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optimization problem [4‒7], the SIMP (Solid Isotropic Material 
with Penalization) method is the most popular. This also applies 
to commercial software, more and more widely used in indus-
trial practice [9‒11]. The proposed new paradigm of topology 
optimization without the volume constraint will be presented 
in terms of the SIMP method. The volume constraint in the 
SIMP topology optimization approach requires the volume, and 
thus the mass of the entire optimized structure to be assumed 
in advance. Therefore, the elimination of such an assumption 
will allow for the search of a configuration, in which the min-
imization of compliance will be accompanied by the evolution 
of the structure’s mass. The Lagrange function, and therefore 
also the Lagrange multiplier, will be used to describe the opti-
mization procedure. The relationship between the Lagrange 
multiplier and volume constraint exists and was described in 
a number of papers concerning topology optimization methods 
[12, 13]. In the [13] paper the authors discuss the optimal shape 
design problem and note that increasing the Lagrange multiplier 
leads to a decrease in weight of the final optimal design. In the 
[14, 15] the existence of Lagrange multiplier is discussed. The 
authors point out there that, there is no rigorous proof for its 
existence. However, it is believed that such a constant exists for 
each of the volume constraints. Usually it is assumed [4, 15] that 
the material’s volume is a monotonously decreasing function 
of the Lagrange multiplier. So in the classical approach, the 
Lagrange multiplier is treated only as a coefficient that has to be 
found in order to fulfill the volume constraint. This has conse-
quences including, but no limited to, an assumed constant mass 
of the structure throughout the optimization process. Despite 
that, it still is a widely accepted standard. In this paper, using 

1.	 INTRODUCTION
The design of lightweight structures, allowing the actual weight 
of the structure to be minimized is becoming more and more 
important in the ever-expanding area of mechanical design. 
The problem is not just about using lightweight materials, but 
mostly about employing the right design methods. The primary 
method currently used in the industry, is the use of structural 
optimization as a way to design lightweight structures with high 
strength. Combined with additive manufacturing methods [1‒3], 
structural optimization is an excellent way to achieve solutions 
far superior to those possible with traditional design and man-
ufacturing methods. The design process consists of two stages, 
the synthesis and analysis stage. Within the former, the most 
important decisions concerning the form of the designed struc-
ture are made. It is necessary to decide how to place the material 
in a given design space so that the obtained structure has the 
highest stiffness and minimal weight. Topology optimization is 
a method that optimizes the material layout in a given design 
space for a given set of boundary conditions and loads. As the 
topology optimization concerns the synthesis stage (the spatial 
shape of the structure at this stage is searched for and is not 
known), it differs from shape optimization and size optimization 
and so the tools and methods used to carry topology optimiza-
tion out are specific and differ from other structural optimiza-
tion methods. Among the various approaches to the topology 
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Abstract. In the paper the new paradigm for structural optimization without volume constraint is presented. Since the problem of stiffest 
design (compliance minimization) has no solution without additional assumptions, usually the volume of the material in the design domain 
is limited. The biomimetic approach, based on trabecular bone remodeling phenomenon is used to eliminate the volume constraint from the 
topology optimization procedure. Instead of the volume constraint, the Lagrange multiplier is assumed to have a constant value during the whole 
optimization procedure. Well known MATLAB topology based optimization code, developed by Ole Sigmund, was used as a tool for the new 
approach testing. The code was modified and the comparison of the original and the modified optimization algorithm is also presented. With 
the use of the new optimization paradigm, it is possible to minimize the compliance by obtaining different topologies for different materials. It 
is also possible to obtain different topologies for different load magnitudes. Both features of the presented approach are crucial for the design 
of lightweight structures, allowing the actual weight of the structure to be minimized. The final volume is not assumed at the beginning of the 
optimization process (no material volume constraint), but depends on the material’s properties and the forces acting upon the structure. The 
cantilever beam example, the classical problem in topology optimization is used to illustrate the presented approach.
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Fig. 1. The algorithm of the procedure for solving the topology opti-
mization problem based on optimality criteria method

modified MATLAB topology optimization code [4], a different 
approach will be presented. This code was chosen as it is widely 
known and the procedure is quite transparent. The role of the 
Lagrange multiplier as a parameter related to the material will 
be discussed. Based on the considerations upon theorems of 
mechanics, the special role of the Lagrange multiplier will be 
presented. A reference to the processes of evolution of living 
structures known from Nature (tarbecular bone remodeling pro-
cess) will also be shown, and based on these observations and 
on the basis of theoretical considerations, a biomimetic optimi-
zation method will be presented. In order to illustrate the new 
functionality of topological optimization according to the new 
paradigm, numerical examples will be presented using the mod-
ified code. In particular, the effects of minimizing compliance 
resulting in different topologies for different load magnitudes 
and different topologies for different materials will be presented.

2.	 THE STIFFEST DESIGN PROBLEM
To begin with, the problem of obtaining the stiffest design and 
its setting could be presented as follows. In order to maximize 
the stiffness of a structure (the stiffest design goal), one needs 
to minimize the functional (compliance):

	 J(Ω) = 
Z

Γ1

t.u ds.� (1)

Since the problem of the stiffest design (compliance minimi-
zation) has no solution without additional assumptions, usually 
the volume of the material in the design domain is limited. So, 
the constraint is the given volume:

	
Z

Ω0

dx ¡ V0 = 0.� (2)

The state equations are as follows:

	 divσ (u) = 0  in  Ω ,� (3)

	 σ (u).n = t  on  Γ1,� (4)

	 σ (u).n = 0  on  Γv ,� (5)

	 u = 0  on  Γ0 .� (6)

Here, Ω represents the domain of the elasticity system, u the 
displacement, V0 = jΩ0j a given volume, Γ0 part of the bound-
ary with Dirichlet condition, Γ1 part of the boundary loaded 
by traction forces t, σ, ε, stress and strain tensor. Now, allow-
ing for absolutely any change of Γv in a 3D space, inevitably 
such a design will be reached, where it’s no longer exclusively 
a shape optimization problem, but also a topological one.

3.	 THE STANDARD APPROACH TO COMPLIANCE 
MINIMIZATION

The most popular approach to topology optimization is the 
SIMP approach. This approach has become a standard of topol-

ogy optimization and the procedures based on it are the basis 
of many commercial optimization codes. The algorithm of the 
procedure for solving the topological optimization problem 
based on optimality criteria method is shown in Fig. 1.

The approach is based on finite element analysis, where 
material properties are assumed to be constant within each 
element used to discretization of the design domain and the 
variables are the element relative densities. To be consistent 
with the notation in [4], for this approach, the compliance J  will 
be denoted C(x), where parameters x are related to the finite 
elements properties. With such assumptions, the problem can 
be presented as follows:

	 min
£
C(x) = uTK(x)u

¤
,� (7)

	
V(x)
V0

 = const,  K(x)u = F,� (8)

where: x parameters vector, u displacement vector, K global 
stiffness matrix, V(x) actual material volume, V0 design domain 
volume.

Since the optimization task is carried out using the finite 
element method, the parameter vector x is identified with the 
density distribution of a fictitious material assigned to each 
of the finite elements. This density determines the stiffness 
expressed by the Young’s modulus according to the relationship:

	 E(xe) = Er + xe
p(E0 ¡ Er) for xe 2 [0, 1],� (9)
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Fig. 2. The MATLAB based topology optimization code results for 
the MBB-beam example – different values of the loading force, similar 

results

where: E(xe) Young’s modulus assigned to a finite element, E0 
actual value of Young’s modulus for the selected material, Er 
very small value, preventing the appearance of a singular stiff-
ness matrix, which would make further calculations impossible. 
The finite element stiffness matrix can be described as follows 
(assuming k0 – the element stiffness matrix for an element with 
unit Young՚s modulus):

	 ke = E(xe)k0 .� (10)

In the final stage of calculations, it is necessary to decide 
which elements will be equated with the presence of material 
in space (they will have a density equal to 1) and which will be 
equated with the lack of material (they will have a density equal 
to 0). To facilitate and accelerate this decision, the penalization 
factor is used for intermediate states and therefore the p param-
eter appears (usually, due to the proven numerical efficiency, 
p = 3 is assumed). By adopting such assumptions and relat-
ing the optimization task to the essence of the finite element 
method, namely the discretization of space, the expression (7) 
can be presented in the form:
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In the final stage of calculations, it is necessary to decide
which elements will be equated with the presence of material
in space (they will have a density equal to 1) and which will
be equated with the lack of material (they will have a density
equal to 0). To facilitate and accelerate this decision, the pe-
nalization factor is used for intermediate states and therefore
the p parameter appears (usually, due to the proven numerical
efficiency, p = 3 is assumed). By adopting such assumptions
and relating the optimization task to the essence of the finite
element method, namely the discretization of space, the ex-
pression (7) can be presented in the form:

min

[
C(x) =

n

∑
e=1

E(xe)uT
e k0 ue

]
(11)

for

V (x)
V0

= const, K(x)u = F (12)

where: ue finite element displacement vector, and n is the
number of elements. The question (11) comes down to solving
the Lagrange function minimization problem. Lagrange func-
tion has the form:

