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Abstract. In the current work the calculations of the reaction cross-section of total fusion σfus, the fusion barrier distribution Dfus, and the 
probability Pfus were achieved for systems 6He+64Zn, 8B+58Ni and 8He+197Au which involve halo nuclei by using a semiclassical approach. 
The semiclassical and quantum mechanics treatments comprise the approximation of WKB for describing the relative motion among projectile 
nuclei and target nuclei, and the method of CDCC (Continuum Discretized Coupled Channel) for describing the intrinsic motion for the pro-
jectile and target nuclei. Our semiclassical calculations yielded findings that were compared to obtainable experimental data as well as quantum 
mechanics calculations. For fusion cross-sections σfus below and above the Coulomb barrier Vb, the quantum mechanics coupled channels are 
very similar, according to the experimental results.
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1. INTRODUCTION

Nuclear fusion is one of the most promising and forward-
looking approaches to finding alternative energy sources [1].
The Coulomb barrier, which is formed using the long-range re-
pulsive Coulomb and the attractive, short-range nuclear force,
must be overcome by the relative movement of the colliding nu-
clei [2]. The tunneling phenomenon can cause fusion reactions
at the energies below the current barrier, which are called classi-
cal forbidden areas [2,3]. To calculate the tunneling probability,
the Schrodinger equation should be approximated in this for-
bidden field, which is done using the WKB process [2, 4]. Two
kinds of fusion processes can be distinguished in collisions of
weak bound nuclei, ICF (incomplete fusion) when some pro-
jectile fragments drift away from the interaction area, and CF
(complete fusion) where the nucleons of each projectile-target
nucleon combine to form the compound nucleus. The total fu-
sion cross-section represented the sum of cross-sections of both
ICF and CF, which was calculated in most experiments [5–9].
The coupling to the continuum was used for investigating the
impact of the breakup channel on the system with weak bound
projectile [3]. According to CDCC, the continuum was eval-
uated using a finite set of cases [10–12]. F. A. Majeed et al.
[13–23] recently demonstrated that the semi-classical method
is very effective for the measurement of fusion reactions when
the coupled channel to the continuum is considered by using
it on several selected systems including the halo nuclei. This
work focuses on using the semi-classical method utilising the
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adoption of Alder and Winther theory originally employed for
treating the Coulomb exciting the nuclei, known as the route of
CDCC in which semiclassical and quantum methods were ap-
plied for calculating total fusion cross-sections σfus (mb) and
distributions of fusion barrier D f us (mb/MeV) to systems in-
cluding light halo nuclei 6He+64Zn, 8B+58Ni and 8He+197Au.
The results for quantum and semiclassical calculations are com-
pared using the calculations of the single and coupled channel
with the available experimental data.

2. THEORETICAL BACKGROUND
2.1. The coupling channel formalism
Nuclei in the collision can experience internal excitations, and
various processes of the particle transfer, all of which im-
pact their total fusion reaction cross-sections σfus. However,
the current reaction process includes the effective participa-
tion of many freedom degrees to describe it. Hence, the fusion
method requires the explicit inclusion of the couplings among
the various freedom degrees. Also, this was achieved by in-
corporating many components into the system wave function
equal to the numbers of inherent quantum mechanical cases in-
cluded [24, 25].

Consider the reaction described using the function of total
wave Ψ(r,τ), where r stands for the separation vector of tar-
get nuclei and projectile nuclei and τ for the set of the intrinsic
coordinates of target and projectile nuclei. Dynamics of the cur-
rent reaction was done using Hamiltonian equation:

H = H0 +T+U , (1)

where H0 ≡ H0(τ, pτ) is the intrinsic Hamiltonian, U ≡ U(r,τ)
is the interaction potential and T ≡ −�2∇2/2µ for the relative
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motion, the kinetic energy operator among target and projec-
tile nuclei, the intrinsic Hamiltonian eigenstates, |η〉, satisfy the
Schrödinger equation [4]:

(eη −H0) |η〉. (2)

The orthonormality is:

〈η〉=
∫

dτϕ∗
η ′(τ)ϕη(τ) = δηη ′ , (3)

where ϕη(τ)
(
ϕη ′(τ)

)
is the wave function that corresponds to

a state |η〉(|η〉) in the representation of τ . The interaction po-
tential is split as below:

U = U′+U′′ , (4)

where U′ is diagonal in the space of channel:

U′ = ∑
η
|η〉U′

η〈η |, (5)

