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Abstract
A fault diagnosis method for the rotating rectifier of a brushless three-phase synchronous aerospace generator
is proposed in this article. The proposed diagnostic system includes three steps: data acquisition, feature
extraction and fault diagnosis. Based on a dynamic Fast Fourier Transform (FFT), this method processes
the output voltages of aerospace generator continuously and monitors the continuous change trend of the
main frequency in the spectrum before and after the fault. The trend can be used to perform fault diagnosis
task. The fault features of the rotating rectifier proposed in this paper can quickly and effectively distinguish
single and double faulty diodes. In order to verify the proposed diagnosis system, simulation and practical
experiments are carried out in this paper, and good results can be achieved.
Keywords: aerospace generator, rotating rectifier, fault diagnosis, dynamic Fast Fourier Transform, feature
extraction.
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1. Introduction

The brushless three-phase synchronous generator, as the main electric power supplier of many
airplanes, plays a very important role in the flight mission accomplishment [1]. A faulty generator
can greatly threaten the safety of the overall airplane system [2]. Therefore, an automatic fault
diagnosis system is necessary to monitor the technical condition of an aerospace generator and
detect faults on-line. It should be able to identify the location of faults, shorten the downtime
of system, and enhance the system reliability [3, 4]. Some scientists have analyzed the failure
modes of brushless three-phase AC generators by discussing failure severity and the criticality
number [5, 6]. The most severe failure modes of AC generator include rotating rectifier diodes
faults, bearing failures, and rotor field winding faults.

In the past years, researchers have paid attention to fault detection of rectifier diodes [7–12].
These faults do not have immediate fatal consequences for the whole system, but using a generator
in such a bad condition could probably result in an unexpected adverse effect on the system.
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Some approaches have been developed to diagnose an AC generator rotating rectifier, and these
approaches can be divided into three categories: model-based methods, signal-based methods
and pattern recognition-based methods. Model-based methods need to establish a mathematical
model of the system, and the status of the system can be monitored with parameters observed for
the system [5,13]. For instance, in [14], the authors establish a model of the rotating rectifier, and
give a monitoring scheme based on current analysis of the exciter. The scholars present a fault
diagnosis method based on fuzzy optimization and inverse problem by studying the model of
a rotating rectifier in [13]. In the applications of signal-based methods, some researchers analyse
the exciter current with the Fourier transform to detect the faulty diodes [15,16]. In [17] and [18],
the scholars use output voltage of generator as the fault signal to detect faults with spectrum
analysis. The pattern recognition-based method does not need a model of the system, but data
analysis techniques are very important in this method. In such a method, signal from the system
under test (SUT) needs to be collected and analysed to extract fault features. Finally, a classifier
is designed to use these features for training and testing. For instance, in [19], the researchers
employ a neural network as the classifier. Also in [20], the authors design a fuzzy neural network
to perform fault classification of the aircraft generator.

In this article, a new fault diagnosis method for a three-phase AC generator rotating rectifier
based on dynamic Fast Fourier Transform (FFT) technology is proposed, and this method can
quickly diagnose a single diode or double diodes of the rotating rectifier. First, three-phase output
voltage signals of the generator are collected, and then, the continuous change trend of the main
frequency can be obtained through continuous FFT processing so as to extract effective fault
features. Through the pre-set threshold value, the fault can be identified in a very short time
after its occurrence. Simulated and actual experiments show that the new method has good fault
detection performance under different load conditions.

2. Method presentation

2.1. Basic principle for the rotating rectifier

The three-stage brushless aerospace generator is composed of a permanent magnet generator
(PMG), voltage regulator, exciter generator, main generator and rotating rectifier. Fig. 1 gives
the typical structure of a three-stage brushless AC aerospace generator. Main function of the
permanent magnet generator is to provide power for the automatic voltage regulator (AVR).When
the generator works, the rotating rectifier rotates coaxially with the rotor of the main generator,
and this can convert the three-phase alternating current generated by the exciter generator into
the direct current to provide excitation for the main generator. Finally, the three-phase alternating
current required is generated by the electromechanical armature of the main generator. The
voltage regulator controls the excitation current of the exciter generator indirectly adjusting the
excitation current of the main generator to make its output voltages stable under various working
conditions.

