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An improvement of Gamma approximation
for reduction of continuous interval systems

Jagadish Kumar BOKAM, Vinay Pratap SINGH,
Ramesh DEVARAPALLI and Fausto Pedro GARCÍA MÁRQUEZ

In recent, modeling practical systems as interval systems is gaining more attention of con-
trol researchers due to various advantages of interval systems. This research work presents a
new approach for reducing the high-order continuous interval system (HOCIS) utilizing im-
proved Gamma approximation. The denominator polynomial of reduced-order continuous in-
terval model (ROCIM) is obtained using modified Routh table, while the numerator polynomial
is derived using Gamma parameters. The distinctive features of this approach are: (i) It always
generates a stable model for stable HOCIS in contrast to other recent existing techniques; (ii) It
always produces interval models for interval systems in contrast to other relevant methods, and,
(iii) The proposed technique can be applied to any system in opposite to some existing tech-
niques which are applicable to second-order and third-order systems only. The accuracy and
effectiveness of the proposed method are demonstrated by considering test cases of single-input-
single-output (SISO) and multi-input-multi-output (MIMO) continuous interval systems. The
robust stability analysis for ROCIM is also presented to support the effectiveness of proposed
technique.
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1. Introduction

Deriving the mathematical model of practical systems, e.g., power system,
small hydro-solar-wind power generation system , flight vehicles, pure electric
vehicle (PEV) , robotic manipulators, micro hydro turbine generation system
etc. may lead to complex and high-order transfer functions [1–4]. Analysis and
controller design of such high-order transfer functions are complex tasks. In order
to simplify the complexity, it becomes mandatory to develop reduction methods
for efficient approximation of high-order transfer functions. The reduction is
helpful in decreasing computational effort during simulation, designing simpler
controller, better understanding of the system, etc. [5, 6].

Many practical systems in engineering industries possess uncertainties in pa-
rameters during entire range of operating conditions [7,8]. These uncertainties in
the system parameters occur due to sensor noises, nonlinear effects, actuator con-
straints, internal and external disturbances, aging effect, manual errors, etc. The
consideration of uncertainties in model of the system itself turns out to a transfer
function having interval parameters [9–11]. The transfer function having interval
parameters is known as interval systems. Some practical systems, mathematically
modelled as interval systems, are cold rolling mill, DC shunt motor, and oblique
wing aircraft [12]. The interval transfer functions of cold rolling mill, DC shunt
motor and oblique wing aircraft are given, respectively, in (1), (2) and (3).

G(s) =
[0.5, 2.6] + [3, 16] s + [4.2, 21] s2

[0.05, 0.15] + [1, 2.5] s + [3, 8] s2 [1, 1] s3 , (1)

G(s) =
[50000, 50000]

[2025, 2475]s + [1200, 2800]s2 + [9.6, 33.6]s3 , (2)

G(s) =
[900, 1660] + [54, 74]s

[−1, 1] + [301, 339]s + [504, 808]s2 + [28, 46]s3 + 10s4 . (3)

In the transfer functions given in (1)–(3), the coefficients of numerator and de-
nominator polynomials are varying in definite intervals.

In literature, various model reduction techniques [13] like Routh approxima-
tion, moment matching technique, continued fraction expansion method, Pade
approximation, aggregation method, etc. are published for non-interval systems
in both time and frequency domains. In spite of several methods available for
order reduction of non-interval systems, only few methods are extended for order
reduction of interval systems due to complex interval arithmetic [6,14,15]. Apart
from this, these methods when extended for order reduction of interval systems
may generate unstable interval model from its stable high-order interval sys-
tem [16–18]. In case of reduced-order model, the analysis, controller design and
hardware implementation of system becomes easier. The reduced-order model
can be utilized for simulation and analysis of system in offlinemode or can be used
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for analysis, controller design and hardware implementation in online mode/real
time mode [2, 3].