L(x) =C(x)+λV (x) (13)

and this comes down to equating the gradient of a function
L(x) to zero:

∇L(x) = ∇C(x)+λ∇V (x) (14)

Substituting the expression C(x) according to formula (11)
into equation (14) and equating to zero the formula for each of
the finite elements can be obtained:

∂C
∂xe

+λ
∂V
∂xe

= 0 (15)

Along with the relation above, the term Be can be intro-
duced:

Be =
∂C
∂xe

(
λ

∂V
∂xe

)−1

(16)

Knowing that the material volume is a monotonously de-
creasing function of the Lagrange multiplier, the value of the
Lagrangian multiplier that satisfies the volume constraint can
be found for instance by a bi-sectioning algorithm. The sensi-
tivity of the objective function to changes in the values of indi-
vidual parameters can be calculated by substituting the formula
(9) to the formula (11):

∂C
∂xe

= p(xe)
p−1(E0 −Er)uT

e k0 ue (17)

and the sensitivity of the volume function, assuming that
each element has a unit volume, is always equal to one:

∂V
∂xe

= 1 (18)

Assuming now additional parameters η as a numerical
damping coefficient and m as the maximum possible change

Fig. 2. The MATLAB based topology optimization code results for the
MBB-beam example – different values of the loading force, similar re-
sults.

of the variable, the heuristic procedure for upgrading the val-
ues of the design variables from step k to k+1 for each finite
element can be written as follows:

xk+1
e =




max(0,xk
e −m) : f or xk

eBη
e ≤ max(0,xk

e −m)

min(1,xk
e +m) : f or xk

eBη
e ≥ min(1,xe

k +m)

xk
eBη

e : f or other cases
(19)

While effective, this approach has some drawbacks - see the
introductory discussion in the subsequent section. One of the
basic ones is insensitivity to the value of loads. For illustration
of the insensitivity effect of the method for the actual magni-
tude of load the calculations for the MBB-beam example, used
in the paper by O. Sigmund [4] are presented. The MATLAB
based topology optimization code, as presented in this paper
was used. Two different values of the loading force are ap-
plied, assuming the same volume constraint. The results of the
topology optimization are presented in Fig.2. While the abso-
lute magnitude of forces applied differ significantly, the results
are identical. This effect is immediately visible when the algo-
rithm of the method presented in Fig.3 is analyzed.

Term Be is responsible for determination of the design vari-
able vector updating and the values of Young modulus for in-
dividual elements are determined with the use of the updating
scheme. This term depends on λ , and λ is determined to sat-
isfy the volume constraint. Always in the same way, regardless
of absolute magnitude of force. Thus, the force magnitude is
irrelevant for the determination of the λ , and so is irrelevant
for the topology achieved as a result of the optimization proce-
dure.

Although such a procedure allows an answer to the question
about the optimal distribution of the material in the assumed
domain to be found, it does not necessarily lead to a satisfac-
tory solution from an engineering point of view. This is of
particular importance in the case of living entities.

4. THE BIOMIMETIC APPROACH TO COMPLIANCE MINI-
MIZATION

Bone is an excellent example of the problem of creating a
structure capable of transmitting forces at the lowest cost (tis-
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for

	
V(x)
V0

 = const,  K(x)u = F,� (12)

where: ue finite element displacement vector, and n is the num-
ber of elements. The question (11) comes down to solving the 
Lagrange function minimization problem. Lagrange function 
has the form:

	 L(x) = C(x) + λV(x),� (13)

and this comes down to equating the gradient of a function 
L(x) to zero:

	 ∇L(x) = ∇C(x) + λ∇V(x).� (14)

Substituting the expression C(x) according to formula (11) 
into equation (14) and equating to zero the formula for each of 
the finite elements can be obtained:
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Along with the relation above, the term Be can be introduced:
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Although such a procedure allows an answer to the question
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Knowing that the material volume is a monotonously de-
creasing function of the Lagrange multiplier, the value of the 

Lagrangian multiplier that satisfies the volume constraint can be 
found for instance by a bi-sectioning algorithm. The sensitivity 
of the objective function to changes in the values of individual 
parameters can be calculated by substituting the formula (9) to 
the formula (11):
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In the final stage of calculations, it is necessary to decide
which elements will be equated with the presence of material
in space (they will have a density equal to 1) and which will
be equated with the lack of material (they will have a density
equal to 0). To facilitate and accelerate this decision, the pe-
nalization factor is used for intermediate states and therefore
the p parameter appears (usually, due to the proven numerical
efficiency, p = 3 is assumed). By adopting such assumptions
and relating the optimization task to the essence of the finite
element method, namely the discretization of space, the ex-
pression (7) can be presented in the form:

min

[
C(x) =

n

∑
e=1

E(xe)uT
e k0 ue

]
(11)

for

V (x)
V0

= const, K(x)u = F (12)

where: ue finite element displacement vector, and n is the
number of elements. The question (11) comes down to solving
the Lagrange function minimization problem. Lagrange func-
tion has the form:

L(x) =C(x)+λV (x) (13)

and this comes down to equating the gradient of a function
L(x) to zero:

∇L(x) = ∇C(x)+λ∇V (x) (14)

Substituting the expression C(x) according to formula (11)
into equation (14) and equating to zero the formula for each of
the finite elements can be obtained:

∂C
∂xe

+λ
∂V
∂xe

= 0 (15)

Along with the relation above, the term Be can be intro-
duced:

Be =
∂C
∂xe

(
λ

∂V
∂xe

)−1

(16)

Knowing that the material volume is a monotonously de-
creasing function of the Lagrange multiplier, the value of the
Lagrangian multiplier that satisfies the volume constraint can
be found for instance by a bi-sectioning algorithm. The sensi-
tivity of the objective function to changes in the values of indi-
vidual parameters can be calculated by substituting the formula
(9) to the formula (11):

∂C
∂xe

= p(xe)
p−1(E0 −Er)uT

e k0 ue (17)

and the sensitivity of the volume function, assuming that
each element has a unit volume, is always equal to one:

∂V
∂xe

= 1 (18)

Assuming now additional parameters η as a numerical
damping coefficient and m as the maximum possible change

Fig. 2. The MATLAB based topology optimization code results for the
MBB-beam example – different values of the loading force, similar re-
sults.

of the variable, the heuristic procedure for upgrading the val-
ues of the design variables from step k to k+1 for each finite
element can be written as follows:

xk+1
e =




max(0,xk
e −m) : f or xk

eBη
e ≤ max(0,xk

e −m)

min(1,xk
e +m) : f or xk

eBη
e ≥ min(1,xe

k +m)

xk
eBη

e : f or other cases
(19)

While effective, this approach has some drawbacks - see the
introductory discussion in the subsequent section. One of the
basic ones is insensitivity to the value of loads. For illustration
of the insensitivity effect of the method for the actual magni-
tude of load the calculations for the MBB-beam example, used
in the paper by O. Sigmund [4] are presented. The MATLAB
based topology optimization code, as presented in this paper
was used. Two different values of the loading force are ap-
plied, assuming the same volume constraint. The results of the
topology optimization are presented in Fig.2. While the abso-
lute magnitude of forces applied differ significantly, the results
are identical. This effect is immediately visible when the algo-
rithm of the method presented in Fig.3 is analyzed.

Term Be is responsible for determination of the design vari-
able vector updating and the values of Young modulus for in-
dividual elements are determined with the use of the updating
scheme. This term depends on λ , and λ is determined to sat-
isfy the volume constraint. Always in the same way, regardless
of absolute magnitude of force. Thus, the force magnitude is
irrelevant for the determination of the λ , and so is irrelevant
for the topology achieved as a result of the optimization proce-
dure.