In diagnosis application of an aerospace generator rotating rectifier, the exciter generator field
current Ie f is the accessible signal. Main generator output voltage signal Ua, Ub and Uc changes
slightly when rotating rectifier fails, and compared with Ie f , these signals are easier to access.
Therefore, Ua, Ub and Uc are used as the fault monitoring signal of a generator rotating rectifier
in this research.
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Fig. 1. The schematic diagram of AC generator.

2.2. Feature extraction based on dynamic FFT

When the AC generator works normally, the three-phase output voltages of main generator
are sinusoidal periodic signals. If the rotating rectifier has an open circuit or short circuit fault,
the three-phase output voltages of the main generator can be kept almost unchanged due to the
feedback control of automatic voltage regulator, and they are still periodic waveforms, whose
amplitudes slightly change.

This phenomenon can be seen in Fig. 2, in which, xp (n) is assumed to be the data sequence
of some output voltage phase (Ua, Ub or Uc) of the main generator, and n stands for the data
index for a sampled data sequence. In Fig. 2, xp (n) can be divided into x1(n) and x2(n) by the
fault occurrence point. x1(n) indicates that the system works correctly, while x2(n) belongs to
a faulty system.

xp(n)

n

x1(n) x2(n)

fault occurrence

Fig. 2. System health and fault indication by xp (n).

According to the assumption above, xp (n) can be regarded as two sine sequences x1(n) and
x2(n), with the same frequency and different amplitudes. Hence, this sequence can be expressed
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as followed:




x1(n) =




A1 sin
(
n

2π
f s/ f

)
, n = 0, 1, . . . ,m − 1

0, n = m,m + 1, . . . , N−1

x2(n) =




0, n = 0, 1, . . . ,m − 1

A2 sin
(
n

2π
f s/ f

)
, n = m,m + 1, . . . , N−1

xp (n) = x1(n) + x2(n), n = 1, 2, . . . , N−1

, (1)

where, f is the signal frequency and f s is the sampling frequency. A1 and A2 are positive constant
values and N is the size of the whole sequence.

The mathematical expression of N points DFT (Discrete Fourier Transform) of xp (n) is as
follows:

Xp (k) = DFT[xp (n)] =
m−1∑
n=0

x1(n)Wnk
N +

N−1∑
n=0

x2(n)Wnk
N −

m−1∑
n=0

x2(n)Wnk
N , k = 1, 2, . . . , N−1, (2)

where, k is the sequence number of discrete spectral lines, WN = e−j
2π
N .

The real part Re Xp (k) and imaginary part Im Xp (k) of the signal xp (n) after DFT are as
follows:

ReXp (k) =
m−1∑
n=0

x1(n) cos
(
nk

2π
N

)
+

N−1∑
n=0

x2(n) cos
(
nk

2π
N

)
−

m−1∑
n=0

x2(n) cos
(
nk

2π
N

)
,

k = 1, 2, . . . , N−1,

ImXp (k) =
m−1∑
n=0

x1(n) sin
(
nk

2π
N

)
+

N−1∑
n=0

x2(n) sin
(
nk

2π
N

)
−

m−1∑
n=0

x2(n) sin
(
nk

2π
N

)
,

k = 1, 2, . . . , N−1.

(3)

It can be seen from equations (2) and (3) that the spectral line xp (k) corresponding to the
main frequency f will generate the peak value at the main frequency f of x1(n) and x2(n). In
the case of A1 > A2 and 0 ≤ m ≤ N−1, with m increasing from 0 to N-1, the peak value of
spectral line xp (k) will increase gradually. Generally, one or more faulty diodes always result in
peak value fluctuation of main frequency. This fluctuation can indicate A2 to be smaller than A1.
In other words, by computing the change of the peak values of the main frequency, the condition
of the diodes of the rectifier can be monitored.

This method, called the dynamic FFTmethod in our research, can be used for rotating rectifier
fault feature extraction. The specific process of dynamic FFT method involves several steps as
shown in Fig. 3.