U′′ = ∑
η
|η〉U′′

ηη ′ 〈η ′|, (6)

where

U′
η(r) =

∫
dτ

∣∣ϕη(τ)
∣∣2 U′(r,τ), (7)

U′′
ηη ′(r) =

∫
dτ ϕ∗

η ′(τ)U′′(r,τ)ϕη(τ) . (8)

The potential U′ was arbitrary, except diagonal in the space of
the channel. Nevertheless, once it was selected, U′′ was calcu-
lated using this relation U′′ = U−U′. It was frequently conve-
nient for choosing U′ such that U′′ was purely off-diagonal. But
in some states, components of U′′ were done as below [5]:

U′′
ηη ′(r) =

∫
dτ ϕ∗

η ′(τ)U′′(r,τ)ϕη(τ)−δηη ′ U′
η(r). (9)

From the Schrödinger equation, the equations of the coupled
channel were derived:

(E−H)
∣∣Ψη(η0 k0)

〉
= 0 , (10)

and the channel expansion:
∣∣Ψη(η0 k0)

〉
= ∑

η

∣∣ψη(η0 k0)
〉
|η〉 . (11)

The notation |Ψ(η0 k0)〉 indicated that the collision was started
in the channel η0, with the wave vector k0, and the scale of
energy was selected like that eη0 = 0. Owing to the reaction
off-diagonal part. The solution of the Schrödinger equation has
components |Ψη(η0k0)〉 for both η = η0 and η �= η0. The infi-
nite expansion of equation (11) was cut to include just more
suitable channels or closed coupling approximation. For ac-
counting the losing flux throughout the neglected channels,
only one maybe involve the imaginary part in potentials of the
channel U′

η(r). The Hamiltonian must write as below, to calcu-
late the function of wave [5]:

H = H0 +H′+U′′, (12)

where
H′ = K+U′ , (13)

when equations (11) and (12) were substituted into equation
(10), and taken product of the scalar with all intrinsic states |η |,
then gotten equations of the coupled channel:

(
Eη −H′

η
)
|ψη(η0 k0)〉= ∑

η ′
U′′

ηη ′(r)
∣∣ψη ′(η0 k0)

〉
, (14)

or
[

Eη +
�2

2µ
∆−U′

η(r)
]

ψη(r) = ∑
η ′

U′′
ηη ′(r)ψη ′(r) , (15)

where
Eη = E− eη , (16)

Eη was the total energy for the relative motion in the channel η
and

H′
η = T+U′

η . (17)

Equation (15) turned to the more compact notation
|ψη(η0 k0)〉 → ψη(r), and the channel potentials have been
put as:

U′
η = Vη + iWη , (18)

where the flux in channel η accounted by the imaginary part
Wη lost to others not involved in equations of the coupled chan-
nel. The non-Hermitian nature consequence of H was that the
continuity equation broke down. In general states where the
channel coupling interaction U′′

η was hermitian, the continuity
equation was written as below [26]:

∇ ·∑
η

jη =
2
� ∑

η
Wη(r)

∣∣ψη(r)
∣∣2 �= 0, (19)

where jη is the probability current density in channel η . Usage
of the concept of the absorption cross-section ση , integrate the
above equation within the broad sphere with a radius greater
than the range of interaction [27–30]:

ση =
k
E ∑

η

〈
ψη

〉
. (20)

If the case of the absorptive potential, the relation is as below:

Wη = WD
η +WF

η , (21)

with WD
η is to calculate losing the flux to other direct reaction

channels and WF
η to calculate the fusion absorption, according

to [14, 16], the fusion reaction cross-section becomes:

σF =
k
E ∑

η

〈
ψη

〉
. (22)

In fusion reactions, couplings between multiple channels have
significant effects.

2.2. Fusion barrier distribution
The influence of coupling of various channels on fusion reac-
tions was well understood for around a quarter-century. Its more
dramatic consequence was enhancing the total fusion reaction
cross-section σfus at Coulomb sub-barrier energies Vb, in sev-
eral states using many orders of magnitude. The effect of cou-
pling channels can be defined as the division of the fusion bar-
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rier into many sections, with the known distribution of fusion
barrier Dfus and written by [5, 31]:

Dfus(E) =
d2G(E)

dE2 , (23)

when G(E) is associated with the total fusion reaction cross-
section during:

G(E) = E σfus(E). (24)

