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Vibrations of bars including transverse shear deformations 
and warping due to torsion

S. Czarnecki1, T. Lewiński2

Abstract: The paper deals with coupled flexural-torsional vibrations of straight prismatic elastic bars made of a 

linearly elastic isotropic and homogeneous material. One of the aims is to develop an effective method of 

modelling vibrations of train rails of cross-sections being mono-symmetric, taking into account warping due to 

torsion as well as transverse shear deformations. The Librescu-Song 1D model has been appropriately adapted to 

the above research aims by incorporating all the inertia terms corresponding to the kinematic hypotheses. The 

finite element(FE) program has been written and its correctness has been verified. The results concerning natural 

vibrations compare favourably with those predicted by 3D FE modelling using dense meshes. The paper proves 

that neglecting warping due to torsion leads to omitting several eigen-modes of vibrations, thus showing that the 

popular Timoshenko-like models are useless for the vibration analysis of bars of mono-symmetric cross sections.
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1. Introduction

The most advanced 1D theories of elastic bars model their axial deformation, the bending,  the non-

planar deformations due to transverse shear in two planes as well as the warping due to torsion, while 

the transverse distortions of the cross sections are neglected, see e.g. El Fatmi [6] and Genoese et 

al.[7]. By assuming that the non-planar deformations due to transverse shear are characterized by the  

Timoshenko shear deformation measures and the warping due to torsion is controlled by the 

conventional measure of torsion, one arrives at the 1D bar model involving the smallest possible 

number of the primal unknowns: the axial displacement (along the axis x), two transverse 

displacements (along the axes y and z) , two angles of rotation of the cross section and the angle of 

axial rotation. In this manner one obtains the simplified theory of El Fatmi equipped with the correct 

constitutive equations, provided that at least the 1st order approximation warping functions are 

assumed, see Secs 3, 4 in [11].  By neglecting the out-of-plane deviation of the transverse shear 

deformation one obtains the model of Librescu and Song, see Sec 3 in [12]. This model extends 

Timoshenko’s theory towards including warping due to torsion. The constitutive equations (along 

with the stiffnesses) may be still derived from the (more advanced) simplified El Fatmi theory, to 

make them as accurate as possible; in the present paper these equations are given by (4.3), (4.4). It is 

worth emphasizing that in these constitutive equations the formulae linking transverse forces with 

shear deformations are coupled, while all other formulae are decoupled. The mentioned coupling 

holds even if the cross section parameterization (i.e. the y,z system ) refers to the principal axes of 

inertia. In general, the reciprocal transverse shear stiffnesses yz zyA A� are non- zero, see Eqs. (4.15) 

in [11]. They vanish if the cross section is mono-symmetric (or bisymmetric). Even if the cross-

section is mono-symmetric there are several alternative methods of computing the shear correction 

factors  / ,  /z z y yk A A k A A� � , A being the area of the cross section, see [5,7,8,9]. In the present 

paper the shear correction factors will be computed according to Gruttmann and Wagner’s algorithm 

[8]; it is more accurate that the algorithm used in [11] where the Poisson ratio effect has been 

neglected. Nevertheless, the results do not coincide  with those predicted by the algorithm of 

Hutchinson [9], which will be recalled in the context of the elliptic cross-section.

The aim of the present paper is modelling vibrations of prismatic bars of arbitrary cross sections, 

but the examples will concern the mono-symmetric profiles. The kinematic assumptions will be used 

like in Librescu-Song’s theory, yet the constitutive equations will be assumed as in the simplified El 

Fatmi’s model (because these are the most accurate and also the simplest). The assumed kinematics 
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admits independence of rotations and deflections; the warping due to torsion is induced by the 

torsional deformation. This kinematics determines not only the elastic energy of the bar, but also all 

the inertia terms. The aim of taking into account the terms modelling the torsional warping within the 

kinematic assumptions is to achieve maximal accuracy of predicting the first, say, 10 natural 

frequencies. Since the paper by Banerjee [2] appeared it is known that the accurate description of 

bars’ vibration necessitates taking into account the warping effect, especially if the profiles are thin-

walled. The essential influence of the warping phenomenon on the dynamical behavior of bars has 

also been confirmed by Adam [1] and by Bercin and Tanaka [3], where also the shear deformation 

effect has been included. The history of this development of the theory of vibration of bars can be 

found in the recent work by Burlon et al [4].   

In the present paper the Librescu-Song model is adopted and used to predict natural frequencies 

of selected bars, including the rail 49E1. This aim is attained by preparing the new FE code  in which 

the primal unknowns are interpolated by 3rd order polynomials. The approach includes solving three 

elliptic problems posed on the plane cross-section domain, describing the warping due to torsion and 

shear deformation in two transverse directions. Using the contemporary terminology, the approach is 

hierarchical: the 3D problem is replaced by three 2D elliptic problems from which some data are 

transferred to the main problem (posed on the bar’s axis) modelling its coupled flexural-torsional

vibrations.

The analysis of vibrations of the rail 49E1 is the preliminary study for designing the mass dampers 

for the rail track; according to the code [13] the supported rail (with dampers) of length 6 m should 

be tested. This justifies the vibration analysis of the fork-supported rails of the span much longer than 

the usual distance between the sleepers, see Sec.9.2. Since the rails are subjected to both the vertical 

and horizontal loads our analysis includes: vertical bending - as well as  the coupled: lateral bending-

torsional vibrations. This 1D model developed can be appropriately adjusted to analyze vibrations of 

rail tracks by the methods proposed recently by Kostovasilis et al.[10].

2. Warping due to torsion and transverse shear

Consider first the warping due to pure torsion.  The warping function will be referred to the shear 

center S by using Gruttmann and Wagner [8] concept. Let point O be the gravity center of the cross-

section’s planar domain A, being also the origin of the Cartesian coordinate system (y,z) of axes being 

the principal axes of the domain A. Let 
2 2 2 2/ /y z� � � � � � � be the Laplace operator; let ( , )y zn n�n

be the unit vector outward normal to the contour � of the domain A. The directional derivative of the 
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function f with respect to the vector n is defined by , ,/ y y z zf f n f n� � � �n , where 

� � � �
, ,

. / ,   . /
y z

y z� � � � � � .  To make the formulae as concise as possible we introduce the notation: 

dA=dydz , ( , )
A

f f y z dA� 	 , � �| ( , ) ( , )
A

f g f y z g y z dA� 	 . Thus, in particular: � �1| 0y � ,

� � � �1| 0,  | 0z y z� � .  The warping function due to pure torsion is determined by the solution 

( , )o o y z
 
� to the following elliptic problem posed in the planar domain  A:

(2.1)    0,   in   ,        on  ,      0o
o y z oA n z n y

 
�

� � � � � �
�n

The last condition in (2.1) makes the solution unique. The coordinates of the center of shear S are 

given by, cf. Gruttmann and Wagner [8]

(2.2)     
� �
� �

� �
� �

| |
,    

| |

o o
S S

z y
y z

z z y y

 


� � �

where � � � �| ,  |y zJ z z J y y� � represent the principal moments of inertia of the cross section domain 

A.  The warping function due to torsion  referred to point S is given by

(2.3)             
� � � �, , ( ) ( )o S S S Sy z y z y z z z y y
 
� � � � �

,

We note that:   � � � � � �|1 0,   | 0,   | 0  y z
 
 
� � � .