(i) Collecting the output voltage signals of the main generator. Each acquisition of the output
voltage is a data sample whose length is assumed to be N1 and the time range is from t1s
to t1e, and also, t1e = t1s + N1.

(ii) Setting the sliding length to be L. The second data sample starts from t2s and ends at t2e,
where t2s = t1s + L, t2e = t1s + N1 + L; the third data sample ranges from t3s to t3e, where
t3s = t1s + 2L, t3e = t1s + N1 + 2L; . . . ; the jth data sample ranges from t js to t je, where
t js = t1s + ( j − 1) × L, t je = t1s + N1 + ( j − 1) × L.
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Fig. 3. Illustration of dynamic FFT processing.

(iii) Applying FFT operations to the data samples, and obtain the frequency spectral values.
In this investigation, dynamic FFT is adopted as a tool to extract features automatically, and

two types of fault features of an AC generator rotating rectifier are assumed. The first is fT feature.
The specific steps of extracting fT feature based on the dynamic FFT technology are as follows.

First, assume xa (t) to be the acquired signal ofUa and Dynamic FFT is used to process xa (t),
and then absolute spectral values of |F (ω) | can be achieved. The peak value fpa, corresponding
to the main frequency, can be achieved with the following form:

fpa = max ( |F (ω) |) = max (|F[xa (t)]|) . (4)

Using the same method, we can get the main frequency peak values fpb and fpc , correspond-
ing to Ub and Uc , respectively. In this investigation, the feature fT is defined as:

fT =
fpa + fpb + fpc

3
. (5)

The feature fT can be applied to monitor fault occurrence which is demonstrated in Fig. 4. In
this figure, fT keeps unchanged before the fault (in this area, the data processed by FFT operations
belongs to the “healthy” waveforms), and this feature begins to decrease after fault occurrence
(entering the transition area, in which, the data processed by FFT operations belongs to both
healthy and faulty waveforms), but this change becomes relatively stable after some time. In the
area after the fault, the data processed with the FFT algorithm belong to the faulty waveforms.

It can be seen from Fig. 4 that the slope of fT curve (denoted by the grey line) begins to
change after fault occurrence. If the slope can be monitored, the fault can be detected sooner.
Hence, inspired by the slope dynamic change of fT feature, a second fault feature fθ , is designed
in this research. It can be derived from fT with the following formula:

fθ,i =
fT (i) − fT (i + k)

k
, (6)

where, k is a positive integer that should be properly selected, and i is the computation index for
the features. fθ,i is the ith value of feature fθ and fT (i) is the ith value of feature fT .

In this research, the values of fθ appear to be a curve. Different faults can form different fθ
curves. Hence, some values on the curve can be selected as features. In our investigation, we
select three values, including the maximum value of the curve and other two values around it
(i.e. f ∗θ, j−1 and f ∗θ, j+1), as features. The three features are demonstrated in Fig. 4, in which, f ∗θ, j
is the maximum value of the fθ curve and j stands for the index of this maximum value. Three
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Fig. 4. Change curve of fT before and after fault.

features, combined to be a feature sample
[

f ∗θ, j−1, f ∗θ, j, f ∗θ, j+1

]
, are mainly used for the future

neural classification method. In fact, other values on the fθ curve can also be selected as the
features. But we found these three features are enough to classify the fault modes.

2.3. Fault classification method

In this research, two fault classificationmethods are adopted for performance comparison. The
first method is based on Euclidean Distance (ED) analysis, and the other one is the conventional
back-propagation neural network (BPNN) method.

In the ED method, several threshold values are needed to monitor the maximum value of fθ
curve. In this study, four general faults, including working order condition, one-diode open fault,
double–diode open fault and one-diode short fault, are considered. The faults can be classified
with f ∗θ , which is the maximum value of the fθ curve, according to the following formula:




health: f ∗θ < ths0

one-diode open fault: ths0 < f ∗θ < ths1

double-diode open fault: ths1 < f ∗θ < ths2

one-diode short fault: f ∗θ > ths2

, (7)

where, ths0, ths1, and ths2 are decision threshold values for several fault modes. These threshold
values can be computed by the averaged f ∗θ for the training samples of health, one-diode open
fault, double-diode open fault and one-diode short fault, respectively.

