored in registers R1, …Rk. 
Then, for each i = 1, …, k the number w1 is a realization of 
a random variable with distribution min{U1, …, Un}, where 
Ui are independent random variables with the uniform distri-
bution on the interval [0, 1] and n is the number of distinct 
contacts. Therefore the density function of the random variable 
wi is given by the formula f (x) = n(1 ¡ x)n ¡ 1. The standard 
maximum likelihood estimator method yields the following 
estimator of n:

n ̂  =  – k

i = 1

k
∑ ln(1 ¡ wi)

n ̂  is a consistent estimator of n, that is, it converges in proba-
bility to the true value n, as the sample size k goes to infinity. 
Fig. 1 presents the results of the experiments carried out to test 
the precision of this estimator. The figure shows the values of 
the quotient n ̂/n for n from 1 to 1000 with fixed k = 128. For 
each n, the experiment was repeated 10 times. Let us notice 
that the precision of the estimator n ̂  increases with the increase 

of the k parameter. The conducted experiments show that for 
k ¸ 128 the accuracy of this estimator is of 25% order, which 
should be sufficient for our needs. In these experiments, less 
than 1% of the results differed from n by more than 25%.

A data sketch has the advantage that the decision to change 
the sketch is memoryless and depends only on the current roll-
ing proximity identifiers. Hence, it is not necessary to remem-
ber if a given pair (r, r 0) has been already used.

3.3. Quarantine.
A potentially infected person might be obliged to quarantine. 
Typically this means the requirement not to leave a fixed place. 
However, the essential target is different: the number of con-
tacts with this person should be reduced to what is really neces-
sary. So in case of COVID-19, there is no reason to ban leaving 
home as long as the person concerned avoids coming to a closer 
distance with others.

Fortunately, contact tracing platform makes creation of 
such a system relatively simple. However, for supervision of 
a quarantined person a second device H (e.g., a smartphone) 
provided by the health authority is necessary. The solution is 
based on the following assumptions concerning a person P in 
quarantine:
1.	contact tracing is enabled on D and H including creation of 

the data sketches according to Section 3.1,
2.	D is kept by the person P all the time,
3.	D is not shielded in a Faraday cage,
4.	device H remains in the range of D all the time.
If these assumptions are met, then it suffices to run the control 
procedure described in Section 3.1 for the devices D and H. The 
sketches should store no entries other than the common ones for 
D and H except for maybe a few accidental entries. Fulfilling 
the assumptions can be enforced in the following way:
ad �1 and 4 – A logging mechanism prevents P from any opera-

tion on H, i.e. switching it off. On the other hand, enabling 
contact tracing by D is witnessed by H. Namely, the sketches 
created by H must contain entries corresponding to D. In 
order to make cheating harder, H will send and receive roll-
ing proximity identifiers rarely, at unpredictable moments. 

Fig. 1. Plot of experimental values of n ̂/n for n from 1 to 1000 where 
k = 128. The gray area indicates values between 0.75 and 1.25
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A failure to receive a rolling proximity identifier witnesses 
a misbehavior.

ad �2 – Verification can be based on (automatic) calls to D at 
random moments that must be answered in person by P. 
Moreover, one can deploy an automatic trigger that starts 
audio recording if the voice characteristics do not match the 
known characteristics of the voice of P.

ad �3 – Receiving rolling proximity identifiers of third persons 
may be prevented by shielding all signals by a Faraday cage. 
To ensure shielding H as well, both devices might be inside 
the cage. However, H may monitor the signal strength. As 
the person in quarantine might be obliged to keep D and H 
at some minimal distance, an attempt to cheat would require 
some skills to provide appropriate Faraday cage – small 
enough to carry and reducing the signal strength between D 
and H. While this is technically possible, most users have 
no sophisticated engineering experience to cheat in this way.