The pioneering work by Bandyopadhyay et al. [19] based on Pade approxi-
mation is presented for reduction of continuous interval systems. In this work,
authors calculated the denominator of interval model by truncating the Routh
table directly. The numerator of model is obtained by matching the coefficients
of power series expansions. These coefficients of power series expansions are
similar to time moments as derived for non-interval systems. Later, it is found
that the technique presented in [19] fails to generate stable interval model for
stable interval system in some cases. This stability issue is addressed by Dol-
gin and Zeheb in [16] where the formula for deriving the elements of Routh
table is modified. But, further, it is found in [17] that the modification suggested
in [16] is not sufficient. To overcome this, Dolgin in [18] introduced two sup-
plementary conditions for constructing the Routh table in order to suppress the
problem of instability. In [20], the order reduction of continuous interval systems
using Anderson corollary is presented. The main drawbacks of this technique are:
(i) it produces non-interval model for interval system, and (ii) it is applicable for
second-order and third-order systems only.

In [21], a method based on Gamma-Delta approximation for reducing the
order of continuous interval systems is proposed. This requires more computa-
tional effort as both Gamma and Delta tables are required to obtain the model.
Later, article [22] presented a simple method for order reduction where numerator
and denominator are obtained directly from Gamma table only. In this method,
the computational effort is reduced as compared to [21]. In due course of time,
comments raised in [22] pointed out that model obtained using only Gamma
table [23] does not preserve the stability. The mathematical model of opera-
tional behavior of the basic hybrid energy system components is presented in [2]
which is considered for model order reduction with ±10% variation in the system
parameters.

Various strategies are available for model order reduction of higher order
continuous and discrete interval systems. In [24], the low-order interval model is
obtained using stability equation technique, Kharitonov’s theorem and minimiza-
tion of integral-square-error (ISE) utilizing differential evolution optimization
technique. Singh et al. [6] adopted Routh-Pade approximation for order reduction
of interval systems and also proposed two simple expressions for computing time
moments (TMs) and Markov parameters (MPs). A thorough literature survey
on model order reduction (MOR) methods based on Routh approximation for
discrete and continuous interval systems is given in article [13]. Later, the order
reduction of higher order continuous interval systems is carried out using fre-
quency domain reduction techniques [25] where the denominator of the model
is derived from differentiation method and numerator is achieved using factor
division, differentiation and Pade approximation methods. Another concept of
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order reduction of interval systems is stated depending on ISE minimization and
impulse response energy usingmodified particle swarm optimization (PSO) algo-
rithm by Anand et al. [26]. An order reduction method is suggested in [27] based
on linear programming by considered the initial states of original system. A low
dimensional system is examined that results a tolerance index ε , the same output
than the original one when the initial state belongs to a set called ε-admissible
set. The robust stability problem of uncertain continuous-time fractional order
linear systems with pure delay in the following two cases: a) the state matrix is
a linear convex combination of two known constant matrices, b) the state matrix
is an interval matrix is considered in [28]. It is shown that the system is robustly
stable if and only if all the eigenvalues of the state matrix multiplied by delay
in power equal to fractional order are located in the open stability region in the
complex plane.

Model order reduction of linear time-invariant continuous and discrete in-
terval systems based on Kharitonov’s theorem using differential method was
presented by Potturu and Prasad [29]. The resulting interval model preserves all
the dominant characteristics of original interval system. The frequency domain
fractional-order controllers are designed generally based on the specifications [30]
like phase margin, gain crossover frequency, steady-state error cancellation, high-
frequency noise rejection, and good output disturbance rejection. A new approach
is developed in [31] to build an interval observer for nonlinear uncertain systems
and a non-linear systems modeled in the Takagi-Sugeno (T-S) form is consid-
ered. Initially, T-S proportional observer is issued by pole-placement and LMI
tools. Later, time-varying change of coordinates for each dynamic state estima-
tion error is used to design an interval observer. Article [32] presents design of
an interval state estimator for linear time-varying (LTV) discrete-time systems
subject to component faults and uncertainties. The proposed interval state es-
timator guaranteed bounds on the observed states that are consistent with the
system states. In [33] a new reduce-norm frequency selective projection method
was developed by using interpolation point based on spectral zeros (SZs) of the
system. This method guarantee stability and passivity, while creating the reduced
models, which are fairly accurate across selected narrow range of frequencies.
Authors in [34], extended the differentiation method for reduced order modeling
where the stability of lower order models is always guaranteed. And, also, it
retains the initial TMs of higher order systems. Further, a new approach of order
reduction based on the concept of impulse response gramian is developed in
frequency domain in [35]. Recently, Dewangan et al. [36] proposed multi-point
Routh-Pade approximation technique for single-input-single-output (SISO) and
multi-input-multi-output (MIMO) interval systems. This methods assures stable
reduced model for higher order continuous interval systems.