In this study, the BPNN is used because this classifier has been widely applied to fault
diagnosis [21–24]. The neural network is robust to data fluctuation and noise disturbance, and
more importantly, this method can learn multi-dimensional data samples. It is a good tool to
perform fault classification in our applications. The basic idea of training a BPNN is the gradient
steepest descent method. By using this method, the network parameters, including weights and
biases, can be adjusted. The structure of the BPNN used in this study has three layers.

In this investigation, three features
[

f ∗θ, j−1, f ∗θ, j, f ∗θ, j+1

]
, described in Fig. 4, are delivered to

the first layer of the BPNN. The number of the third layer neurons is consistent with the number
of fault modes. The activation function is also important and some previous studies can offer
guidelines for constructing a proper BPNN [25]. Parameters for the BPNN in this study, including
the number of the hidden layer neurons, are selected and used according to the experiment results.
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3. The experiments

3.1. The first simulation experiment

3.1.1. Simulation setup

The circuit model for an AC generator is important because simulations can be conducted to
pre-test the effectiveness of the algorithms. At present, the rotating rectifier of the generator uses
the full bridge structure [26].

Building a model of the AC generator is complex [27]. In this paper, the model of aerospace
three-stage synchronous generator (output three-phase AC voltage: 115V/400Hz, rated speed:
8000rpm) is built inMATLAB/Simulink. The overall simulationmodel of this aerospace generator
is shown in Fig. 5.

Fig. 5. The overall simulation model of an aerospace generator.

In Fig. 5, the simulation model is composed of several modules, including a permanent
magnet synchronous motor (Pmsm), an AC exciter module (Exciter), a main generator module
(MainGen) and a rotating rectifier module (Rotating Rectifier) and generator control unit (GCU).
The rotating rectifier module is connected to the main generator whose outputs are monitored
by the voltage regulator. After the output of the main generator is rectified, the voltage regulator
decides whether the output meets the requirements, and then controls the excitation current of
the AC exciter to indirectly adjust the excitation current of the main generator so as to adjust the
output voltages [28].

Both the open-faults and the short-faults of diodes are considered in this simulation experi-
ment. The fault modes of rotating rectifier can be divided into four types as shown in Table 1. In
this table, working condition can be viewed as a special fault mode.

Table 1. Fault modes of the rotating rectifier.

Fault modes Specific faulty diode
Health –

One-Diode Open Fault D1, D2, D3, D4, D5, D6

Double-Diode Open Fault
D1D4, D2D5, D3D6, D1D3, D1D5, D3D5
D2D4, D2D6, D4D6, D1D2, D2D3, D3D4

D4D5, D5D6, D1D6

One-Diode Short Fault D1, D2, D3, D4, D5, D6
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The model of the AC generator is simulated under three load situations (no load, resistive load
and resistive-inductive load). In each load condition, the model is simulated 150 times for each
fault. For each time, the data from the main generator output can be acquired from the software
ports A, B and C (shown in Fig. 5), respectively. The values of loads and their tolerances are
listed in Table 2.

Table 2. Parameters of different loads.

Load types Resistance (tolerance) Inductance (tolerance)
No load – –

Resistive load 30 Ω (5%) –
Resistive-inductive load 30 Ω (5%) 500 uH (5%)

3.1.2. Data acquisition

The main generator output voltages, Ua, Ub and Uc , are collected at a sampling rate of
50 KSa/s, and each sample contains 2000 data points. For each fault mode, 150 samples are
collected. Somewaveforms of main generator outputs with no load are shown in Fig. 6. The output
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Fig. 6. Waveforms under different faults: (a) working order; (b) D1 – open fault; (c) D1D3 – open fault;
(d) D1 – short fault.
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voltages fall slightly when fault is triggered at 0.3 s and the fault occurrence is indicated with
a vertical line in Fig. 6.