4.	 MANAGING THE DAILY KEYS
According to the Apple-Google design, TEK keys of a diag-
nosed person form a certain period have to be uploaded to the 
Diagnosis Center. The number of these keys equals the num-
ber of days when this person could be infectious. In case of 
COVID-19 this number was set to 14, however it may change 
according to new statistics and virus mutations.

One of the consequences of a separate TEK key for each day 
is that an exposed user cannot determine whether the contacts 
with an infected person on days i and j (as indicated by the 
diagnosis keys and the stored rolling proximity identifiers) can 
be attributed to one or two different persons.

This approach might be justified by the need of privacy pro-
tection. However, this argument can be challenged: for a given 
TEK key τ a person P can see for which 10-minute periods the 
rolling proximity identifiers derived from τ has been received 
by P. This typically indicates who might have been the infec-
tious person. On the other hand, from the epidemic point of 
view the probability of disease transmission could be different 
depending on whether two TEK keys from two different days 
correspond to the same person or to two different persons. On 
the other hand, the separate TEK per day policy eases descrip-
tion of the scheme.

Reducing the blacklist size. In case of the DP3-T low-cost 
solution it suffices to show a single TEK key on the list of 
diagnosis keys per person. This is a clear advantage against 
the Apple-Google mechanism, but the price paid is that leak-
ing a single TEK key means lack of privacy from the day of 
this TEK key. However, there is a compromise between two 
approaches. Namely, the time can be divided into k day periods, 
called TEK-periods. For each TEK-period we choose at random 
a master key m. Then the TEK keys are derived in the same way 
as in case of the low-cost DP3-T: the ith TEK key teki for i > 1 
is defined as teki = Hash(teki ¡ 1), while tek1 = m.

Let us assume that the infection period for which the TEK 
keys must be derived consists of q days. In general this period 
need not be contained in a single TEK-period. If k ¸ q, then 

each infection period is contained in one or two TEK-periods. 
Then it suffices to provide the teki key from the first period for 
the day when the infection period starts, and the tek1 key for 
the second TEK-period.

The last approach has one disadvantage: all TEK keys from 
the second period are revealed, including those that are not 
in the infection period concerned. There is a simple remedy 
for that, however the price to pay is the number of keys to be 
transmitted to the diagnosis center. Namely, for each TEK-pe-
riod we choose m and m0 at random. Then we compute f0 = m 
and fi + 1 = Hash( fi) for i > 1, bk = m0 and bi = Hash(bi + 1) for 
i < k. Finally, teki = Hash( fi, bi).

Observe that now 4 keys have to be posted on the list of diag-
nosis keys per one diagnosed person. This is still much better 
than k = 14 in case of the Apple-Google mechanism. However, 
there is a subtle problem. It may happen that within an infec-
tion period a given person spent first a days in region A and 
then b days in region B. In this case we would like to partition 
the infection period in two intervals (corresponding to stay in, 
respectively, region A and B) and provide the diagnosis keys 
corresponding to each interval in the regional diagnosis key 
lists. The solution presented above enables linking these key 
on the diagnosis lists, while Apple-Google solution is immune 
against such problems.

A standard approach that can be applied is creating a binary 
tree with k leaves. In such a tree we put a master secret m in 
the root and compute the labels downwards: for a node with 
a label z, the label of its right son is Hash(z, 0) and the label 
of its left son is Hash(z, 1). The labels of k leaves are the daily 
TEK keys. If this is a balanced binary tree for k equal to power 
of two, then in order to reveal the labels of a suffix or a prefix 
of the list of leaves, it suffices to present at most logk labels. 
As two trees may be involved for a given infection period, this 
results in an upper bound of 2logk labels.

The things become more complicated when we are talking 
about k՚s that are not powers of 2 and if we are interested exclu-
sively in small values of k. In this case the tree cannot be fully 
balanced. The question we state is what is the number of labels 
(on average) that one has to show given different choices for k 
and different choices to balance the tree. We examine the situ-
ation by a exhaustive search through the set of trees.