Consider now the effect of the transverse shear. To make the paper self-contained  we recall, yet 

without explanatory comments,  the Gruttmann and Wagner [8] algorithm of computing the shear 

correction factors of bars made of a homogeneous isotropic material; Poisson’s ratio  � and Young’s 

modulus  E  are material constants. The bar is viewed as prismatic, hence each outward normal to its 

cylindrical surface is  orthogonal to the bar’ axis.

Step 1. Computing coordinates of a point So

Having the solution to the problem (2.1) we compute

(2.4)    � � � � � � � �2 2

, , , ,( ) | ,   ( ) | ,  ( ) | , ( ) |y o z z o y zz o y yy o zB y y B z z B z z B y y
 
 
 
� � � � � � � �

The coordinates of point So read     ,   
2 2

yy zz
o o

y z

B By z
B B

� � .

Step 2. Determination of the stress function modelling the transverse shear in the y-direction. Define

(2.5)  � � � �
2

1

1

1 ( )
, ,     

2(1 )

o
o

z z

z zf y z y f z
J J

�
�

�
� � �

�
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and solve the elliptic problem:

(2.6)
1 1

1 10,   in   ,      ( )  on       o yf A f z n

 �
� � � � �

�n
The solution is determined up to an additive constant, not important in the sequel.

Step 3  Compute the auxiliary fields   1, 1 1,( ),       xy y xz zf z� 
 � 
� � � and the integral  

� � � �2 2

xy xzW � �� � .The effective area  y yA k A� is determined by 
1( )yk AW ��

Step 4. Determination of the stress function modelling the transverse shear in the z-direction. Define

(2.7) � � � �
2

2

2

1 ( )
, ,     

2(1 )

o
o

y y

y yf y z z f y
J J

�
�

�
� � �

�

and solve the elliptic problem:

(2.8)  
2 2

2 20,   in   ,      ( )  on  ,      o zf A f y n

 �
� � � � �

�n

Step 5 Compute the auxiliary fields  2, 2, 2,   ( ) xy y xz z f y� 
 � 
� � � and the integral W defined as 

above.  The effective area  z zA k A� is determined by 
1( )zk AW �� .

Having the stress functions 1 2,
 
 and the magnitudes of the transverse forces one can recover the 

shape of the deformed cross sections, see [8] and the references therein.

3. Kinematic assumptions

As suggested by the theory of pure torsion the variation of the warping due to torsion is determined 

by the rate of change of the twisting angle. The displacement fields  

( , , , ), ( , , , ), ( , , , ) x y zu x y z t u x y z t u x y z t in the bar are assumed to have the form

(3.1)    

( , )
= ( , )+ ( , ) ( , ) ( , ) ,  

( , ) ( ) ( , ),     = ( , ) ( ) ( , ),

x

y S z S

x tu u x t y x t z x t y z
x

u v x t z z x t u w x t y y x t

�� � 


� �

�
� �

�
� � � � �

where  ( , ), ( , ), ( , ), ( , ), ( , ), ( , )u x t w x t v x t x t x t x t� � � are unknown kinematic fields defined on the x axis. 

We note that v and w represent displacement of point S along the axes y and z, respectively. Moreover, 

( , )x t� stands for the infinitesimal angle of rotation around the axis x, since: , ,( ) / 2z y y zu u �� � .

Moreover, ( ) /� xu x u A ,  and � � � �( ) | / ,   ( ) | /� �� �x z x yx y u J x z u J ; hence ( ), ( )x x� � represent the 

averaged angles of rotation around the axes –z and y.
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Let us define the strain measures of the theory being constructed

(3.2)     
2

2
,   ,    = ,     = ,    =  ,   ,   z y y z

u w v
x x x x x x x


� � � �� � � � � � � � �� � � � � � �
� � � � � � �

� � � � � � �
.

The strain � represents the axial deformation, ,z y� � represent measures of transverse shear, ,y z� �

stand for the measures of bending; � is the measure of torsion; 
� describes the warping due to 

torsion, like in Vlasov’s theory of bars, see [11]. The time-independent virtual displacement fields 

( ), ( ), ( ), ( ), ( ), ( )u x w x v x x x x� � �� �( ), ( )( ), determine the virtual strain measures by the same rules (3.2); only 

then the partial derivatives are replaced by ordinary derivatives with respect to x. The kinematic 

assumptions (3.1) lead to the following formulae for the strain components     

(3.3)   � � � �, ,

( , ) ,  0,   0,   

,   ,   0

x z y y z

xy y S y xz z S z yz

y z y z

z z y y

� � � � 
 � � �

� 
 � � � 
 � � �

� � � � � �

� � � � � � � � �

The virtual strains are expressed the same way.

4. Stress resultants and constitutive equations

The virtual work of stresses, or the integral of the expression       

( )x x y y z z xy xy xz xz zy zy� � � � � � � � � � � �� � � � �

over the bar domain  assumes the form compatible with (3.3)

(4.1)  �int

0

l

z z y y y y z zL N T M T M� � � � � �� � � � � �	 M + )B dx
�

where the stress resultants are given by

(4.2)  
� � � �

� � � � � �, ,

,  ,   , | ,   ,   | ,

( ) | ( ) | ,  |

x z xz y xy y x z x

z S xz y S xy x

N T T M z M y

y y z z B

� � � � �


 � 
 � 
 �

� � � � � �

� � � � � �M=

We recognize the well-known internal forces: the axial force N, the transverse forces ,   z yT T , the 

bending moments ,  y zM M , the torsional moment M and the bimoment B, defined similarly as in 

Vlasov’s theory. Only now the definitions (4.2) refer to bars of arbitrary cross sections; in particular, 

the bimoment is expressed by the surface integral, without any reference to the sectional coordinate 

parameterization.  The constitutive equations of the material of the bar are assumed in the form 

usually used while constructing the theory of thin bars:   ,    ,   x x xy xy xz xzE G G� � � � � �� � � , where  
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2 (1 )E G�� � , G  being the shear modulus.  The constitutive equations of the 1D bar model turn 

out to have the form, see [11]

(4.3)     ,  ,  ,     y y y z z zN EA B EJ M EJ M EJ
 
� � � �� � � �

(4.4)      ,   z z z zy y y yz z y yT GA GA T GA GA� � � �� � � �  GJ�M=

where

(4.5)     � � 2 2

, ,| ,     ( ) ( )y S z SJ J z z y y
 
 
 
 
� � � � � � �

and ,  ,   z z zy yz zy y yA k A A A k A A k A� � � � . The shear correction factors can be determined in various 

manners, see [5,7,8,9]. In case of mono-symmetric (hence also -bisymmetric) cross sections 0zyk �

and  the remaining shear correction factors  ,z yk k can be computed by the algorithm recalled in Sec. 