As shown in the figures above, in the case of fault occurrence, the output voltage attenuation
of AC generator can be found. A similar phenomenon can be observed under the other two load
conditions.

3.1.3. Feature extraction

After obtaining three-phase output voltages under several load conditions, computations of
the FFT analysis on these voltage signals are carried out. The input length of the FFT is set as 256.

Under no-load condition, taking Ua as an example, the spectrum of the rotating rectifier in
working order, D1 open circuit fault, D1D4 open circuit fault and D1 short circuit fault is shown
in Fig. 7, respectively.
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Fig. 7. Spectrum ofUa under different faults: (a) health condition; (b) D1 – open fault; (c) D1D3 – open fault;
(d) D1 – short fault.

It can be seen from the spectrum that the main frequency changes slightly when the rotating
rectifier is with one-diode open fault. But, the main frequency changes obviously with double-
diode open fault. When the rotating rectifier is with one-diode short fault, the output voltages
of the generator will decrease significantly. This shows that with increasing the number of
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open circuit diodes in the rotating rectifier, the influence on the output voltage signal of the
generator increases accordingly. This also shows that the short circuit fault is more dangerous
than the open circuit fault. A similar phenomenon can be observed under the other two load
conditions.

The dynamic FFT is performed for each sample with a fixed length of 256 points and the
sliding length is set to be 5. In this way, 349 instances of sliding FFT processing are carried out,
and the feature curve of fT after each dynamic FFT can be observed in Fig. 8, under no load
condition, resistive load condition and resistive-inductive load condition, respectively.
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Fig. 8. Change curve of fT under different load conditions: (a) no load condition; (b) resistive load condition;
(c) resistive-inductive load condition.

It can be seen from Fig. 8 that, fT feature curves drop sharply after the open/short fault
occurrence of rotating rectifier diodes. For different faults, the change curves appear obviously
different. This phenomenon exists in different loads. This shows that this phenomenon is inde-
pendent of the type of load on the generator. This stratification phenomenon makes it possible
to perform fault classification. Based on fT features, fθ feature curve can be achieved easily
with formula (6) and the curves for fθ , under different load conditions can be seen in Fig. 9,
respectively.
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Fig. 9. Change curve of fθ under different load conditions: (a) no load condition; (b) resistive load condition;
(c) resistive-inductive load condition.

3.1.4. Fault diagnosis

Based on the extracted features obtained by using the dynamic FFT, a method of diagnosing
AC generator rotating rectifier is proposed. Two diagnosis methods, the ED based and BPNN
based, are considered together in this research. The flowchart of both methods is shown in Fig. 10.
There are three steps to diagnose the rotating rectifier of an AC generator.

First, three-phase voltages (Ua,Ub andUc) need to be acquired synchronously. Then, dynamic
FFT is employed to extract fault features. Finally, fault diagnosis can be implemented with the
extracted fault features. In the ED based method, centroids of the samples need to be calculated.
Fault diagnosis of this method consists in matching the minimum values of Euclidean distances.
As for the BPNN classifier, samples need to be used for training to achieve proper weights and
bias with which, a new sample can be classified to a specific fault mode.

In this simulation experiment, for each fault mode, 150 experimental samples are collected.
So, there are total 600 samples under each load condition. Therefore, there are total 1800 samples
under three different load conditions. Data samples in this study are processed using MATLAB
R2014b software, which runs on a PC with 3.0 GHz CPU and 4 GB RAM, and the operation
system is Windows 7.

In this research, for the BPNN, the activation function from the input layer to hidden layer
is “tan sig”, and the activation function from the hidden layer to the output layer is “log sig”.
The BPNN has a structure of 3-10-4. This means the size of input neurons, hidden neurons and
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Fig. 10. Flowchart of diagnosis.

output neurons, is set to be 3, 10 and 4, respectively. The learning rate is 0.3. The goal error is
set to be 10−5. Also, the BPNN in this research uses 10-fold cross-validation to test the accuracy
and stability. The experimental samples are divided into 10 small groups, 9 of which are used as
training samples and the remaining group as testing samples. Each test will get the corresponding
accuracy. The averaged accuracy of 10 tests is taken as the overall performance of the BPNN. As
for the ED method, the ths0, ths1 and ths2, is 0.13, 0.39 and 0.67, respectively.