Although such a procedure allows an answer to the question
about the optimal distribution of the material in the assumed
domain to be found, it does not necessarily lead to a satisfac-
tory solution from an engineering point of view. This is of
particular importance in the case of living entities.
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and the sensitivity of the volume function, assuming that each 
element has a unit volume, is always equal to one:
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In the final stage of calculations, it is necessary to decide
which elements will be equated with the presence of material
in space (they will have a density equal to 1) and which will
be equated with the lack of material (they will have a density
equal to 0). To facilitate and accelerate this decision, the pe-
nalization factor is used for intermediate states and therefore
the p parameter appears (usually, due to the proven numerical
efficiency, p = 3 is assumed). By adopting such assumptions
and relating the optimization task to the essence of the finite
element method, namely the discretization of space, the ex-
pression (7) can be presented in the form:

min

[
C(x) =

n

∑
e=1

E(xe)uT
e k0 ue

]
(11)

for

V (x)
V0

= const, K(x)u = F (12)

where: ue finite element displacement vector, and n is the
number of elements. The question (11) comes down to solving
the Lagrange function minimization problem. Lagrange func-
tion has the form:

L(x) =C(x)+λV (x) (13)

and this comes down to equating the gradient of a function
L(x) to zero:

∇L(x) = ∇C(x)+λ∇V (x) (14)

Substituting the expression C(x) according to formula (11)
into equation (14) and equating to zero the formula for each of
the finite elements can be obtained:

∂C
∂xe

+λ
∂V
∂xe

= 0 (15)

Along with the relation above, the term Be can be intro-
duced:

Be =
∂C
∂xe

(
λ

∂V
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)−1

(16)

Knowing that the material volume is a monotonously de-
creasing function of the Lagrange multiplier, the value of the
Lagrangian multiplier that satisfies the volume constraint can
be found for instance by a bi-sectioning algorithm. The sensi-
tivity of the objective function to changes in the values of indi-
vidual parameters can be calculated by substituting the formula
(9) to the formula (11):

∂C
∂xe

= p(xe)
p−1(E0 −Er)uT

e k0 ue (17)

and the sensitivity of the volume function, assuming that
each element has a unit volume, is always equal to one:

∂V
∂xe

= 1 (18)

Assuming now additional parameters η as a numerical
damping coefficient and m as the maximum possible change

Fig. 2. The MATLAB based topology optimization code results for the
MBB-beam example – different values of the loading force, similar re-
sults.

of the variable, the heuristic procedure for upgrading the val-
ues of the design variables from step k to k+1 for each finite
element can be written as follows:

xk+1
e =




max(0,xk
e −m) : f or xk

eBη
e ≤ max(0,xk
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While effective, this approach has some drawbacks - see the
introductory discussion in the subsequent section. One of the
basic ones is insensitivity to the value of loads. For illustration
of the insensitivity effect of the method for the actual magni-
tude of load the calculations for the MBB-beam example, used
in the paper by O. Sigmund [4] are presented. The MATLAB
based topology optimization code, as presented in this paper
was used. Two different values of the loading force are ap-
plied, assuming the same volume constraint. The results of the
topology optimization are presented in Fig.2. While the abso-
lute magnitude of forces applied differ significantly, the results
are identical. This effect is immediately visible when the algo-
rithm of the method presented in Fig.3 is analyzed.

Term Be is responsible for determination of the design vari-
able vector updating and the values of Young modulus for in-
dividual elements are determined with the use of the updating
scheme. This term depends on λ , and λ is determined to sat-
isfy the volume constraint. Always in the same way, regardless
of absolute magnitude of force. Thus, the force magnitude is
irrelevant for the determination of the λ , and so is irrelevant
for the topology achieved as a result of the optimization proce-
dure.

Although such a procedure allows an answer to the question
about the optimal distribution of the material in the assumed
domain to be found, it does not necessarily lead to a satisfac-
tory solution from an engineering point of view. This is of
particular importance in the case of living entities.
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MIZATION

Bone is an excellent example of the problem of creating a
structure capable of transmitting forces at the lowest cost (tis-
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Assuming now additional parameters η as a numerical damp-
ing coefficient and m as the maximum possible change of the 
variable, the heuristic procedure for upgrading the values of the 
design variables from step k to k + 1 for each finite element 
can be written as follows:

xe
k + 1 = 

max(0, xe
k ¡ m)	 : for  xe

kBe
η ∙ max(0, xe

k ¡ m)

min(1, xe
k + m)	 : for  xe

kBe
η ¸ min(1, xe

k + m)

xe
kBe

η	  : for  other cases
.� (19)

While effective, this approach has some drawbacks – see the 
introductory discussion in the subsequent section. One of the 
basic ones is insensitivity to the value of loads. For illustration 
of the insensitivity effect of the method for the actual magni-
tude of load the calculations for the MBB-beam example, used 
in the paper by O. Sigmund [4] are presented. The MATLAB 
based topology optimization code, as presented in this paper 
was used. Two different values of the loading force are applied, 
assuming the same volume constraint. The results of the topol-
ogy optimization are presented in Fig. 2. While the absolute 
magnitude of forces applied differ significantly, the results are 
identical. This effect is immediately visible when the algorithm 
of the method presented in Fig. 3 is analyzed.

Term Be is responsible for determination of the design vari-
able vector updating and the values of Young modulus for indi-
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vidual elements are determined with the use of the updating 
scheme. This term depends on λ, and λ is determined to satisfy 
the volume constraint. Always in the same way, regardless of 
absolute magnitude of force. Thus, the force magnitude is irrel-
evant for the determination of the λ, and so is irrelevant for the 
topology achieved as a result of the optimization procedure.

Although such a procedure allows an answer to the question 
about the optimal distribution of the material in the assumed 
domain to be found, it does not necessarily lead to a satisfactory 
solution from an engineering point of view. This is of particular 
importance in the case of living entities.

4.	 THE BIOMIMETIC APPROACH  
TO COMPLIANCE MINIMIZATION

Bone is an excellent example of the problem of creating a struc-
ture capable of transmitting forces at the lowest cost (tissue vol-
ume) that Nature faces. The first observation of the behaviour of 
the trabecular bone tissue was made by Wolff and published in 
1892 [16]. The observation proposed by Julius Wolff – known 
as the Wolff՚s law – can be described as a structural adaptation 
of the bone to the external forces and is called trabecular bone 
remodeling phenomena. Since then, scientific research on the 
description and development of numerical models of the phe-
nomenon of bone remodeling is still ongoing [17, 18]. Since the 
process of bone remodeling is extremely complex, taking into 
account the dependence on external loads and various biological 
aspects, various numerical modeling approaches are considered 
for this phenomenon. One of the one of the basic ones is the 
regulatory model [19].

The regulatory model (tissue parameters evolution in time) 
presented in Fig. 4. is described by the following equations:
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Fig. 3. The algorithm of the standard optimization procedure – λ de-
pends on the volume constraint only.

Fig. 4. The regulatory model scheme and the “lazy zone” concept.

sue volume) that Nature faces. The first observation of the
behaviour of the trabecular bone tissue was made by Wolff and
published in 1892 [16]. The observation proposed by Julius
Wolff – known as the Wolff’s law – can be described as a struc-
tural adaptation of the bone to the external forces and is called
trabecular bone remodeling phenomena. Since then, scien-
tific research on the description and development of numerical
models of the phenomenon of bone remodeling is still ongoing
[17, 18]. Since the process of bone remodeling is extremely
complex, taking into account the dependence on external loads
and various biological aspects, various numerical modeling ap-
proaches are considered for this phenomenon. One of the one
of the basic ones is the regulatory model [19].