2   of the present paper.  

5. Virtual work of loads and inertia forces

The load applied to the surface of the cylindrical domain of the prismatic bar considered does the 

virtual work which can be expressed as the line integral

(5.1)    � �
0

l

span z y sL pu q w q v m dx�� � � �	
here ( , )p x t represents the intensity of the axial load reduced to the axis x; ( , ), ( , )z yq x t q x t stand for 

the intensities of the transverse loads reduced to the bar’s axis; ( , )sm x t is the intensity of the torsional 

load. The bending loads are omitted, as usually accepted in case of thin bars.

Assume that the section x=0 is clamped and the end x=l is free, loaded by the tractions of intensities 

( , ),  ( , ),  ( , )x y zt y z t y z t y z . The virtual work of the tractions is given by:

(5.2)      � �ends x x y y z z
A

L t u t u t u dA� � �	
Substitution of the kinematic assumptions (3.1)  rearranges this virtual work to the form

(5.3)     ( ) ( ) ( ) ( ) ( ) ( ( )) ( )ends y z z y
dL Nu l M l T w l l B l M l T v l
dx
�� � �� � � � � � � �( ) ( ( )) ( )( ) ( ( )) () ( ( )) (NN ( ) ( ) ( )

d�d
( ) ( (( ) ( ) ( ))( ))Nu ( ))( )) ( ) ( ) ( ) ( ) () ( ) ( ) ( )( ) ( ) ( ) ( ) (( ) ( ) ( ) (( ) ( ) ( ) ( ) () ( ) ( ) ( )( ) ( ) ( ) ( ) (( ) ( ) ( )( )( ))( ))M ,

the end-forces and end-moments at x=l being given by
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(5.4)      
� � � � � � � � � � � � � �
� � � � � � � � � �

,  | ,  ,  | ,  ,

( ) | ( ) | ,  |

x y x z z z x y y

S z S y x

N t t M t z t T t t M t y t T t t

t y y t z z t B t t


� � � � � �

� � � �

� � � � � � � � � � � � � �, | , , | , ,� � � � � � � � � � � �N t t� � , | , , | ,, ,� � � � � � � � � � � �t | || || |� � � � � � � � � � � �
� � �(t � �( � � � |� � � |� � � |� � �� �M =

Let   ( )m x, y,z� be the mass density.  The virtual work of the inertia forces is 

(5.5)  � �
0

l

inertia m x x y y z z
A

L u u u u u u dAdx�� � � �	 	 �x x y y z zu u u u u u dAd�x x y y z zx x y y zu u u uu ux x yy y

where the dot  “.” implies differentiation in time. Let us introduce the inertial characteristics

(5.6)      

� � � � � �
� � � � � �

� � � �

2 2 2

2 2

,  | ,   ( ) | ,   ( ) |

,   | ,  ( | ,   | ,  

ˆ ˆ( ) | ,   ( ) |

m m y S m z S m

o y z yz m y m z m

y S m z S m

I z z I y y

I I I I yz I z I y

S z z S y y


� � � 
 � � �

� � �

� �

� � � � � �

� � � � �

� � � �

� � � �2 2� �( | , | ,� �2 2� �(� 2 � � |2��(� 2 �( | ,( | ,( |� �2 �

Imposing the kinematic constraints (3.1)-without any corrections-gives

(5.7)  
0
[ ]

l

inertia x y z x y z
dL u v w dx
dx

�� � �� � � �� �� �� �� �� ��	 .

The inertia forces involved in (5.7) are given by

(5.8)                           ,   [ ] ,   T
x y z z y xu

x
 

�� � �

� � � � � � � � � �
�

Sq �
,   
�,   
[,   [, [u [� ,   [u

where [     ]Tw v� � ��q and

(5.9)                                  

0 0 0

ˆ0 0 0

0 0 0

ˆ0 0 0

ˆ ˆ0 0

y yz

z

yz z

y

z y o

I I

S
I I

S

S S I

�

�

� �
� �
� �
� �� � �
� ��
� �
� ���  

S

0I 0

000 .

6. Equations of motion and boundary conditions

The motion is governed by the variational equation

(6.1)     int +    for each , , , , ,  kinematically admissiblespan ends inertiaL L L L u w v � � �� � .

By making use of arbitrariness of the virtual fields we obtain
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0 0

( ) ( )

l l

xN dx p udx Nu l� � �� �	 	 )l(

(6.2)   
0 0

( ) [( ) ] ( ) ( )

l l

y y z z z z y z yM T dx q w dx T w l M l� � � �� � �� �� � �	 	 )l l( ) () (( ))( )(

0 0

( ) [( ) ] ( ) ( ( ))

l l

z z y y y y z y zM T dx q v dx T v l M l� � � �� � �� �� � � �	 	 ))l( ) ( () ( (( ) (( )( ) (( ) (

� �
0 0

[( ) ] ( ) ( )

l l

s x
d dB dx m dx B l l
dx dx
 

� �� � � �� � �� �� � �	 	 )l(l�dd

( )( )M M

for each   u , ,w � , ,v � ,� kinematically  admissible. Localization of the above equations leads to 

the differential equations of motion

(6.3)     

,   0,   ,  0,   

,   ,     

y z z
x z y z z y z

y
y y x s

MN T Mp T q T
x x x x
T Bq m
x x x 


�� � �
� �� � � � �� � � �� � � �� �

� � � �
� � �

� �� � � �� � � � ��
� � �

eff
effM M M

and - to the natural boundary conditions at the free end:

(6.4)      
� � � � � � � �

� � � � � � � � � � � �
( , ) ,  ( , ) ,  , ,  

, ,   , ,    , ,  ( , )

y y

z z z z y y

N l t N t B l t B t M l t M t

T l t T t M l t M t T l t T t l t

� � �

� � � �

� � � � � � � �,�, ( , ) , ,, ( , )� � � � � � �( )( )� � � � � �
� � � � � � � � � � ( ), , , , , ( ,� � � � � � � � � � �)(� � � � � � � � � � effM M(t)

The problem of axial deformation can be solved independently. The other equations are coupled due 

to the presence of inertia terms. The theory admits the boundary conditions concerning:

  or   ,         or   ,         or   ,      or   ,      or   ,         or   y z z yN u M T w B M T v
x
�� ��

�
�

 or   �effM

hence 27 types of the boundary conditions are possible. Among them the fork support means that the 

quantities:     ,  ,  ,   ,   ,  ,   y zN M w B M v � are prescribed. The theory of vibrating bars is now 

constructed; it will be called the Librescu-Song model.