The measured data on the distribution of fusion reaction barrier
led to obtaining important information in the understanding of
the nature of the fusion reaction, due to the contribution of the
coupling channel during a collision. Nevertheless, from equa-
tion (23) it was noticed because it must be obtained from values
of the reaction cross-section of total fusion. It was susceptible to
both experimental and computational uncertainties. The general
method is to evaluate the 2nd derivative shown in equation (23)
throughout the 3-point difference approach [3, 32]:

D f (E)≈
G(E +∆E)+G(E −∆E)−2G(E)

∆E2 , (25)

where ∆E is the energy interval among the total fusion reac-
tion cross-section measurements. The statistical error related to
the distribution of fusion reaction barrier is roughly recorded
using [2], according to equation (25):

δDstat
f (E)≈√
[δG(E +∆E)]2 +[δG(E −∆E)]2 +4 [δG(E)]2

(∆E)2 , (26)

where δG(E) is mean the uncertainty in the energy product
measurements by the reaction cross-section of total fusion at
the known value of energies of collision. When uncertainties
were evaluated as below [18]:

δDstat
f (E)≈

√
6δG(E)
(∆E)2 . (27)

3. RESULTS AND DISCUSSION
The theoretical results in this section obtained for the cross-
section of total fusion σfus, the distribution of the barrier of
fusion Dfus and probability of the fusion Pfus by the quan-
tum mechanical route for systems 6He+64Zn, 8B+58Ni, and
8He+197Au. The semiclassical calculations conducted by code
SCF and quantum mechanical calculations performed by code
CC, the σfus, Dfus and Pfus are compared with measured data.
The Akyüz-Winther parameters of the used potential to perform
the calculations were listed in Table 1.

Table 1
The parameter of the potential of Akyüz-Winther type along with Vb

Proj. + Target
V0

(MeV)
a0

(fm)
r0

(fm)
Vb

(MeV)
6He+64Zn –43.0 0.80 1.10 8.40
8B+58Ni –96.9 0.60 1.20 20.05

8He+197Au –83.1 0.84 0.98 19.50

3.1. The reaction 6He+64Zn
The system 6He+64Zn includes two neutron light halo nucleus
of 6He as a projectile nucleus. The calculations for the reaction
cross-section of total fusion σfus, the distribution of fusion reac-
tion barrier Dfus and the probability of the fusion Pfus are shown
in A, B, and C, respectively, for the system 6He+64Zn as shown
in Fig. 1. The calculations were performed using a CC code.

Fig. 1. The comparison of the theoretical calculations with measured data [32]
for 6He+64Zn reaction. (A) for cross-section of the total fusion σfus (mb), and
(B) for the distribution of the fusion barrier Dfus (mb/Me V), and (C) the prob-

ability Pfus
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The potential of the Akyüz-Winther type employed in the 
current study is listed in Table 1. The result of the coupling 
channel for the 6He+64Zn system agrees with a few numbers 
of measured data above and below the barrier of Coulomb, as 
shown in Fig. 1, the data for this system were taken from [33]. 
Since the studied systems involve halo nuclei (projectile), the 
calculations below the Coulomb barrier Vb are not in agreement 
with the measured data, therefore channel coupling is vital in 
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for 8B+58Ni fusion reaction were performed by the parameters 
of Woods-Saxon which are listed in Table 1. The experimental 
data as shown in Fig. 2 for the current system were collected 
from [33]. The quantum mechanics theoretical calculations with 
and without coupling channel show a good match with the mea-
sured data.

3.3. The reaction 8He+197Au
The cross-section of total fusion σfus, probability Pfus and dis-
tribution of fusion barrier Dfus are calculated by using SCF and 
CC codes, where the projectile 8He includes four neutrons halo 
nucleus. The quantum mechanical and semi-classical calcula-
tions for this system are shown in Fig. 3A, B and C are for 
σfus, Dfus and Pfus respectively. The experimental data as shown 
in Table 1 for this system are obtained from [33]. Theoretical 

(A)

(A)

(B)

(B)

(C)
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results were compared with the measured data and channel 
coupling was in good agreement with m below and above the 
Coulomb barrier.

4.	 CONCLUSION
The conducted study shows clearly the coupling is very import-
ant to be considered in the calculations by utilizing the two 
approaches based on quantum mechanics and semiclassical 
mechanics for σfus, Dfus and the probability Pfus for the reac-
tions: 6He+64Zn, 8B+58Ni and 8He+197Au. The importance of 
considering channel coupling arises from the fact that the 
projectile of the studied systems is loosely bound nuclei.  
The quantum mechanical results with coupled channels agree 
reasonably well with the measured data for all reactions under 
study.
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