The regulatory model (tissue parameters evolution in time)
presented in Fig. 4. is described by the following equations:

dE
dt

=




U >Uu : Ce(U −Uu)

Ul ≤U ≤Uu : 0
U <Ul : Ce(U −Ul)

(20)

where Uh is the strain energy density (SED) value corre-
sponding to homeostasis of bone loss and gain, Ce is a dimen-
sionless proportionality constant, 2s is the size of the “lazy
zone”, Uu = Uh(1+ s), Ul = Uh(1− s) are the values corre-

sponding to lower and upper strain energy level inside the lazy
zone, and E denotes Young’s modulus of the tissue. The “lazy
zone” concept was originally proposed by Carter [20] and it
reflects the observation, that bone is “lazy” in reaction to load
changes. The model assumes that the Young’s modulus (as a
local elastic modulus) of the tissue may vary depending on the
level of mechanical stimulation (strain energy density). The
existence of homeostatic value of strain energy density sur-
rounded by the “lazy zone” is assumed according to the evolu-
tion of the bone structure. The process of adaptive remodeling
of the trabecular bone structure is extremely complicated from
the biological phenomena’s point of view. From the mechan-
ical point of view, the amount of tissue in a given place of
the trabecular structure can be related to the level of mechani-
cal stimulation. The remodeling process always takes place in
two stages. In the first one, the tissue is removed in a small
area called basic multicellular unit (BMU) [19, 21]. In the
next stage, new tissue is formed in this area, but now its struc-
ture depends on local mechanical stimulation. The network
of osteocytes is responsible for determining the level of such
stimulation [19, 21]. The regulatory model, although not com-
plex, allows for a very good simulation of this behaviour of the
bone tissue under load. The main assumption is the existence
of a certain value, characteristic of the bone tissue material, of
mechanical stimulation Uh, measured with the SED. This dis-
tinguished value, called homeostatic stimulation value, defines
the ideal state where there is a perfect balance between resorp-
tion and new tissue formation. If such a situation occurs, it
means that there is no need to modify the amount of tissue in a
given place of the structure (locally). If, on the other hand, the
value of mechanical stimulation from external forces differs
from the distinguished value Uh (practically for the SED value
outside the “lazy zone”), the tissue rebuilds. If the stimulation
is greater than the Uu value, tissue is added; if the stimulation is
less than the Ul value, tissue is lost. What does it mean? Well,
when in a given moment the tissue stimulation is increasing
(right side of the graph outside the insensitivity zone - “lazy
zone” in Fig.4) bone gain will be observed. More tissue means,
that the volume of the material increases and thus the mechan-
ical stimulation in this area will decrease. When, on the other
hand, in a given moment the tissue stimulation is decreasing
(left side of the graph outside the insensitivity zone in Fig.4)
bone loss will be observed. In this case less tissue means, that
the volume of the material decreases and thus the mechanical
stimulation in this area will increase. In both of these situa-
tions, the change in the amount of tissue leads to such amount
of the bone tissue (material), that the SED – the measure of
mechanical stimulation in the analyzed area will be inside the
“lazy zone”, that is, close to the Uh value. The same structural
adaptation problem can be a subject of the shape optimization
studies [22, 23]. It turns out that the observed phenomenon of
the tendency of trabecular bone structure to achieve the struc-
tural form corresponding to stimulation close to the homeosta-
sis can be interpreted on the basis of mechanics. The speed
method, as used in shape optimization in 3D elasticity can be
used for this interpretation. The method itself is the result of
research carried out by the french school of shape optimization
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where Uh is the strain energy density (SED) value correspond-
ing to homeostasis of bone loss and gain, Ce is a dimension-

less proportionality constant, 2s is the size of the “lazy zone”, 
Uu = Uh(1 + s), Ul = Uh(1 ¡ s) are the values corresponding 
to lower and upper strain energy level inside the lazy zone, and 
E denotes Young՚s modulus of the tissue.

The “lazy zone” concept was originally proposed by Car-
ter [20] and it ref lects the observation, that bone is “lazy” in 
reaction to load changes. The model assumes that the Young՚s 
modulus (as a local elastic modulus) of the tissue may vary 
depending on the level of mechanical stimulation (strain energy 
density). The existence of homeostatic value of strain energy 
density surrounded by the “lazy zone” is assumed according 
to the evolution of the bone structure. The process of adaptive 
remodeling of the trabecular bone structure is extremely com-
plicated from the biological phenomena’s point of view. From 
the mechanical point of view, the amount of tissue in a given 
place of the trabecular structure can be related to the level of 
mechanical stimulation. The remodeling process always takes 
place in two stages. In the f irst one, the tissue is removed in 
a small area called basic multicellular unit (BMU) [19, 21]. In 
the next stage, new tissue is formed in this area, but now its 
structure depends on local mechanical stimulation. The net-
work of osteocytes is responsible for determining the level of 
such stimulation [19, 21]. The regulatory model, although not 
complex, allows for a very good simulation of this behaviour 
of the bone tissue under load. The main assumption is the 
existence of a certain value, characteristic of the bone tissue 
material, of mechanical stimulation Uh, measured with the 
SED. This distinguished value, called homeostatic stimulation 
value, defines the ideal state where there is a perfect balance 
between resorption and new tissue formation. If such a sit-
uation occurs, it means that there is no need to modify the 
amount of tissue in a given place of the structure (locally). If, 
on the other hand, the value of mechanical stimulation from 
external forces differs from the distinguished value Uh (prac-
tically for the SED value outside the “lazy zone”), the tissue 
rebuilds. If the stimulation is greater than the Uu value, tissue 
is added; if the stimulation is less than the Ul value, tissue is 

Fig. 3. The algorithm of the standard optimization procedure – λ 
depends on the volume constraint only

Fig. 4. The regulatory model scheme and the “lazy zone” concept



5

Topology optimization without volume constraint – the new paradigm for lightweight design

Bull. Pol. Acad. Sci. Tech. Sci. 69(4) 2021, e137732

lost. What does it mean? Well, when in a given moment the 
tissue stimulation is increasing (right side of the graph outside 
the insensitivity zone – “lazy zone” in Fig. 4) bone gain will 
be observed. More tissue means, that the volume of the mate-
rial increases and thus the mechanical stimulation in this area 
will decrease. When, on the other hand, in a given moment the 
tissue stimulation is decreasing (left side of the graph outside 
the insensitivity zone in Fig. 4) bone loss will be observed. 
In this case less tissue means, that the volume of the material 
decreases and thus the mechanical stimulation in this area will 
increase. In both of these situations, the change in the amount 
of tissue leads to such amount of the bone tissue (material), 
that the SED – the measure of mechanical stimulation in the 
analyzed area will be inside the “lazy zone”, that is, close to 
the Uh value. The same structural adaptation problem can be 
a subject of the shape optimization studies [22, 23]. It turns out 
that the observed phenomenon of the tendency of trabecular 
bone structure to achieve the structural form corresponding 
to stimulation close to the homeostasis can be interpreted on 
the basis of mechanics. The speed method, as used in shape 
optimization in 3D elasticity can be used for this interpretation. 
The method itself is the result of research carried out by the 
french school of shape optimization – for details see [24]. Let 
V(x) be a smooth vector f ield defined on IR3 and Tt(x) a trans-
formation defined by the formula

Tt(x) = x + tV(x),  t 2 [0, ε ],  ε > 0

that is

Tt : IR3 7 7   IR3.

Let also Ω0 ½ IR3 be a certain domain and Ω t its image by 
means of Tt(●),  that is Ω t = Tt(Ω0). Next let also ut be a func-
tion  defined on Ω t. After defining the Lagrangian for the prob-
lem described by the formula (1), where Ω t is an image of Ω 
in transformation Tt:

	

Paper for BPASTS

- for details see [24]. Let V(x) be a smooth vector field defined
on IR3 and Tt(x) a transformation defined by the formula

Tt(x) = x+ tV(x), t ∈ [0,ε], ε > 0

that is
Tt : IR3 �−→ IR3.

Let also Ω0 ⊂ IR3 be a certain domain and Ωt its image by
means of Tt(•), that is Ωt = Tt(Ω0). Next let also ut be a func-
tion defined on Ωt . After defining the Lagrangian for the prob-
lem described by the formula (1), where Ωt is an image of Ω
in transformation Tt :

L(Ωt ,λ ) =
∫

Γ1

t.ut ds+λ
[∫

Ωt

dx−V0

]
(21)

The state equation in the weak form:

−
∫

Ωt

σ(ut) : ε(ϕ)dx+
∫

Γ1

t.ϕ ds = 0 (22)

The shape derivative [24] of Lagrange function has the fol-
lowing form and at the local minimum this first derivative
should vanish:

[L(Ω,λ )]′ =
∫

Γ1

t.u′ ds+λ
∫

Γv

V.nds = 0 (23)

The shape derivative of the state equation (22) in the weak
form can be represented by the formula:

∫

Γ1

t.u′ ds =−
∫

Γv

σ(u) : ε(u)V.nds (24)

Using this result in the derivative of Lagrange function gives
the formula:

∫

Γv

[λ −σ(u) : ε(u)]V.nds = 0 (25)

The derivative at the stationary point should vanish—for de-
tails see [22] and so it can be concluded that:

σ(u) : ε(u) = λ = const. (26)

It means that for the stiffest design, the strain energy den-
sity on the part of the boundary subject to modification Γv
must be constant. By referring this result to the structure of
the trabecular bone, it can be concluded that the assumption of
a distinguished value Uh, achievement of which for the whole
bone tissue is the clue of remodeling process, reflects the need
to obtain condition (1). Thus, the biomimetic approach to the
stiffest design can be formulated. Note that the tissue volume
is always adjusted to rebuild the structure and to obtain a con-
figuration for which the SED value for the whole structure is
close to Uh in the regulatory model. So Uh is equivalent to the
Lagrange multiplier in the equation (13). Thus, the biomimetic
approach to structural optimization can be defined by the as-
sumption of one, regardless of the load, value of the Lagrange
multiplier, dependent on the material from which the structure
is build. So, the conclusion from observing Nature is that there
in fact exists one λ value, associated with the material.