Assume that the bar is prismatic. By substituting (4.3), (4.4) into (6.3) and taking into account the 

strain definitions (3.2) one arrives at the equations of motion expressed in terms of the fields: u and 

[     ]Tw v� � ��q :

(6.5)                 � �
2 2

2 2
0,        

uEA u
x t

�
! "� �

� � � � � � �# $� �% &
L S C q Q 000� 0,u
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where [0  0  ]T
z y sq q m�Q and :  , 1,...,5[ ]ij i jL ��L ,

, 1,...,5ij i j
C

�
� �� �  C ,  are the matrices of differential 

operators defined by 

(6.6)                          
2

5 5 2
  ij i jC

x
' ' � �
�

�

and

(6.7)    

2

2

2 2

2 2

2

2

2 2

2 2

4 2

4 2

0

0

0

0

0 0 0 0

y z z yz yz

z z yz yz

yz yz z y y

yz yz y y

EJ GA GA GA GA
x x x

GA GA GA GA
x x x x

GA GA EJ GA GA
x x x

GA GA GA GA
x x x x

EJ GJ
x x


� �� � �
� �� �� � �� �

� � � �� �
� � � �� �� � � �� �

� � �� �� � �� �� � �� �
� � � �� �� � � �� �� � � �

� �
� �� ��� �� ��  

L

The equations (6.5)2 are coupled. In case of m� being constant we have:

(6.8)       
2 2

ˆ ˆ0,    ,   ,  ,    

,   ,  ( ) ,   ( )

yz y S m z S m m m

y m y z m z y m y S z m z S

I S z A S y A A J

I J I J I J z A I J y A

 
� � � � � �

� � � �

� � � � � � �

� � � �� � � � � ��  �  I JJJ , ,,

the equations being still coupled.

Case of mono-symmetric profiles. If additionally the y=0 axis is the axis of symmetry of the domain 

A then

(6.9)                    

2 2

ˆ ˆ0,   0,   0,    ,   0

,   ,    ,    

( ) ,   ,    ( )

S yz yz y S m z

y m y z m z m m

y m y S z z o m y z S

y A I S z A S

I J I J A J

I J z A I I I J J z A

 


�

� � � � � �

� �

� � � � � �

� � � �

� � � �� � � � � ��  �  

I J I JJ I JJ I J, ,,J I JJ I JJ I JJ I J

,,

The matrix S and the matrix L of the differential operators assume block forms. The governing 

equations (6.5)2 split up into:

a) equations involving [   ]Tw� as unknowns; they model the transverse vibrations in the x-z

plane:
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(6.10)        

2

2

2

2

0y z z y

z z z

wEJ GA GA I
x x

wGA GA w q
x x

� �

� �

! "� �
� � � � �# $� �% &

� �
� � � �

� �

0�I �I 0� ��

zw qw

b) equations involving [   ]Tv� � ; they model the lateral (or- in the x-y plane) bending-torsional 

vibrations:

(6.11)

2

2

2

2

4 2 2

4 2 2

0

ˆ

ˆ

z y y z

y y y y

y o s

vEJ GA GA I
x x

vGA GA v S q
x x

EJ GJ S v I m
x x x
 


� �

� � �

�� � �

! "� �
� � � � �# $� �% &

� �
� � � � �

� �
! "� � �

� � � � �# $� � �% &

II �I 0�� 0��

qˆ �v SySv S �

ˆ� mov Io�Iv I �

We see that the rotary inertia ˆ
yS couples the torsion with the lateral bending. This inertia vanishes 

only if  the points S and O coincide, or if the profile is bisymmetric. Then the torsional vibration 

becomes an independent phenomenon, unless the kinematic boundary conditions couple twisting with 

bending.

Remark

The  equations (6.11) coincide with those considered in Bercin and Tanaka[3], upon replacing

ˆ, , , , ,  , , , , , ,y o z y zv S I J J J A I
 
� � � ��,I by , , , , ,  , , , , , ,0s cv m em I J I kA J� (� � ,  respectively.

7. Harmonic vibrations

All the entities are assumed to have the form sin( )of f t� (� � , � being the frequency of the 

excitation, ( is the given phase displacement; 
of stands for the amplitude of f. Due to the setting 

being linear  the bar’s response is also harmonic, with the same frequency and phase displacement, 

e.g. the axial force has the form: sin( )oN N t� (� � , etc. Let the end x=0 be clamped and the end

x=l be free and unloaded. The equations of motion link the amplitudes of the internal forces and 

loads; according to (6.2) we arrive at six variational equations:

2

0
0 0

   for  such that (0) 0

l l
lduN dx uudx pudx u u

dx
� �� � �	 	 	

VIBRATIONS OF BARS INCLUDING TRANSVERSE SHEAR DEFORMATIONS AND... 365



2

0 0

( ) ( ) 0   for     such that  (0) 0

l l

y z y yz
dM T dx I I dx
dx
� � � � � � � �� � � � �	 	 ))

2

0
0 0

ˆ( )     for     such that  (0) 0

l l
l

z z z
dwT dx w S wdx q wdx w w
dx

� � �� � � �	 	 	

(7.1)    2

0 0

( ) ( ) 0   for     such that  (0) 0

l l

z y z yz
dM T dx I I dx
dx
� � � � � � � �� � � � � �	 	 ))

2

0
0 0

ˆ( )     for     such that  (0) 0

l l
l

y y y
dvT dx v S vdx q vdx v v
dx

� � �� � � �	 	 	
2

2

2

0 0 0 0

ˆ ˆ( )

for    such that (0) 0,  (0) 0

l l l l

o z y s
d d d dB dx I S w S v dx dx m dx
dx dx dx dx

d
dx



� � � �� � � � �

�� �

� �! "
� � � � � �� �# $

% & �  

� �

	 	 	 	M

The index ‘o’ has been omitted. Now, also  the constitutive equations (4.3, 4.4) link the amplitudes. 

Along with  (7.1) these equations are the starting point of the FEM programming.

8. Natural vibrations
8.1. Equations linking the amplitudes

Consider equations linking the amplitudes of harmonic vibrations with the eigenfrequency � )� .

According to (5.8) the amplitudes of the inertia forces are

(8.1)         2 2 2,    ,   [ ] ,   T
x y z z y x

du
dx
 

�) � ) � )� � � � � � � � � � � � � Sq

where now {u, q } is a collection of the amplitudes of the primal unknowns. The equations of motion 

(6.5) lead to the ordinary differential equations linking the amplitudes:

(8.2)              � �� �
2

2 2

2
0,      - =  

d uEA u
dx

) � )� � � �L S C q 0

where the matrix S has been already defined, see (5.9); the operator matrices C and  L , see (6.6), 

(6.7),  involve now the ordinary differential operators d/dx.
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8.2. Eigenvibrations of a fork-supported bar

Consider the harmonic vibrations of a fork-supported bar. The amplitudes of displacements are  

expressed as below

(8.3)    * + * +ˆ ˆ ˆˆ ˆ    sin( ),       cos( ),    
T TT T

n n n
nw v w v x x
l
,� � - � � � � - -� � � �� � ��  �  

The bending moments and the bimoment assume the form

(8.4)    ˆ ˆ ˆ    sin( ),     
TT

y z y z nM M B M M B x-� �� � ��  �  
2ˆ ˆˆ ˆ ˆˆ,   ,    ( )y n y z n z nM EJ M EJ B EJ
- � - � - �� � � � �

,

which proves that the fork-supported conditions 0, =0, 0,  0,  =0, 0, 0y zN M w B M v �� � � � � are 

fulfilled identically at both the ends. Let us define the vector: ˆ ˆˆ ˆˆ ˆ[     ]Tw v� � ��q and the matrices

(8.5) 

2 2

2

2 2 2 2

2 2

2 2

2

2 2 2 2

2 2

2 2 4 4

2 4

0

0

0

0

0 0 0 0

y z z yz yz

z z yz yz

n yz yz z y y

yz yz y y

n n nEJ GA GA GA GA
l l l

n n n nGA GA GA GA
l l l l

n n nGA GA EJ GA GA
l l l

n n n nGA GA GA GA
l l l l

n nGJ EJ
l l 


, , ,

, , , ,

, , ,

, , , ,

, ,

� �
�� �

� �
� �
� �
� �
� �� �� �
� �
� �
� �
� �
� ��� ��  

A

(8.6)        * +
2 2

5 5 2n i jij

n
l 

,' ' ��C

The problem of eigenvibrations has the form: find the pairs ˆ( , ) )q such that

(8.7)    � �� �2 ˆ - =  n n) �A S C q 0

where S is given by (5.9). The matrices  ,n n n� �A B S C are symmetric and positive definite. The 

eigenvibrations equations are coupled in general. 

Case of mono-symmetric profiles. Due to (6.9) the matrices  ,n n n� �A B S C assume the block forms; 

in particular, the matrix  nB has the structure as below
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(8.8)  

2 2
2

2

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0 0 0 ( )

y

z
n m

S

S y z S

J
A

J
A z A

nz A J J z A J
l 


�

,

� �
� �
� �
� �

� � �
� �
� �

� �� � �� ��  � ��  

B

The problem (8.7) splits up into two problems:

a) bending vibrations in the plane x-z:  find � �ˆ ˆ( , / ),w l� . such that

(8.9) � � * +
T Tˆ ˆ -   / = 0 0  n w l. �� �

�  A B�� �-

(8.10)  

2 2

2

2 2

1
y

n z

EJn n
l GA

n n

, ,

, ,

� �
�� �� � �

� ��  

A � 2l 2� � l�� l 2A

2

4

2

( )
0

0

y

z

y

z

E J
GAA l

EJ
GA l

� �
� �
� �� � �
� �
� ��  

B

The circular frequencies are expressed by      
2

1 y

m

EJ
l A

) .
�

� .

b) lateral (in the x-y plane) bending-torsional vibrations : find  � �ˆˆ ˆ( , / , ),v l� � . such that

(8.11)        � � * +
T Tˆˆ ˆ -   /   = 0 0 0  n n v l. � �� �

�  A B � � ˆ ˆˆ /ˆ�� �

(8.12) 

2 2

2

2 2

2 2 4 4

2 4

1 0

0

0 0

z

y

n

y y

n EJ n
l GA

n n
n J n EJ

l A l GA



, ,

, ,

, ,

� �
�� �

� �
� ��
� �
� ��� �
� ��  

A
�
�
��

A

(8.13)  

4

2 3

2 2
2

3 4 2

0 0

0

0 ( )

y z

y

y y
n S

y y

y y
S y z S

y y

EJ J
AGA l

EJ EJ
z

GA l GA l

EJ EJ nz J J z A J
GA l AGA l l 


,

� �
� �
� �
� �
� ��
� �
� �

� �� �
� � �� �� �

� ��  �  

B
�
� 0

��
B

Having  . the circular frequencies are expressed as before.

368 S. CZARNECKI, T. LEWI�SKI



9. Natural vibrations – case studies
The subject of  consideration are natural vibrations of bars: a) of elliptical cross-sections (of 

bisymmetric cross-sections), and b) the rail 49E1 (of  mono-symmetric cross-section). The aim of the  

research is to check accuracy of the theory of bars discussed in the present paper, governed by the 

equations of motion (6.2)-(6.4)  with the constitutive equations (4.3), (4.4). From the point of view 

of the classification proposed in [11] this approach can be viewed as the Librescu and Song [12] bar 

model, since the theory takes into account: transverse shear deformation (in a fashion of 

Timoshenko’s model) as well as the warping due to torsion (in a fashion of  Vlasov’s model). By 

neglecting  the  latter effect one reduces the model to that of Timoshenko, with specific form of the 

constitutive equations and with special treatment of rotary inertia.  On the other hand, neglecting 

transverse shear deformations reduces the Librescu-Song model to that of Vlasov, and reduces 

Timoshenko-like model to the Bernoulli-Euler  theory. These simplifications will not be discussed in 

the present paper, as we are interested in considering bars of moderate thickness, not only very thin 

bars. Thus, we will focus on accuracy of two bar’s models: Librescu-Song and Timoshenko-like both

based on the assumption (3.1). One of the most interesting questions is the influence of the warping 

due to torsion on natural vibrations, or, saying in other words, assessing the errors introduced by 

neglecting this phenomenon in Timoshenko-like models. The natural vibrations are analyzed by the 

FE approximation. The kinematic fields , , , , ,w v u� � � are interpolated with using four 3rd order 

polynomials  * +: 1,1iP R� / , i = 0,1,2,3 , or

(9.1)

� � � � � � � � � �
� � � � � � � � � �

� � � � � � � � � �

0 0 1 1 2 2 3 3

4 0 5 1 6 2 7 3

20 0 21 1 22 2 23 3

...

q P q P q P q P

w q P q P q P q P

u q P q P q P q P

� 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

� � � �

� � � �

� � � �

defined on the reference element [–1,+1] as below

(9.2)

2 3 2 3

0 1

2 3 2 3

2 3

1 1 5 5 5 5 5 5 5 5
( ) , ( ) ,

8 8 8 8 8 8 8 8

5 5 5 5 5 5 1 1 5 5
( ) , ( ) , [ 1,1]

8 8 8 8 8 8 8 8

P P

P P

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

� � � � � � � � �

� � � � � � � � � 1 �

such that at the nodes of coordinates 0 1 2 31, 5 / 5, 5 / 5, 10 0 0 0� � � � � � there hold:

� �i j ijP 0 '� for i , j = 0,1,2,3. In this manner a 24-parameter (
0 1 23, ,...,q q q R1 ) FE interpolation for 

the Librescu-Song bar model (1D FEM-LS) is constructed . 
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All the components of the stiffness matrix and the consistent mass matrix have been computed 

exactly with using the symbolic program Maple; their expressions are then re-written as C codes with 

using the command: C(expression, optimized, precision=double). These codes have been then copied 

to the first author’s FEM program computing natural vibrations. In all cases the bar axis has been 

divided into 100 elements. Accuracy of the FE approximation of the primal unknowns , , , , ,w v u� � �

has been checked by numerous static tests, for various  boundary conditions; satisfactory results were 

obtained. Implementation of other FEM interpolation schemes proposed in the literature, as well as a 

comparative analyses of accuracy are not the aim of the present paper.