The first set of experiments concerns the strategy where 
we attempt to balance the tree as much as possible. That is, if 
a (sub)tree T should have an odd number of leaves `, then the 
first ` ¡ 1

2  leaves are assigned to the left subtree and ` + 1
2  leaves 

are assigned to the right subtree.
Table 1 presents the experimental results for this case. The 

entries in the table denote the average number of labels that 
have to be shown to reconstruct the TEK keys of a given infec-
tion period of length q. Each row of the table corresponds to 
a fixed value of k while for a column the value q is fixed.

Table 2 shows the results where we do not attempt to bal-
ance the tree and consider arbitrary trees. Moreover, we are not 
examining the average case but the worst case.

As we can see from the tables, there are some intriguing 
phenomena that would be hard to predict. For instance, having 
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Table 1
Average number of keys required for covering infection period of length q: balanced trees strategy

number  
of  leaves

the length of the infection period q:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
k = 2: 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
k = 3: 1.33 2.0 2.33 2.67 3.0 3.33 3.67 4.0 4.33 4.67 5.0 5.33 5.67 6.0 6.33 6.67 7.0 7.33
k = 4: 1.5 2.0 2.25 2.5 2.75 3.0 3.25 3.5 3.75 4.0 4.25 4.5 4.75 5.0 5.25 5.5 5.75 6.0
k = 5: 1.4 2.0 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4
k = 6: 1.5 2.0 2.33 2.5 2.83 3.0 3.17 3.33 3.5 3.67 3.83 4.0 4.17 4.33 4.5 4.67 4.83 5.0
k = 7: 1.43 2.0 2.0 2.43 2.71 3.0 3.14 3.29 3.43 3.57 3.71 3.86 4.0 4.14 4.29 4.43 4.57 4.71
k = 8: 1.5 2.0 2.25 2.5 2.88 3.0 3.12 3.25 3.38 3.5 3.62 3.75 3.88 4.0 4.12 4.25 4.38 4.5
k = 9: 1.44 2.0 2.44 2.67 3.0 3.22 3.22 3.33 3.44 3.56 3.67 3.78 3.89 4.0 4.11 4.22 4.33 4.44

k = 10: 1.5 1.9 2.5 2.6 2.8 3.1 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1 4.2 4.3 4.4
k = 11: 1.45 2.0 2.27 2.55 2.73 2.91 3.27 3.45 3.55 3.64 3.73 3.82 3.91 4.0 4.09 4.18 4.27 4.36
k = 12: 1.5 2.0 2.25 2.58 2.83 3.0 3.17 3.5 3.58 3.58 3.75 3.83 3.92 4.0 4.08 4.17 4.25 4.33
k = 13: 1.46 2.0 1.92 2.38 2.77 2.92 3.08 3.38 3.62 3.69 3.69 3.85 3.92 4.0 4.08 4.15 4.23 4.31
k = 14: 1.5 2.0 2.0 2.43 2.79 3.0 3.14 3.36 3.57 3.57 3.71 3.79 3.93 4.0 4.07 4.14 4.21 4.29
k = 15: 1.47 2.0 2.2 2.4 2.8 3.0 2.93 3.13 3.33 3.6 3.67 3.8 3.87 4.0 4.07 4.13 4.2 4.27
k = 16: 1.5 2.0 2.25 2.38 2.81 3.0 3.12 3.25 3.5 3.62 3.81 3.88 4.0 4.0 4.06 4.12 4.19 4.25
k = 17: 1.47 2.0 2.47 2.59 2.88 3.18 3.35 3.41 3.59 3.76 3.94 4.06 4.12 4.18 4.12 4.18 4.24 4.29
k = 18: 1.5 2.0 2.5 2.61 2.83 3.17 3.28 3.33 3.44 3.67 3.83 4.06 4.11 4.22 4.28 4.22 4.28 4.33
k = 19: 1.47 1.95 2.53 2.58 2.63 3.0 3.26 3.42 3.47 3.63 3.84 3.95 4.16 4.21 4.32 4.37 4.32 4.37
k = 20: 1.5 2.0 2.5 2.6 2.7 2.95 3.25 3.45 3.5 3.6 3.8 3.95 4.05 4.2 4.25 4.35 4.4 4.4

Table 2
The maximum number of  labels to be shown for a given number of leaves k in a tree and infection period q.  