Fig. 5. The algorithm of the biomimetic optimization procedure – λ is
assumed as constant during upgrading the values of the design vari-
ables and structural volume results from the optimization procedure.

5. THE MATLAB BASED TOPOLOGY OPTIMIZATION AL-
GORITHM MODIFICATION

Bearing in mind the biomimetic approach to the problem of
stiffest design, it is possible to modify the already existing opti-
mization algorithms. The MATLAB based topology optimiza-
tion code presented in the section 2 will be modified according
to a biomimetic approach. Fig.5 illustrates the basic change.

Following the conclusion from observing Nature, instead of
a volume constraint, the constant value of Lagrange multiplier
λ is assumed. And so the optimization strategy is different
now. The goal is not to meet the volume constraint, but to mod-
ify the material distribution in the domain with the assumed
constant λ value. Modification of the procedure itself in the
MATLAB environment is rather small, which is illustrated in
Fig.6. In the original procedure (the names of the variables
have been preserved as in the paper [4]), the variable xnew,
denoting the volume constrain, had the same value at each step
of the procedure, while the variable lmid, denoting the La-
grange multiplier, had at each iteration step different value. In
a modified procedure, the reverse is true, the lmid variable has
a fixed value, while the value of xnew is changed at each step
of the optimization process to keep the lmid constant.

6. THE COMPARISON OF THE STANDARD AND MODIFIED
APPROACH. NUMERICAL EXAMPLES

All numerical examples are created using the MATLAB code
presented in the paper by Ole Sigmund [4] and its modified
version as described in section 5. The first numerical example
will be checking the operation of the modified procedure. The
study started with the optimization for MBB-beam example,
used also in the paper by O. Sigmund. The following parame-
ter values were adopted for the optimization task: Young mod-
ulus E = 210GPa, Poisson’s ratio ν = 0.3, value of the acting
F = 500N and the volume constrain xnew = 0.3 (30% material
in the domain). The optimization result is shown on Fig.7 in
the top row. The value of the Lagrange multiplier stabilized
and reached the value of lmid = 620MPa. Then a modified al-
gorithm was used. The same parameter values were assumed,
but without the volumetric condition. Instead, a constant value
of the Lagrange multiplier lmid = 620MPa was assumed. The
obtained result shown on the bottom row on Fig.7 is identical
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The state equation in the weak form:
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- for details see [24]. Let V(x) be a smooth vector field defined
on IR3 and Tt(x) a transformation defined by the formula

Tt(x) = x+ tV(x), t ∈ [0,ε], ε > 0

that is
Tt : IR3 �−→ IR3.

Let also Ω0 ⊂ IR3 be a certain domain and Ωt its image by
means of Tt(•), that is Ωt = Tt(Ω0). Next let also ut be a func-
tion defined on Ωt . After defining the Lagrangian for the prob-
lem described by the formula (1), where Ωt is an image of Ω
in transformation Tt :

L(Ωt ,λ ) =
∫

Γ1

t.ut ds+λ
[∫

Ωt

dx−V0

]
(21)

The state equation in the weak form:

−
∫

Ωt

σ(ut) : ε(ϕ)dx+
∫

Γ1

t.ϕ ds = 0 (22)

The shape derivative [24] of Lagrange function has the fol-
lowing form and at the local minimum this first derivative
should vanish:

[L(Ω,λ )]′ =
∫

Γ1

t.u′ ds+λ
∫

Γv

V.nds = 0 (23)

The shape derivative of the state equation (22) in the weak
form can be represented by the formula:

∫

Γ1

t.u′ ds =−
∫

Γv

σ(u) : ε(u)V.nds (24)

Using this result in the derivative of Lagrange function gives
the formula:

∫

Γv

[λ −σ(u) : ε(u)]V.nds = 0 (25)

The derivative at the stationary point should vanish—for de-
tails see [22] and so it can be concluded that:

σ(u) : ε(u) = λ = const. (26)

It means that for the stiffest design, the strain energy den-
sity on the part of the boundary subject to modification Γv
must be constant. By referring this result to the structure of
the trabecular bone, it can be concluded that the assumption of
a distinguished value Uh, achievement of which for the whole
bone tissue is the clue of remodeling process, reflects the need
to obtain condition (1). Thus, the biomimetic approach to the
stiffest design can be formulated. Note that the tissue volume
is always adjusted to rebuild the structure and to obtain a con-
figuration for which the SED value for the whole structure is
close to Uh in the regulatory model. So Uh is equivalent to the
Lagrange multiplier in the equation (13). Thus, the biomimetic
approach to structural optimization can be defined by the as-
sumption of one, regardless of the load, value of the Lagrange
multiplier, dependent on the material from which the structure
is build. So, the conclusion from observing Nature is that there
in fact exists one λ value, associated with the material.

Fig. 5. The algorithm of the biomimetic optimization procedure – λ is
assumed as constant during upgrading the values of the design vari-
ables and structural volume results from the optimization procedure.

5. THE MATLAB BASED TOPOLOGY OPTIMIZATION AL-
GORITHM MODIFICATION

Bearing in mind the biomimetic approach to the problem of
stiffest design, it is possible to modify the already existing opti-
mization algorithms. The MATLAB based topology optimiza-
tion code presented in the section 2 will be modified according
to a biomimetic approach. Fig.5 illustrates the basic change.

Following the conclusion from observing Nature, instead of
a volume constraint, the constant value of Lagrange multiplier
λ is assumed. And so the optimization strategy is different
now. The goal is not to meet the volume constraint, but to mod-
ify the material distribution in the domain with the assumed
constant λ value. Modification of the procedure itself in the
MATLAB environment is rather small, which is illustrated in
Fig.6. In the original procedure (the names of the variables
have been preserved as in the paper [4]), the variable xnew,
denoting the volume constrain, had the same value at each step
of the procedure, while the variable lmid, denoting the La-
grange multiplier, had at each iteration step different value. In
a modified procedure, the reverse is true, the lmid variable has
a fixed value, while the value of xnew is changed at each step
of the optimization process to keep the lmid constant.

6. THE COMPARISON OF THE STANDARD AND MODIFIED
APPROACH. NUMERICAL EXAMPLES

All numerical examples are created using the MATLAB code
presented in the paper by Ole Sigmund [4] and its modified
version as described in section 5. The first numerical example
will be checking the operation of the modified procedure. The
study started with the optimization for MBB-beam example,
used also in the paper by O. Sigmund. The following parame-
ter values were adopted for the optimization task: Young mod-
ulus E = 210GPa, Poisson’s ratio ν = 0.3, value of the acting
F = 500N and the volume constrain xnew = 0.3 (30% material
in the domain). The optimization result is shown on Fig.7 in
the top row. The value of the Lagrange multiplier stabilized
and reached the value of lmid = 620MPa. Then a modified al-
gorithm was used. The same parameter values were assumed,
but without the volumetric condition. Instead, a constant value
of the Lagrange multiplier lmid = 620MPa was assumed. The
obtained result shown on the bottom row on Fig.7 is identical
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The shape derivative [24] of Lagrange function has the 
following form and at the local minimum this first derivative 
should vanish:
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- for details see [24]. Let V(x) be a smooth vector field defined
on IR3 and Tt(x) a transformation defined by the formula

Tt(x) = x+ tV(x), t ∈ [0,ε], ε > 0

that is
Tt : IR3 �−→ IR3.