In this investigation, an improved order reduction technique using improved
Gamma parameters is proposed for order reduction of higher order continuous
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interval system (HOCIS). The proposed method overcomes the limitation of tech-
nique presented in [23] where the model derived may turn out to be unstable even
if the HOCIS is stable. Also, the proposed technique produces interval models for
interval systems. Additionally, the proposed technique in general is applicable to a
system irrespective of its order. In this contribution, the denominator polynomial
of the reduced order continuous interval model (ROCIM) is obtained by using
modified Routh approximation and the numerator polynomial is derived using
modified Gamma parameters. The analysis of results obtained is accomplished
using location of poles of Kharitonov’s polynomials. This technique is applied for
order reduction of SISO andMIMO interval systems. Three SISO and oneMIMO
test cases are considered to illustrate the whole procedure in detail. A compara-
tive analysis between the simulation results obtained from the proposed approach
and from the other similar recently proposed order reduction techniques has been
reported. The comparisons and numerical simulations prove that the proposed
technique provides an excellent interval model than others. The rest of the paper
is organized as follows: section 2 includes the proposed technique, test cases to
illustrate the proposed method are considered in section 3 and at the end, the
conclusions are summarized in section 4.

2. Proposed technique

Suppose, an nth-order single-input-single-output (SISO) higher order contin-
uous interval system (HOCIS) is expressed as

G(s) =
N (s)
D(s)

=
En−1sn−1 + · · · + E2s2 + E1s + E0

Fnsn + · · · + F2s2 + F1s + F0
(4)

where Ei = [E−i , E+i ] for i ∈ (0, 1, . . . , n−1) and Fi = [F−i , F
+
i ] for i ∈ (0, 1, . . . , n)

are the interval coefficients of numerator and denominator polynomials of interval
system given in (4), respectively. E+i and F+i are the upper bounds, and E−i and
F−i are the lower bounds of corresponding interval coefficients.

The adequate rth-order reduced order continuous interval model (ROCIM) of
system given in (4) is represented as follows

Gr (s) =
Nr (s)
Dr (s)

=
er−1sr−1 + · · · + e2s2 + e1s + e0

fr sr + · · · + f2s2 + f1s + f0
, (5)

where ei = [e−i , e
+
i ] for i ∈ (0, 1, . . . , r−1) and fi = [ f −i , f +i ] for i ∈ (0, 1, . . . , r)

are the interval coefficients of numerator and denominator polynomials of interval
model given in (5), respectively, provided r < n. The notations e+i and f +i are
the upper bounds, and e−i and f −i are the lower bounds of corresponding interval
coefficients. Procedure for obtaining the denominator and numerator of ROCIM
is explained below.
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2.1. Procedure to determine the denominator

In proposed technique, denominator is determined by using the modified
method of formation of Routh table that always guarantees the stability of de-
nominator polynomial [18]. The modified Routh table for denominator of HOCIS
is constructed in Table 1.

Table 1: Modified Routh array

P1,1 = Fn P1,2 = Fn−2 P1,3 = Fn−4 . . .

P2,1 = Fn−1 P2,2 = Fn−3 . . .

P3,1 P3,2
...

...
. . .