The FEM results based on  Librescu-Song (1D FEM-LS) and Timoshenko-like models (1D FEM-

T are compared with the relevant exact results (1D exact-LS) corresponding to the fork-supported 

bars, given by Eqs (8.9-8.13). Moreover, the above 1D –models results are confronted with the results 

found by: a) 3D FEM with using BRIC elements within the SOFISTIK system, b) 1D model of bars 

with warping, available in the same system (1D FEM-T(W)). The comparisons with 3D solutions 

have been restricted to the cases of bars clamped at both the ends and to the cantilevers. In fact, the 

fork support can be interpreted in the 3D modelling in various manners, hence the lack of 3D tests.

9.1. The bar of elliptic cross-section
Our aim is to model the vibrations of a straight prismatic bar whose cross section is the ellipse : 

� � � �2 2
1y a z b� 2 . The geometric and inertia characteristics are  

(9.3)    

� �

3 3

ˆ ˆ, 0,   ,    ,    ,  0,   0,    0,   0
4 4

,   ,    ,    ,  ,   ,    

S S y z yz yz y z

y m y z m z m m y y z z o m y z

ab baSC S y z A ab J J A I S S

I J I J A J I I I I I J J
 


, , ,

� � � � � � �

� � � � � � � � � �

� � � � � � � �� �I J I J A J I I I I I J J�J I J A J I I I I I JJ I J A J I I I I I J�J I J A J I I I I IJ I J A J I I I I IJ A J I I I I I, , , , , ,, , , ,, ,

Upon solving the torsion problem (2.1) one may compute the torsional and the warping constants:

(9.4)     

3 3

2 2
 

a bJ
a b

,�
�

,

2
2 2

3 3

2 224

a bJ a b
a b


, ! "�
� # $�% &

The problems of shear (2.6, 2.8) have been solved numerically by the authors’ program (see [11]) and 

this has paved the way for computing the shear correction factors, see Table 4. It is worth noting  here 

that alternative results have been found by Hutchinson’s [9]. They  read:

(9.5)        
� �

2 2
2

4 2 4 2 2 4 2

( / ) ,    ( / )

6 (3 1)
( ) 1

20 8 (37 10 1) (17 2 3)

y zA k a b A A k b a A

k 0 00 �
0 0 � 0 0 � 0 0

� �

�
� �

� � � � � � �
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We have checked that the formulae for the effective areas above do not coincide with those 

determined by the algorithm of Sec. 2, except for the special case of 0� � .

In all examples the following data have been chosen: E = 2.1E+09 [kg/s2/cm], � = 0.3, �m = 0.00785 

kg /cm3. We fix attention on the case of  b/a=3, see Fig.1, where the FE mesh of the cross-section 

domain used for the alternative computing of the characteristics (9.3-9.4) is shown. The analysis will 

concern the bar of length l = 900 cm, and the transverse dimensions:  2a=20 cm, 2b=60 cm. The 

assumed cross-section has huge dimensions, but it does not matter, since the results concerning the 

frequency  /(2 )f ) ,� [Hz] can be easy rescaled, if all the dimensions are changed with the same 

proportionality coefficient; note that the solution . to the problems (8.9, 8.11) is independent of this 

coefficient. The FE triangulation of the ellipse results in approximating the contour by a zig-zag line, 

which has resulted in appearing differences between the analytical and numerical results concerning 

the characteristics A, Jy, Jz, J, J) , see Table 1. Moreover, the effective areas Ay, Az computed by 

Hutchinson’s formulae (9.5) differ from those predicted by Gruttmann and Wagner’s algorithm 

(Sec.2).

a)
b)

Fig. 1. Elliptic cross- section; the FEM mesh used for a = 10 [cm], b = 3a;  (a).  The rail 49E1 cross-section-

the FEM mesh used; the interpolation of the rounded edges of the rail does not perfectly reproduce the sectional 

shape  (b)
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Table 1. Geometric characteristics of the elliptical cross section of Fig.1a. The FE approximants of the 

effective areas have been found with using the authors’ program implementing the algorithm [8].

A cm2 Jy cm4 Jz cm4 J cm4 J) cm6 Ay cm2 Az cm2

Analytical 

results
942 211950 23550 84780 2.26E+6 844 877

Numerical 

results
925 208987 23219 83669 2.21E+06 617 836

Due  to bisymmetry of the cross-section, under the condition of the boundary conditions being 

also bisymmetric, the problem of natural vibrations splits up into three independent problems: 

bending in x-z plane, bending in x-y plane and torsion. 

The present section concerns free vibrations  for various support conditions, with using: the 1D 

FEM-LS. The results are compared with exact results within the same bar model. The first seven 

natural frequencies   /(2 )f ) ,� [Hz] are set up in Table 2. The FE program computes these 

frequencies with good accuracy; small errors are visible in the way the higher frequencies of torsional 

vibrations are predicted. In Table 3 the natural frequencies of the bar clamped at both ends and of the 

cantilever are set up. These results are not compared here with analytical predictions. 

Table 2. The natural frequencies (the units: [Hz]) of the vertical, horizontal and torsional vibrations of the 

fork-supported bar of elliptic cross-section, computed by the first author’s FE program (in C++) 

implementing the Librescu-Song bar model and- by the analytical formulae (8.9-8.13) derived from the same 

bar model.

Vertical Horizontal Torsional

1D FEM -LS 1D exact-LS 1D FEM -LS 1D exact-LS 1D FEM -LS 1D exact-LS

14.9 14.9 5.0 5.0 107.0 107.0

58.7 58.7 19.9 19.9 214.2 214.2

129.0 129.0 44.7 44.7 321.9 321.9

222.1 222.1 79.0 79.0 429 430

334.5 334.5 122.6 122.6 536 540

462.3 462.3 175.2 175.2 654 650

602.4 602.4 236.4 236.4 757 762
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Table 3. The first ten natural frequencies of the bar of elliptic cross-section: clamped at both ends (the first 

row), the cantilever (the second row), predicted by the FE program implementing the Librescu and Song 

model.

Natural 

frequencies[Hz]
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

The bar 

clamped at both 

the ends

11.3 31.0 33.3 60.4 89.3 99.2 106.0 147.1 169.4 203.5

The cantilever 1.78 5.33 11.13 31.05 32.90 53.48 60.56 90.07 99.48 143.67

9.2. The rail 49E1
The subject of the dynamic analysis will be rails of the profile 49E1 of various lengths. The FE mesh 

for the profile has been constructed by using the dimensions given in: 

https://rails.arcelormittal.com/lang/pl/pages/168-49e1-s49 ; see Fig. 1b. The rail’s cross section is 

mono-symmetric; its geometric characteristics are set up in Table 4, the center of gravity lies at the 

distance hO from the base of the rail; it does not coincide with the center of shear S.