Let also Ω0 ⊂ IR3 be a certain domain and Ωt its image by
means of Tt(•), that is Ωt = Tt(Ω0). Next let also ut be a func-
tion defined on Ωt . After defining the Lagrangian for the prob-
lem described by the formula (1), where Ωt is an image of Ω
in transformation Tt :

L(Ωt ,λ ) =
∫

Γ1

t.ut ds+λ
[∫

Ωt

dx−V0

]
(21)

The state equation in the weak form:

−
∫

Ωt

σ(ut) : ε(ϕ)dx+
∫

Γ1

t.ϕ ds = 0 (22)

The shape derivative [24] of Lagrange function has the fol-
lowing form and at the local minimum this first derivative
should vanish:

[L(Ω,λ )]′ =
∫

Γ1

t.u′ ds+λ
∫

Γv

V.nds = 0 (23)

The shape derivative of the state equation (22) in the weak
form can be represented by the formula:

∫

Γ1

t.u′ ds =−
∫

Γv

σ(u) : ε(u)V.nds (24)

Using this result in the derivative of Lagrange function gives
the formula:

∫

Γv

[λ −σ(u) : ε(u)]V.nds = 0 (25)

The derivative at the stationary point should vanish—for de-
tails see [22] and so it can be concluded that:

σ(u) : ε(u) = λ = const. (26)

It means that for the stiffest design, the strain energy den-
sity on the part of the boundary subject to modification Γv
must be constant. By referring this result to the structure of
the trabecular bone, it can be concluded that the assumption of
a distinguished value Uh, achievement of which for the whole
bone tissue is the clue of remodeling process, reflects the need
to obtain condition (1). Thus, the biomimetic approach to the
stiffest design can be formulated. Note that the tissue volume
is always adjusted to rebuild the structure and to obtain a con-
figuration for which the SED value for the whole structure is
close to Uh in the regulatory model. So Uh is equivalent to the
Lagrange multiplier in the equation (13). Thus, the biomimetic
approach to structural optimization can be defined by the as-
sumption of one, regardless of the load, value of the Lagrange
multiplier, dependent on the material from which the structure
is build. So, the conclusion from observing Nature is that there
in fact exists one λ value, associated with the material.

Fig. 5. The algorithm of the biomimetic optimization procedure – λ is
assumed as constant during upgrading the values of the design vari-
ables and structural volume results from the optimization procedure.

5. THE MATLAB BASED TOPOLOGY OPTIMIZATION AL-
GORITHM MODIFICATION

Bearing in mind the biomimetic approach to the problem of
stiffest design, it is possible to modify the already existing opti-
mization algorithms. The MATLAB based topology optimiza-
tion code presented in the section 2 will be modified according
to a biomimetic approach. Fig.5 illustrates the basic change.

Following the conclusion from observing Nature, instead of
a volume constraint, the constant value of Lagrange multiplier
λ is assumed. And so the optimization strategy is different
now. The goal is not to meet the volume constraint, but to mod-
ify the material distribution in the domain with the assumed
constant λ value. Modification of the procedure itself in the
MATLAB environment is rather small, which is illustrated in
Fig.6. In the original procedure (the names of the variables
have been preserved as in the paper [4]), the variable xnew,
denoting the volume constrain, had the same value at each step
of the procedure, while the variable lmid, denoting the La-
grange multiplier, had at each iteration step different value. In
a modified procedure, the reverse is true, the lmid variable has
a fixed value, while the value of xnew is changed at each step
of the optimization process to keep the lmid constant.

6. THE COMPARISON OF THE STANDARD AND MODIFIED
APPROACH. NUMERICAL EXAMPLES

All numerical examples are created using the MATLAB code
presented in the paper by Ole Sigmund [4] and its modified
version as described in section 5. The first numerical example
will be checking the operation of the modified procedure. The
study started with the optimization for MBB-beam example,
used also in the paper by O. Sigmund. The following parame-
ter values were adopted for the optimization task: Young mod-
ulus E = 210GPa, Poisson’s ratio ν = 0.3, value of the acting
F = 500N and the volume constrain xnew = 0.3 (30% material
in the domain). The optimization result is shown on Fig.7 in
the top row. The value of the Lagrange multiplier stabilized
and reached the value of lmid = 620MPa. Then a modified al-
gorithm was used. The same parameter values were assumed,
but without the volumetric condition. Instead, a constant value
of the Lagrange multiplier lmid = 620MPa was assumed. The
obtained result shown on the bottom row on Fig.7 is identical
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The shape derivative of the state equation (22) in the weak 
form can be represented by the formula:
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- for details see [24]. Let V(x) be a smooth vector field defined
on IR3 and Tt(x) a transformation defined by the formula

Tt(x) = x+ tV(x), t ∈ [0,ε], ε > 0

that is
Tt : IR3 �−→ IR3.

Let also Ω0 ⊂ IR3 be a certain domain and Ωt its image by
means of Tt(•), that is Ωt = Tt(Ω0). Next let also ut be a func-
tion defined on Ωt . After defining the Lagrangian for the prob-
lem described by the formula (1), where Ωt is an image of Ω
in transformation Tt :

L(Ωt ,λ ) =
∫

Γ1

t.ut ds+λ
[∫

Ωt

dx−V0

]
(21)

The state equation in the weak form:

−
∫

Ωt

σ(ut) : ε(ϕ)dx+
∫

Γ1

t.ϕ ds = 0 (22)

The shape derivative [24] of Lagrange function has the fol-
lowing form and at the local minimum this first derivative
should vanish:

[L(Ω,λ )]′ =
∫

Γ1

t.u′ ds+λ
∫

Γv

V.nds = 0 (23)

The shape derivative of the state equation (22) in the weak
form can be represented by the formula:

∫

Γ1

t.u′ ds =−
∫

Γv

σ(u) : ε(u)V.nds (24)

Using this result in the derivative of Lagrange function gives
the formula:

∫

Γv

[λ −σ(u) : ε(u)]V.nds = 0 (25)

The derivative at the stationary point should vanish—for de-
tails see [22] and so it can be concluded that:

σ(u) : ε(u) = λ = const. (26)

It means that for the stiffest design, the strain energy den-
sity on the part of the boundary subject to modification Γv
must be constant. By referring this result to the structure of
the trabecular bone, it can be concluded that the assumption of
a distinguished value Uh, achievement of which for the whole
bone tissue is the clue of remodeling process, reflects the need
to obtain condition (1). Thus, the biomimetic approach to the
stiffest design can be formulated. Note that the tissue volume
is always adjusted to rebuild the structure and to obtain a con-
figuration for which the SED value for the whole structure is
close to Uh in the regulatory model. So Uh is equivalent to the
Lagrange multiplier in the equation (13). Thus, the biomimetic
approach to structural optimization can be defined by the as-
sumption of one, regardless of the load, value of the Lagrange
multiplier, dependent on the material from which the structure
is build. So, the conclusion from observing Nature is that there
in fact exists one λ value, associated with the material.

Fig. 5. The algorithm of the biomimetic optimization procedure – λ is
assumed as constant during upgrading the values of the design vari-
ables and structural volume results from the optimization procedure.

5. THE MATLAB BASED TOPOLOGY OPTIMIZATION AL-
GORITHM MODIFICATION

Bearing in mind the biomimetic approach to the problem of
stiffest design, it is possible to modify the already existing opti-
mization algorithms. The MATLAB based topology optimiza-
tion code presented in the section 2 will be modified according
to a biomimetic approach. Fig.5 illustrates the basic change.

Following the conclusion from observing Nature, instead of
a volume constraint, the constant value of Lagrange multiplier
λ is assumed. And so the optimization strategy is different
now. The goal is not to meet the volume constraint, but to mod-
ify the material distribution in the domain with the assumed
constant λ value. Modification of the procedure itself in the
MATLAB environment is rather small, which is illustrated in
Fig.6. In the original procedure (the names of the variables
have been preserved as in the paper [4]), the variable xnew,
denoting the volume constrain, had the same value at each step
of the procedure, while the variable lmid, denoting the La-
grange multiplier, had at each iteration step different value. In
a modified procedure, the reverse is true, the lmid variable has
a fixed value, while the value of xnew is changed at each step
of the optimization process to keep the lmid constant.

6. THE COMPARISON OF THE STANDARD AND MODIFIED
APPROACH. NUMERICAL EXAMPLES

All numerical examples are created using the MATLAB code
presented in the paper by Ole Sigmund [4] and its modified
version as described in section 5. The first numerical example
will be checking the operation of the modified procedure. The
study started with the optimization for MBB-beam example,
used also in the paper by O. Sigmund. The following parame-
ter values were adopted for the optimization task: Young mod-
ulus E = 210GPa, Poisson’s ratio ν = 0.3, value of the acting
F = 500N and the volume constrain xnew = 0.3 (30% material
in the domain). The optimization result is shown on Fig.7 in
the top row. The value of the Lagrange multiplier stabilized
and reached the value of lmid = 620MPa. Then a modified al-
gorithm was used. The same parameter values were assumed,
but without the volumetric condition. Instead, a constant value
of the Lagrange multiplier lmid = 620MPa was assumed. The
obtained result shown on the bottom row on Fig.7 is identical
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Using this result in the derivative of Lagrange function gives 
the formula:
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- for details see [24]. Let V(x) be a smooth vector field defined
on IR3 and Tt(x) a transformation defined by the formula

Tt(x) = x+ tV(x), t ∈ [0,ε], ε > 0

that is
Tt : IR3 �−→ IR3.