Pn,1 Pn,2

Pn+1,1

The interval elements of Table 1 are calculated according to

Pi, j = Pi−2, j+1 −

∧

Pi−2,1
∧

Pi−1,1

Pi−1, j+1 (6)

where i ­ 3 and 1 ¬ j ¬ (n − i + 3)/2. The element
∧

Pi, j is the mid-point of the
interval [P−i, j, P

+
i, j] and its value is calculated as

∧

Pi, j=
1
2

(
P−i, j + P+i, j

)
. (7)

While obtaining the elements of modified Routh table (Table 1), two conditions
are established to ensure the consistency of all elements.
Condition 1: To ensure the existence of interval Pi, j , the element Pi−1, j+1 is
modified to

Pi−1, j+1 =

[
max

(
P−i−1, j+1,

∧

Pi−1, j+1 −
ULi−2, j+1

2

)
,

min
(
P+i−1, j+1,

∧

Pi−1, j+1 +
ULi−2, j+1

2

)]
(8)

where P−i−1, j+1 and P+i−1, j+1 are respectively, the lower bound and upper bound of

the interval Pi−1, j+1;
∧

Pi−1, j+1 is mid-point of interval Pi−1, j+1; Li−2, j+1 is the range
of element Pi−2, j+1 which is given as

Li−2, j+1 = P+i−1, j+1 − P−i−1, j+1 (9)
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and

U =
(
1/d

) �������

∧

Pi−1,1
∧

Pi−2,1

�������
(10)

with d > 1. This value of d is obtained as

d =

����
∧

Pi−1,1
���� +

����
∧

Pi−2,1
����

����
∧

Pi−2,1
����

. (11)

Condition 2: This condition sets essentiality on the denominator polynomial
derived from the Table 1. The denominator, Dr (s), of ROCIM is calculated from
(n + 1 − r)th and (n + 2 − r)th rows of Table 1 as

Dr (s) =
∧

Pn+1−r,1 sr + Pn+2−r,1sr−1 + Pn+1−r,2sr−2 + · · · . (12)

Usually, the value of
∧

Pn+1−r,1 is taken to be the middle value of the interval
Pn+1−r,1.

2.2. Procedure to determine the numerator

The Gamma table (Table 2) is constructed for HOCIS given in (4) to obtain
the numerator polynomial of ROCIM. The Gamma parameters are determined
from Table 2.

Table 2: Gamma table

γ1 =
F0

F1
F0 F1 F2 F3 · · ·

F1 F2 F3 F4

γ2 =
G1

G2
G1 G2 G3 · · ·

G2 G3

γ3 =
H1

H2
H1 H2 · · ·

H2 H3

γ4 =
I1

I2
I1 · · ·

I2
...

...
. . .

The parameters Gi, Hi, Ii, . . . of Table 2 are determined as

H1 = G2 (13)
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Gi = Fi , i = 1, 3, . . . , (14)
Hi = Fi+1 , i = 3, 5, . . . , (15)
Ii = Fi+2 , i = 3, 5, . . . , (16)

Gi = Fi −
(Fi+1 ∗ F0)

F1
, i = 2, 4, . . . , (17)

Hi = Gi −
(G1 ∗ Gi+2)

G2
, i = 2, 4, . . . , (18)

Ii = Hi+1 −
(H1 ∗ Hi+2)

H2
, i = 2, 4, . . . (19)

The expression for obtaining the numerator polynomial of ROCIM is proposed as

Nr (s) = γr!{Er−1sr−1 + · · · + E1s} +
E0 f0

γ1F1
(20)

such that the response of obtained model follows the response of original system
as closely as possible.

3. Results and discussion

To show the efficacy and effectiveness of the proposed method, four test
cases are considered in this section. Three test cases considered are single-
input-single-output (SISO) systems while forth one is multi-input-multi-output
(MIMO) system.

The test cases considered in this work are stable in nature. If the reduction of
unstable systems is desired then, unstable system has to be broke into stable and
unstable parts. The stable part is reduced and combined to obtain overall reduced
transfer function.