According to the simulation experiment results, the fault diagnosis accuracy for both methods,
can reach the ideal of 100%.

3.2. The second actual experiment

3.2.1. Experiment platform description

Limited by the cost of constructing an aerospace generator, the authors constructed a general
civil generator to testify the methods presented above. The civil generator is identical to its
aerospace counterparts in terms of structure, and it can be used to testify the effectiveness of the
proposed methods. In this real generator system, there is an AVR which calculates the root-mean-
square (RMS) value of generator main output voltage and compares it with the reference voltage
to produce an error which can be used to regulate the exciter current of an AC exciter. In this way,
generator output can be controlled with a closed-loop system of excitation voltage regulator. This
experimental platform is constructed and shown in Fig. 11.

The platform is mainly composed of a three-stage brushless synchronous generator. An
asynchronous induction motor is used as the prime mover to drive the generator, and this motor
is controlled with a SIEMENS inverter. Some rated parameters of the induction motor and the
generator are described in Table 3. In order to generate the diode open/short fault, the structure
of rotating rectifier is modified and open/short faults can be triggered manually with thirteen
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Fig. 11. Experimental platform.

switches, and some of these switches are in series with the corresponding diodes on the rectifier,
while others are in parallel with the corresponding diodes. The open/short faults used in this study
are identical to those used in the simulation experiment. In this experiment, the resistive load is
mainly used for investigation of load variations. Three load conditions are considered: no load,
1.5 kW load and 3 kW load.

Table 3. Parameters of experimental units.

Induction motor Three-phase AC generator

Parameter Value Parameter Value

Rated power [kW] 11 Rated power [kW] 7.5

Rated voltage [V] 380 Rated speed [rpm] 1500

Rated current [A] 22.5 Rated voltage [V] 220

Rated torque [N.m] 70 Rated frequency [Hz] 50

Number of pole-pairs 2 Pole pairs 2

3.2.2. Data acquisition

In this experiment, output voltages (Ua, Ub and Uc) of the main generator are sampled with
a data acquisition system, which is illustrated in Fig. 12. This data acquisition system is composed
of an analog signal processing board, a data acquisition unit card (Handyscope HS4 by TiePie
Co.) and a personal computer (PC). The sampling rate for the data acquisition unit card is set
to be 5 KSa/s and each sample contains 1000 data points. For each fault mode, 100 samples are
collected and there are 400 samples in total for four fault modes.

Some experimental waveforms of main output voltages under different faults with no load are
illustrated in Fig. 13.
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Fig. 13. Experiment waveforms under different faults: (a) working order; (b) D1- open fault ; (c) D1D4 – open fault;
(d) D1 – short fault.

3.2.3. Feature extraction

After obtaining the three-phase output voltage signals under three load types: no-load condi-
tion, 1.5 kW load condition and 3 kW load condition, the signals are analyzed with the Fourier
transform. The input length of the FFT is set as N1 = 201.
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Figure 14 shows the corresponding spectrum diagrams of Ua when the rotating rectifier is in
working order, D1 open circuit fault, D1D4 open circuit fault and D1 short circuit fault under
no-load condition, respectively.
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Fig. 14. Spectrum ofUa for different fault modes: (a) working order; (b) D1 – open fault; (c) D1D4 – open fault;
(d) D1 – short fault.

In this experiment, the dynamic FFT is applied to the actual samples with the sliding length of
2 points. In this way, 400 instances of sliding FFT processing are carried out, and the fT feature
after each FFT processing is achieved. Under no-load condition, several fT feature curves can be
observed in Fig. 15.
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Fig. 15. Change curve of fT feature under no-load condition.
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In the actual experiment, the fθ features calculated from the fT curve varies drastically, and
this can be attributed to disturbance from the data noise. Hence, a digital filter seems to be
necessary. In this research, three filterers, including mean filter, median filter and Kalman filter,
are considered and compared in terms of filtering performance. Finally, the Kalman filter method
is found to be the most suitable [29]. The fθ feature curves, before and after Kalman filtering, are
shown in Fig. 16, respectively. As can be seen from Fig. 15 and Fig. 16, the results of the actual
experiment are similar to those of the simulation experiment.
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Fig. 16. (a) The curve of fθ feature before the Kalman filter is applied; (b) The curve of fθ feature after the Kalman
filter is applied.