Table 4.  The  rail 49E1  characteristics computed by SOFISTIK (first row) and calculated by the present 

author’s program upon introducing the contour of the shape shown in Fig.1b. (second row)

Rail 49E1

hO

cm

A

cm2

Jy

cm4

Jz

cm4

yS

cm

zS

cm

kz ky kzy J

cm4

I)

cm6

SOFISTIK 7.26 62.68 1789.0 313.10 0.0 -2.45 0.363 0.601 0.0 175.10 -

Authors’ 

program
7.27 62.31 1778.14 306.11 0.0 -2.45 0.367 0.601 0.0 176.68 7946.7

The fork-supported rails

The natural vibrations split into: flexural vibrations in the x-z plane (vertical vibrations), and the 

coupled: flexural  horizontal – torsional vibrations. The vibrations of the  rails (49E1) of lengths: 1m, 

2m, 4m, fork-supported, have been examined by four methods: 1D FEM-T (Table 5), 1D FEM-LS 

(Table 6),  1D exact-LS (Table 7), 1D FEM-T(W) (Table 8). We note that all the methods used deliver 

accurate results concerning vibrations in vertical direction. The accuracy increases along with 

slenderness. 
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Table 5.  The natural frequencies ([Hz]) of the vertical and horizontal-torsional vibrations of the fork-

supported rail 49E1 computed by the FE model for the Timoshenko-like  theory (1D FEM-T)

l=1.0[m] l=2.0[m] l=4.0[m]

Vertical Horizontal-

torsional

Vertical Horizontal-

torsional

Vertical Horizontal-

torsional

392.11 179.25 105.54 45.25 26.93 11.34

1269.20 691.46 392.11 179.25 105.54 45.25

2289.39 1474.05 797.87 397.11 229.91 101.40

3331.88 2455.00 1269.2 691.46 392.11 179.26

4367.25 3571.99 1772.47 1053.53 583.91 278.12

Table 6. The natural frequencies ([Hz]) of the vertical and horizontal-torsional vibrations fork-supported rail 

49E1  computed by the FE model for the Librescu and Song  theory (1D FEM-LS)

l=1.0[m] l=2.0[m] l=4.0[m]
Vertical Horizontal-

torsional

Vertical Horizontal-

torsional

Vertical Horizontal-

torsional

392.44 175.15 105.56 44.72 26.93 11.24

1272.1 472.89 392.44 175.15 105.56 44.72

2297.07 631.77 799.13 234.16 230.01 99.76

3345.36 1004.90 1272.1 379.00 392.44 116.82

4386.84 1147.12 1777.57 472.94 584.61 175.15

Table 7. The natural frequencies ([Hz]) of the vertical and horizontal-torsional vibrations fork-supported rail 

49E1  computed by the  exact formulae (8.9-8.13), or  (1D exact-LS)

l=1.0[m] l=2.0[m] l=4.0[m]
Vertical Horizontal-

torsional

Vertical Horizontal-

torsional

Vertical Horizontal-

torsional

392.30 175.38 105.51 44.70 26.92 11.23

1271.81 498.51 392.30 175.38 105.51 44.70

2296.72 653.94 798.91 237.47 229.93 99.77

3345.01 1172.92 1271.81 382.62 392.30 117.24

4386.51 1347.64 1777.24 498.51 583.43 175.38

Table 8. The natural frequencies ([Hz])of the vertical and horizontal-torsional vibrations fork-supported rail 

49E1  computed by  SOFISTIK – FEM for Timoshenko model with warping (1D FEM-T(W))

l=1.0[m] l=2.0[m] l=4.0[m]
Vertical Horizontal-

torsional

Vertical Horizontal-

torsional

Vertical Horizontal-

torsional

392.24 176.57 105.56 45.10 26.94 11.33

1270.26 470.48 392.32 176.61 105.58 45.11

2292.42 635.56 798.69 232.56 230.10 100.65

3337.87 1007.63 1271.21 381.98 392.67 115.98

4377.23 1154.42 1776.32 470.49 585.14 176.78

To make the results set up in Tables 5-8 better visible the natural frequencies concerning the vertical 

vibrations (index V) and the lateral-torsional vibrations (index H) computed by the 1D FE methods 
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based on the theories by: Timoshenko (index: T), Librescu-Song (index L) and the Timoshenko-like 

theory being the basis for the SOFISTIK FEM model with warping (index S) will be referred to the 

exact results based on the Librescu-Song theory (index E). The Figures 2-7 show the relative errors 

of assessing the first five natural frequencies  f . The following notation of the methods used for 

computing the frequencies is adopted:

fVT , fHT :     the FE model for the Timoshenko-like theory, 

fVL , fHL : the FE model for the Librescu and Song theory,

fVS , fHS : SOFISTIK – FEM for Timoshenko-like model with warping,

fVE , fHE :     the exact  formulae (8.9-8.13) according to the Librescu-Song theory.

Fig. 2. The rail of length l = 1.0 [m]. Relative error of assessing the first five natural frequencies of vertical 

vibrations of the fork-supported rail 49E1, computed by 1D FEM-T, 1D FEM-LS, and SOFISTIK 1D FEM-

T(W) models.
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Fig. 3. The rail of length l = 1.0 [m]. Relative error of assessing the first five natural frequencies of 

horizontal-torsional vibrations of the fork-supported rail 49E1, computed by 1D FEM-T, 1D FEM-LS, and 

SOFISTIK 1D FEM-T(W) models.

Fig. 4. The rail of length l = 2.0 [m]. Relative error of assessing the first five natural frequencies of vertical 

vibrations  of the fork-supported rail 49E1 computed by 1D FEM-T, 1D FEM-LS, and SOFISTIK 1D FEM-

T(W) models.
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Fig. 5. The rail of length l = 2.0 [m]. Relative error of assessing the first five natural frequencies of 

horizontal-torsional vibrations of the fork-supported rail 49E1 computed by 1D FEM-T, 1D FEM-LS, and 

SOFISTIK 1D FEM-T(W) models.

Fig. 6. The rail of length l = 4.0 [m]. Relative error of assessing natural frequencies of vertical vibrations of 

the fork-supported rail 49E1 computed by 1D FEM-T, 1D FEM-LS, and SOFISTIK 1D FEM-T(W) models.
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Fig. 7. The rail of length l = 4.0 [m]. Relative error of assessing natural frequencies of horizontal-torsional 

vibrations of the fork-supported rail 49E1 computed by 1D FEM-T, 1D FEM-LS, and SOFISTIK 1D FEM-

T(W) models.

The Timoshenko model without warping predicts correctly only selected horizontal-torsional natural 

frequencies, while the accuracy decays if the thickness-to-span ratio increases. By incorporating 

warping effects due to  torsion the description of these vibrations is improving, which stresses the 

significance of the Librescu-Song-like model proposed in the present paper. It is worth noting that 

the model of the torsional warping in SOFISTIK also delivers accurate results, see Table 8 and Figs 

2-7.

Other boundary conditions

The vibrations of bars of lengths 1m, 2m, 4m, clamped at both ends have  been examined by the 

methods : 1D FEM-T, 1D FEM-LS and 3D FEM (with using SOFISTIK 3D BRIC  non-conforming 

elements) see Tables  9, 10. Let us note that the model (1D FEM-T) omits some natural vibration 

eigenmodes, even if the bar is very thin (case of l=4m), while the Librescu-Song model delivers good 

results, uniformly.