Let also Ω0 ⊂ IR3 be a certain domain and Ωt its image by
means of Tt(•), that is Ωt = Tt(Ω0). Next let also ut be a func-
tion defined on Ωt . After defining the Lagrangian for the prob-
lem described by the formula (1), where Ωt is an image of Ω
in transformation Tt :

L(Ωt ,λ ) =
∫

Γ1

t.ut ds+λ
[∫

Ωt

dx−V0

]
(21)

The state equation in the weak form:

−
∫

Ωt

σ(ut) : ε(ϕ)dx+
∫

Γ1

t.ϕ ds = 0 (22)

The shape derivative [24] of Lagrange function has the fol-
lowing form and at the local minimum this first derivative
should vanish:

[L(Ω,λ )]′ =
∫

Γ1

t.u′ ds+λ
∫

Γv

V.nds = 0 (23)

The shape derivative of the state equation (22) in the weak
form can be represented by the formula:

∫

Γ1

t.u′ ds =−
∫

Γv

σ(u) : ε(u)V.nds (24)

Using this result in the derivative of Lagrange function gives
the formula:

∫

Γv

[λ −σ(u) : ε(u)]V.nds = 0 (25)

The derivative at the stationary point should vanish—for de-
tails see [22] and so it can be concluded that:

σ(u) : ε(u) = λ = const. (26)

It means that for the stiffest design, the strain energy den-
sity on the part of the boundary subject to modification Γv
must be constant. By referring this result to the structure of
the trabecular bone, it can be concluded that the assumption of
a distinguished value Uh, achievement of which for the whole
bone tissue is the clue of remodeling process, reflects the need
to obtain condition (1). Thus, the biomimetic approach to the
stiffest design can be formulated. Note that the tissue volume
is always adjusted to rebuild the structure and to obtain a con-
figuration for which the SED value for the whole structure is
close to Uh in the regulatory model. So Uh is equivalent to the
Lagrange multiplier in the equation (13). Thus, the biomimetic
approach to structural optimization can be defined by the as-
sumption of one, regardless of the load, value of the Lagrange
multiplier, dependent on the material from which the structure
is build. So, the conclusion from observing Nature is that there
in fact exists one λ value, associated with the material.

Fig. 5. The algorithm of the biomimetic optimization procedure – λ is
assumed as constant during upgrading the values of the design vari-
ables and structural volume results from the optimization procedure.

5. THE MATLAB BASED TOPOLOGY OPTIMIZATION AL-
GORITHM MODIFICATION

Bearing in mind the biomimetic approach to the problem of
stiffest design, it is possible to modify the already existing opti-
mization algorithms. The MATLAB based topology optimiza-
tion code presented in the section 2 will be modified according
to a biomimetic approach. Fig.5 illustrates the basic change.

Following the conclusion from observing Nature, instead of
a volume constraint, the constant value of Lagrange multiplier
λ is assumed. And so the optimization strategy is different
now. The goal is not to meet the volume constraint, but to mod-
ify the material distribution in the domain with the assumed
constant λ value. Modification of the procedure itself in the
MATLAB environment is rather small, which is illustrated in
Fig.6. In the original procedure (the names of the variables
have been preserved as in the paper [4]), the variable xnew,
denoting the volume constrain, had the same value at each step
of the procedure, while the variable lmid, denoting the La-
grange multiplier, had at each iteration step different value. In
a modified procedure, the reverse is true, the lmid variable has
a fixed value, while the value of xnew is changed at each step
of the optimization process to keep the lmid constant.

6. THE COMPARISON OF THE STANDARD AND MODIFIED
APPROACH. NUMERICAL EXAMPLES

All numerical examples are created using the MATLAB code
presented in the paper by Ole Sigmund [4] and its modified
version as described in section 5. The first numerical example
will be checking the operation of the modified procedure. The
study started with the optimization for MBB-beam example,
used also in the paper by O. Sigmund. The following parame-
ter values were adopted for the optimization task: Young mod-
ulus E = 210GPa, Poisson’s ratio ν = 0.3, value of the acting
F = 500N and the volume constrain xnew = 0.3 (30% material
in the domain). The optimization result is shown on Fig.7 in
the top row. The value of the Lagrange multiplier stabilized
and reached the value of lmid = 620MPa. Then a modified al-
gorithm was used. The same parameter values were assumed,
but without the volumetric condition. Instead, a constant value
of the Lagrange multiplier lmid = 620MPa was assumed. The
obtained result shown on the bottom row on Fig.7 is identical
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The derivative at the stationary point should vanish—for 
details see [22] and so it can be concluded that:
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- for details see [24]. Let V(x) be a smooth vector field defined
on IR3 and Tt(x) a transformation defined by the formula

Tt(x) = x+ tV(x), t ∈ [0,ε], ε > 0

that is
Tt : IR3 �−→ IR3.

Let also Ω0 ⊂ IR3 be a certain domain and Ωt its image by
means of Tt(•), that is Ωt = Tt(Ω0). Next let also ut be a func-
tion defined on Ωt . After defining the Lagrangian for the prob-
lem described by the formula (1), where Ωt is an image of Ω
in transformation Tt :

L(Ωt ,λ ) =
∫

Γ1

t.ut ds+λ
[∫

Ωt

dx−V0

]
(21)

The state equation in the weak form:

−
∫

Ωt

σ(ut) : ε(ϕ)dx+
∫

Γ1

t.ϕ ds = 0 (22)

The shape derivative [24] of Lagrange function has the fol-
lowing form and at the local minimum this first derivative
should vanish:

[L(Ω,λ )]′ =
∫

Γ1

t.u′ ds+λ
∫

Γv

V.nds = 0 (23)

The shape derivative of the state equation (22) in the weak
form can be represented by the formula:

∫

Γ1

t.u′ ds =−
∫

Γv

σ(u) : ε(u)V.nds (24)

Using this result in the derivative of Lagrange function gives
the formula:

∫

Γv

[λ −σ(u) : ε(u)]V.nds = 0 (25)

The derivative at the stationary point should vanish—for de-
tails see [22] and so it can be concluded that:

σ(u) : ε(u) = λ = const. (26)

It means that for the stiffest design, the strain energy den-
sity on the part of the boundary subject to modification Γv
must be constant. By referring this result to the structure of
the trabecular bone, it can be concluded that the assumption of
a distinguished value Uh, achievement of which for the whole
bone tissue is the clue of remodeling process, reflects the need
to obtain condition (1). Thus, the biomimetic approach to the
stiffest design can be formulated. Note that the tissue volume
is always adjusted to rebuild the structure and to obtain a con-
figuration for which the SED value for the whole structure is
close to Uh in the regulatory model. So Uh is equivalent to the
Lagrange multiplier in the equation (13). Thus, the biomimetic
approach to structural optimization can be defined by the as-
sumption of one, regardless of the load, value of the Lagrange
multiplier, dependent on the material from which the structure
is build. So, the conclusion from observing Nature is that there
in fact exists one λ value, associated with the material.

Fig. 5. The algorithm of the biomimetic optimization procedure – λ is
assumed as constant during upgrading the values of the design vari-
ables and structural volume results from the optimization procedure.

5. THE MATLAB BASED TOPOLOGY OPTIMIZATION AL-
GORITHM MODIFICATION

Bearing in mind the biomimetic approach to the problem of
stiffest design, it is possible to modify the already existing opti-
mization algorithms. The MATLAB based topology optimiza-
tion code presented in the section 2 will be modified according
to a biomimetic approach. Fig.5 illustrates the basic change.

Following the conclusion from observing Nature, instead of
a volume constraint, the constant value of Lagrange multiplier
λ is assumed. And so the optimization strategy is different
now. The goal is not to meet the volume constraint, but to mod-
ify the material distribution in the domain with the assumed
constant λ value. Modification of the procedure itself in the
MATLAB environment is rather small, which is illustrated in
Fig.6. In the original procedure (the names of the variables
have been preserved as in the paper [4]), the variable xnew,
denoting the volume constrain, had the same value at each step
of the procedure, while the variable lmid, denoting the La-
grange multiplier, had at each iteration step different value. In
a modified procedure, the reverse is true, the lmid variable has
a fixed value, while the value of xnew is changed at each step
of the optimization process to keep the lmid constant.