The results concern the optimal tree found

number  
of  leaves

the length of the infection period q:

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
k = 2: 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10 11
k = 3: 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8
k = 4: 2 2 3 3 4 3 4 4 5 4 5 5 6 5 6 6 7 6 7
k = 5: 2 3 3 4 4 4 5 4 5 5 5 6 5 6 6 6 7 6 7
k = 6: 2 3 3 3 4 4 4 5 5 4 5 5 5 6 6 5 6 6 6
k = 7: 2 2 3 3 3 4 4 5 4 5 5 4 5 5 6 5 6 6 5
k = 8: 2 2 3 3 4 3 4 4 5 4 5 5 6 4 5 5 6 5 6
k = 9: 2 3 3 4 4 5 4 5 5 5 6 5 6 6 7 5 6 6 6

k = 10: 2 3 3 4 4 4 5 4 5 5 5 6 5 6 6 6 7 5 6
k = 11: 2 3 3 3 4 4 5 5 4 5 5 5 6 6 5 6 6 6 7
k = 12: 2 3 3 3 4 4 4 5 5 4 5 5 5 6 6 5 6 6 6
k = 13: 2 2 3 3 4 4 4 4 5 5 4 5 5 6 6 6 6 6 6
k = 14: 2 2 3 3 3 4 4 5 4 5 5 4 5 5 6 5 6 6 5
k = 15: 2 2 3 3 4 3 4 4 5 5 5 6 4 5 5 6 5 6 6
k = 16: 2 2 3 3 4 3 4 4 5 4 5 5 6 4 5 5 6 5 6
k = 17: 2 3 3 4 4 5 4 5 5 6 5 6 6 7 5 6 6 6 7
k = 18: 2 3 3 4 4 5 4 5 5 5 6 5 6 6 7 5 6 6 6
k = 19: 2 3 3 4 4 4 5 4 5 5 6 6 6 6 6 7 5 6 6
k = 20: 2 3 3 4 4 4 5 4 5 5 5 6 5 6 6 6 7 5 6
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the infection period q = 14, the right choice for k is 15. This 
holds also for balanced trees and the average value instead of 
the worst case value. Perhaps even more surprising is the fact 
that in this case the number of labels in the worst case is the 
same as number of labels in every case, for the scheme with 
forward and backward keys fi, bi. Of course, the average case 
is much better than 4.

5.	 CONCLUSIONS
The general idea of Apple-Google platform for exposure notifi-
cation is elegant, simple, transparent and therefore likely to be 
widely accepted by average users. Effectiveness of such tools 
has been proven in some countries, where initial frantic search 
for the infection chains has been replaced by a systematic data 
acquisition taking advantage of possibilities given by wearable 
user devices. Despite high density of population in countries 
such as Singapore strict controls have proved to be extremely 
helpful in reducing the number of infections.

We have shown that there are still unexplored additional 
potentials in the Apple-Google platform. Our main contribution 
is a possibility to automatically verify that two persons stay 
together in the same household or are in a continuous contact 
due to other reason like professional activities. In this case there 
should be no restriction for them to meet and stay together in 
other places.

The issue not discussed in depth so far are potential func-
tionalities based on the Associated Encrypted Metadata. As 
already mentioned, they can be used against relay attacks, 
but presumably there are many other opportunities. The key 

is to f ind the most relevant choice given a limited bit size 
available.
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