The vibrations of the same bars, but clamped at one end (the cantilevers) are correctly predicted by 

the Librescu-Song model, while Timoshenko’s model omits some eigenvibration modes, even if 

l=4m, see Tables 11,12.
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Table 9. Natural frequencies ([Hz]) of the bars clamped at both ends predicted by:  the first author’s FE code 

implementing the Timoshenko model, and by SOFISTIK with using non-conforming 3D BRIC elements. 

The signs: ”-” mean that the relevant frequency could not be assigned to the 3D prediction

l=1.0[m] l=2.0[m] l=4.0[m]
1D FEM-T 3D FEM 1D FEM-T 3D FEM 1D FEM-T 3D FEM

390.44 345.55 101.54 100.37 25.65 25.53

- 523.40 219.15 220.56 59.60 59.59

689.03 689.21 275.10 259.45 70.39 69.78

- 778.52 527.52 502.44 - 115.79

- 1201.21 538.87 544.30 137.17 136.15

- 1222.93 849.25 787.77 158.36 158.36

1492.24 1493.19 940.93 953.46 225.08 216.11

2425.03 2427.34 - 1115.70 296.88 297.03

3403.18 3407.75 1231.2 1296.09 460.81 467.00

4405.14 4413.01 - 1482.84 660.08 661.20

Table 10. Natural frequencies ([Hz]) of the bars clamped at both ends predicted by:  the first author’s FE 

code implementing the Librescu-Song model, and by SOFISTIK with using non-conforming 3D BRIC 

elements

l=1.0[m] l=2.0[m] l=4.0[m]
1D FEM-LS 3D FEM 1D FEM-LS 3D FEM 1D FEM-LS 3D FEM

344.03 345.55 98.70 100.37 25.31 25.53

522.77 523.40 219.27 220.56 59.59 59.59

690.59 689.21 261.64 259.45 69.18 69.78

775.89 778.52 482.72 502.44 116.25 115.79

1191.46 1201.21 539.63 544.30 135.04 136.15

1212.75 1222.93 749.92 787.77 158.37 158.36

1497.00 1493.19 942.87 953.46 214.55 216.11

2433.68 2427.34 1057.65 1115.70 297.02 297.03

3416.38 3407.75 1293.05 1296.09 466.92 467.00

4423.30 4413.01 1496.65 1482.84 660.90 661.20

Table 11. Natural frequencies ([Hz]) of the cantilever bars predicted by:  the first author’s FE code 

implementing the Timoshenko model, and by SOFISTIK with using non-conforming 3D BRIC elements. 

The signs: ”-” mean that the relevant frequency could not be assigned to the 3D prediction

l=1.0[m] l=2.0[m] l=4.0[m]

1D FEM-T 3D FEM 1D FEM-T 3D FEM 1D FEM-T 3D FEM
64.32 64.14 16.15 16.15 4.04 4.04

146.99 147.66 38.16 38.23 9.64 9.64

- 253.91 100.32 98.95 25.28 25.24

389.22 382.18 - 122.85 59.21 59.28

733.02 741.74 222.34 223.09 - 59.43

- 761.15 276.93 269.98 70.53 70.23

1035.86 965.55 - 366.11 137.48 136.13

- 1296.09 565.69 568.77 160.91 161.17

- 1436.63 - 617.80 - 178.05

1660.38 1685.67 991.99 999.23 225.71 222.12
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Table 12. Natural frequencies of the cantilever bars predicted by:  the first author’s FE code implementing 

the Librescu-Song model, and by SOFISTIK with using non-conforming 3D BRIC elements

l=1.0[m] l=2.0[m] l=4.0[m]
1D FEM-LS 3D FEM 1D FEM-LS 3D FEM 1D FEM-LS 3D FEM

63.34 64.14 15.99 16.15 4.01 4.04

146.97 147.66 38.15 38.23 9.63 9.64

232.26 253.91 97.30 98.95 24.99 25.24

378.56 382.18 118.66 122.85 58.40 59.28

695.25 741.74 222.39 223.09 59.19 59.43

734.16 761.15 264.72 269.98 69.52 70.23

935.76 965.55 357.83 366.11 134.56 136.13

1230.02 1296.09 566.21 568.77 160.90 161.17

1469.13 1436.63 611.03 617.80 175.44 178.05

1664.46 1685.67 993.59 999.23 219.56 222.12

Conclusions

The paper proves that the free vibrations of bars of mono-symmetric profiles cannot be correctly 

described by the Timoshenko-like theories, even if all the inertia terms are consistently kept. To 

predict the natural frequencies correctly one should introduce the warping terms due to torsion into 

the kinematic assumptions, as already Vlasov did to model deformations of thin-walled bars. Here, 

however, this concept is extended to the bars of solid compact cross-sections, like rails. The 1D 

modelling has to be preceded by constructing solutions to the 2D scalar elliptic problems describing 

warping due to torsion and transverse shear correction. The dynamic analysis involves all the inertia 

terms induced by the enhanced kinematics thus assuring high accuracy of computing the natural 

frequencies of coupled bending-torsional vibrations of relatively thick bars. This extension paves the 

way for the dynamic analysis of systems of bars, like  railway tracks.
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Drgania prętów z uwzględnieniem odkształceń postaciowych oraz spaczenia przy skręcaniu 

Słowa kluczowe: teoria prętów, drgania giętno-skrętne, teoria Timoshenki, teoria Librescu i Song 

Streszczenie :
Przedmiotem pracy są drgania giętno-skrętne  prętów prostych pryzmatycznych, z jednorodnego izotropowego materiału 

liniowo sprężystego. Jednym z celów pracy jest analiza drgań szyn kolejowych o przekrojach monosymetrycznych z 

uwzględnieniem spaczenia towarzyszącego deformacji skrętnej,  z uwzględnieniem odkształceń postaciowych 

poprzecznych metodą Timoshenki. Wykazano przydatność modelu Librescu i Song w ujęciu własnym autorów (Acta 

Mechanica, vol. 232, pp. 247-282, 2021) z członami bezwładnościowymi dokładnie korespondującymi z przyjętą 

hipotezą kinematyczną. Opracowano program MES tego modelu pręta. 

Praca wskazuje na istotną usterkę modelu Timoshenki w opisie drgań własnych szyn kolejowych. O ile drgania giętne 

w płaszczyźnie symetrii szyny są opisywane poprawnie, to drgania sprzężone: boczne giętne i skrętne są opisywane 

błędnie; teoria Timoshenki pomija istotne postacie drgań własnych; postacie te dobrze wychwytuje, w sumie niewiele 

bardziej złożony, model Librescu i Song, a tym bardziej – analiza 3D - przeprowadzona w pracy z pomocą programu 

SOFISTIK z użyciem niedostosowanych elementów BRIC. Opracowany program MES modelu Librescu i Song jest 

gotowy do stosowania w analizie drgań torów kolejowych.
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