6. THE COMPARISON OF THE STANDARD AND MODIFIED
APPROACH. NUMERICAL EXAMPLES

All numerical examples are created using the MATLAB code
presented in the paper by Ole Sigmund [4] and its modified
version as described in section 5. The first numerical example
will be checking the operation of the modified procedure. The
study started with the optimization for MBB-beam example,
used also in the paper by O. Sigmund. The following parame-
ter values were adopted for the optimization task: Young mod-
ulus E = 210GPa, Poisson’s ratio ν = 0.3, value of the acting
F = 500N and the volume constrain xnew = 0.3 (30% material
in the domain). The optimization result is shown on Fig.7 in
the top row. The value of the Lagrange multiplier stabilized
and reached the value of lmid = 620MPa. Then a modified al-
gorithm was used. The same parameter values were assumed,
but without the volumetric condition. Instead, a constant value
of the Lagrange multiplier lmid = 620MPa was assumed. The
obtained result shown on the bottom row on Fig.7 is identical
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It means that for the stiffest design, the strain energy density 
on the part of the boundary subject to modif ication Γv must 
be constant. By referring this result to the structure of the 
trabecular bone, it can be concluded that the assumption of 
a distinguished value Uh, achievement of which for the whole 
bone tissue is the clue of remodeling process, ref lects the need 
to obtain condition (1). Thus, the biomimetic approach to the 
stiffest design can be formulated. Note that the tissue volume 
is always adjusted to rebuild the structure and to obtain a con-
f iguration for which the SED value for the whole structure 
is close to Uh in the regulatory model. So Uh is equivalent to 
the Lagrange multiplier in the equation (13). Thus, the bio-
mimetic approach to structural optimization can be defined 
by the assumption of one, regardless of the load, value of the 
Lagrange multiplier, dependent on the material from which the 
structure is build. So, the conclusion from observing Nature 
is that there in fact exists one λ value, associated with the 
material.

5.	 THE MATLAB BASED TOPOLOGY OPTIMIZATION 
ALGORITHM MODIFICATION

Bearing in mind the biomimetic approach to the problem of 
stiffest design, it is possible to modify the already existing opti-
mization algorithms. The MATLAB based topology optimiza-
tion code presented in the Section 2 will be modified according 
to a biomimetic approach. Fig. 5 illustrates the basic change.

Following the conclusion from observing Nature, instead of 
a volume constraint, the constant value of Lagrange multiplier 

Fig. 5. The algorithm of the biomimetic optimization procedure – λ 
is assumed as constant during upgrading the values of the design vari-
ables and structural volume results from the optimization procedure
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λ is assumed. And so the optimization strategy is different now. 
The goal is not to meet the volume constraint, but to modify the 
material distribution in the domain with the assumed constant 
λ value. Modification of the procedure itself in the MATLAB 
environment is rather small, which is illustrated in Fig. 6. In the 
original procedure (the names of the variables have been pre-
served as in the paper [4]), the variable xnew, denoting the vol-
ume constrain, had the same value at each step of the procedure, 
while the variable lmid, denoting the Lagrange multiplier, had 
at each iteration step different value. In a modified procedure, 
the reverse is true, the lmid variable has a fixed value, while 
the value of xnew is changed at each step of the optimization 
process to keep the lmid constant.

6.	 THE COMPARISON OF THE STANDARD AND 
MODIFIED APPROACH. NUMERICAL EXAMPLES

All numerical examples are created using the MATLAB code 
presented in the paper by Ole Sigmund [4] and its modified 
version as described in Section 5. The first numerical example 
will be checking the operation of the modified procedure. The 
study started with the optimization for MBB-beam example, 
used also in the paper by O. Sigmund. The following parameter 
values were adopted for the optimization task: Young modu-
lus E = 210 GPa, Poisson’s ratio ν = 0.3, value of the acting 
F = 500 N and the volume constrain xnew = 0.3 (30% material 
in the domain). The optimization result is shown in Fig. 7 in 
the top row. The value of the Lagrange multiplier stabilized 
and reached the value of lmid = 620 MPa. Then a modified 
algorithm was used. The same parameter values were assumed, 
but without the volumetric condition. Instead, a constant value 
of the Lagrange multiplier lmid = 620 MPa was assumed. The 
obtained result shown on the bottom row in Fig. 7 is identical to 
the result obtained using the original procedure. The volume of 
material in the domain after the completion of the optimization 
process was 29.8%.

6.1. �The new paradigm for compliance minimization 
– different topologies for different load magnitudes

Another numerical example relates to the problem shown in 
Fig. 2 and described in Section 3. The example illustrates the 
result obtained with the modified procedure. The same param-
eter values as in the previous example were assumed, without 
the volumetric condition, however optimization was performed 

Fig. 8. The MATLAB based modified topology optimization code 
results for the MBB-beam example – different values of the loading 

force, different results

Fig. 6. a) The original optimization procedure (xnew, denoting the volume constrain – constant and lmid, denoting the Lagrange multiplier 
– different value for each iteration), b) Modified optimization procedure (xnew – different value for each iteration and variable different value 

for each iteration and lmid – constant) optimization procedures

for two different values of bending force. For both cases a con-
stant value of the Lagrange multiplier lmid = 620 MPa was 
assumed.

The optimization results presented in Fig. 8 for the different 
forces are now clearly different. As the load increases, more 
material is needed to transfer the load. It is especially important 
to stress that the topology also changes depending on the load.

Fig. 7. The comparison of the standard and modified approach. a) The 
original optimization procedure (xnew, denoting the volume constrain 
– constant and lmid, denoting the Lagrange multiplier – different 
value for each iteration), b) Modified optimization procedure (xnew 
– different value for each iteration and variable different value for 

each iteration and lmid – constant) optimization procedures

(a) (b)

a) b)
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6.2. �The new paradigm for compliance minimization 
– different topologies for different materials

An important effect of applying the new approach to the optimi-
zation process is the dependence of both the amount of material 
in the domain and its distribution. Moreover, the topological 
configuration is no longer dependent on the priorly assumed 
volume constraint, but on the properties of the material itself. 
In the next numerical example, optimization will be performed 
for the same geometrical configurations and loading force, but 
assuming the use of different materials. This means assuming 
a different value of the Lagrange multiplier as a reference value 
during the optimization process. The following parameter val-
ues were assumed for the optimization task:
–	 steel: Young modulus E = 210 GPa, Poisson’s ratio ν = 0.30, 

the value of the Lagrange multiplier lmid = 620 MPa,
–	 aluminum (as for alloy 1050A1): Young modulus E = 69 GPa,  

Poisson’s ratio ν = 0.33, and the value of the Lagrange mul-
tiplier was assumed for this material lmid = 90 MPa.
The obtained results are shown in Fig. 9 – the upper row 

presents the optimization result for steel, the lower one – the 
optimization result for aluminum. The resulting configurations 
are completely different. According to an engineering intuition, 
for a material with a much lower yield point, much more mate-
rial will have to be used. But as in the previous example, the 
obtained solutions also represent a completely different result 
from the topological optimization’s point of view.

tice, possibilities of applying the described approach. Useful 
for engineers and accelerating the optimization process are 
especially the effects of using a modified approach related to 
obtaining different configurations for different load magnitudes 
and also completely different topologies for different materi-
als. Both features of the presented approach are crucial for the 
design of lightweight structures, allowing the actual weight of 
the structure to be minimized. The final volume is not assumed 
at the beginning of the optimization process (no material vol-
ume constraint), but depends on the material properties and the 
forces acting on the structure. A new research area is also open-
ing up related to a new interpretation of the Lagrange multiplier 
and its role in the optimization process. The constant value of 
the Lagrange multiplier is a condition for minimizing the com-
pliance functional. As it was shown in the paper, applying this 
condition to the SIMP approach gives correct results. But the 
condition also applies to the structural surface, which in the case 
of 2D models cannot be properly enforced. This also applies to 
two-dimensional simulations of the trabecular bone remodeling 
process, but there is no two-dimensional trabecular bone. It is 
only 3-dimensional, and the remodeling process concerns the 
bone surface. The true meaning of the condition concerning 
the structural surface requires three-dimensional models. Such 
modeling is possible, providing results that are difficult or near 
impossible to obtain by other methods [22, 23, 25]. In biolog-
ical models such as the mentioned regulatory model, the “lazy 
zone” is also important. As a matter of fact it can be perfectly 
used to solve the problem of multiple load cases in a structural 
optimization task [23]. As it turns out, Nature still has lots to 
offer, especially in the area of structural optimization.

8.	 REPLICATION OF RESULTS
In the presented paper MATLAB code which is accessible to 
everyone presented in the paper by Ole Sigmund [4] was used. 
Examples used in a similar way come directly from the same 
publication. The proposed MATLAB code modification will 
certainly not cause any problems, and so it will possible for all 
readers to reproduce results presented in the paper.
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