3.2.4. Fault diagnosis

In this real experiment, for each fault mode, 100 experimental samples are collected. So, there
are total 400 samples under each load condition. Therefore, there are total 1200 samples under
three different load conditions. In applications, the generator load may fluctuate under different
conditions, and in order to be close to real situations, three types of load samples are mixed and
used for the variable load condition.

Similar to that used in simulation experiment, the BPNN designed in this real experiment
also has a structure of 3-10-4. The first transfer function is a “tan sig” function and the second
transfer function, is a “log sig” function. The learning algorithm of the network is gradient descent
method, and the learning rate is set to be 0.3. Also, 10-fold cross-validation method is used in
this classifier. With these parameters, the BPNN can achieve good performance. As for the ED
method, the ths0, ths1 and ths2, is 0.03, 0.08 and 0.11, respectively.

The results of fault diagnosis based on the BPNN (10-fold cross-validation) and Euclidean
Distance method are given in Table 4 in which testing time is the time cost for testing one sample
and it should be noted here that this is only roughly estimated by the PC.

It can be seen from the table above, both of classification methods have achieved good results.
The BPNN classifier, by using the cross-validation strategy, can achieve good diagnosis accuracy
under different load conditions. This indicates that the conventional BPNN is a good classifier in
our research so long as the network parameters are properly trained. The method based on ED
method is simple, but also effective in diagnosing faults, and it can achieve good results even
under variable loads. However, the performance of the ED method seems to be inferior to that
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Table 4. Results comparison for diagnosis methods.

Load types Classifier Accuracy Testing time

No load
BPNN

(cross-validation) 99% 0.03 ms

ED 99% < 0.001 ms

1.5 kW
BPNN

(cross-validation) 100% 0.03 ms

ED 97% < 0.001 ms

3 kW
BPNN

(cross-validation) 99% 0.04 ms

ED 97% < 0.001 ms

Variable loads
BPNN

(cross-validation) 98% 0.03 ms

ED 93% < 0.001 ms

of the BPNN in most cases because the neural network is able to learn the samples itself, and
through this capability, this classifier can automatically find a good classification hyper-plane in
the feature space. Also, the ED method performs the diagnosis task with fixed threshold values
and this method cannot achieve good performance for samples disturbed by noise.

Also, the ideal results from the figures and tables above also illustrate that the fθ features
calculated from the fT , are effective.

4. Conclusions

In this article the authors present a diagnosis method for the rotating rectifier of an aerospace
brushless three-phase synchronous generator based on the dynamic FFT, with which, the fT curve
can be achieved and calculated to extract fault feature fθ . In order to test the effectiveness of this
feature, both the ED method and BPNN classifier are adopted. Several conclusions can be drawn
according to the descriptions above.

First, output voltages of the main generator are selected as accessible signal sources and the
dynamic FFT method applied to this signal is demonstrated to be effective in extracting fT and
fθ features of the rotating rectifier of a three-phase aerospace AC generator. The simulated and
real experiments show that this feature extraction method is robust to the load variations.

Second, the fθ features selected for different faultmodes in this research have good separability
because we can achieve good diagnosis accuracy with either the ED method, or the BPNN
classifier. Both classifiers belong to the conventional and typical methods in the field of fault
diagnosis.

Third, the features from the simulations are different from those in experiments because of the
noise effect. Hence, additional measures need to be adopted to eliminate the noise disturbance.
In our research, the Kalman filter can fulfil the filtering task with good results.

Finally, the methods used in our research need many calculations, and we conduct the verifica-
tion of algorithms via a personal computer. The algorithms can be implemented in an embedded
system, which is more suitable for online working ordermonitoring of an aerospace generator.
These tasks will be envisaged in the next research.
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