It is necessary to test the stability of obtained model if the given system
is stable. The stability analysis of system and model obtained is done using
Kharitonov polynomials. For every test case, the stability analysis is performed
to conclude about the stability of proposed model.
Test case 1: Consider the sixth-order interval system [17] given by the transfer
function

G(s) =
N (s)
D(s)

=

[2, 3]s5 + [25, 30]s4 + [150, 160]s3

+[1500, 1800]s2 + [3500, 4000]s + [2500, 3000]
[2, 2.5]s6 + [76, 76.5]s5 + [119, 119.5]s4 + [100, 100.6]s3

+[71.5, 72]s2 + [31, 31.5]s + [1, 1.5]

. (21)
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The desired fifth-order model can be defined as

G5(s) =
N5(s)
D5(s)

=
e4s4 + e3s3 + +e2s2 + e1s + e0

f5s5 + f4s4 + f3s3 + f2s2 + f1s + f0
. (22)

The modified Routh table (Table 1) for (21) is produced in Table 3.

Table 3: Modified Routh table

s6 [2, 2.5] [119, 119.5] [71.5, 72] [1, 1.5]
s5 [76, 67.5] [100.06, 100.56] [31.01, 31.49]
s4 [116.05, 115.53] [70.69, 70.98] [1.11, 1.39]
s3 [53.71, 54] [30.38, 30.47]
s2 [5.09, 5.19] [1.25, 1.25]
s1 [17.28, 17.37]
s0 [1.25, 1.25]

Using (12), the fifth-order denominator polynomial of ROCIM obtained from
Table 3 is

D5(s) = [76, 67.5]s5 + [116.05, 115.53]s4 + [100.06, 100.56]s3

+ [70.69, 70.98]s2 + [31.01, 31.49]s + [1.11, 1.39]. (23)

The Gamma table for (21), generated using Table 2, is provided in Table 4.

Table 4: Gamma table for (21)

γ1 =
[1, 1.5]

[31, 31.5]
[1, 1.5] [31., 31.5] [71.5, 72] [100, 100.6] [119, 119.5] [76, 76.5] [2, 2.5]

[31., 31.5] [71.5, 72] [100, 100.6] [119, 119.5] [76, 76.5] [2, 2.5]

γ2 =
[31, 31.5]

[66.63, 68.83]
[31, 31.5] [66.63, 68.83] [100, 100.6] [115.3, 117.1] [76, 76.5] [2, 2.5]

[66.63, 68.83] [100, 100.6] [115.3, 117.1] [76, 76.5] [2, 2.5]

γ3 =
[66.63, 68.83]
[44.64, 48.67]

[66.63, 68.83] [44.64, 48.67] [119, 119.5] [74.82, 75.6] [2, 2.5]

[44.64, 48.67] [119, 119.5] [74.82, 75.6] [2, 2.5]

γ4 =
[44.64, 48.67]
[2.43, 17.07]

[44.64, 48.67] [2.43, 17.07] [76, 76.5] [2, 2.5]

[2.43, 17.07] [76, 76.5] [2, 2.5]

γ5 =
[2.43, 17.07]
[2.43, 17.07]

[2.43, 17.07] [25.9, 71.29] [2, 2.5]

[25.9, 71.29] [2, 2.5]
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The computed Gamma parameters from Table 4 are

γ1 = [0.0317, 0.0483], γ2 = [0.4504, 0.4727],
γ3 = [1.3691, 1.5415], γ4 = [2.6163, 19.7668],
γ5 = [0.0345, 0.6419].

(24)

The numerator polynomial derived using (20) is given as

N5(s) = [1.28, 20.87]s4 + [7.65, 111.3]s3 + [76.5, 1252.26]s2

+ [178.5, 2782.82]s + [1823.25, 4242.12]. (25)

Thus, the desired fifth-ordermodel for (21), obtained from (23) and (25), becomes

G5(s) =
N5(s)
D5(s)

=

[1.28, 20.87]s4 + [7.65, 111.3]s3 + [76.5, 1252.26]s2

+[178.5, 2782.82]s + [1823.25, 4242.12]
[76, 67.5]s5 + [116.05, 115.53]s4 + [100.06, 100.56]s3

+[70.69, 70.98]s2 + [31.01, 31.49]s + [1.11, 1.39]

. (26)

The stability of ROICM given in (26) is inspected with the help of Kharitonov
polynomials (KPs) given in Appendix 4. The corresponding four KPs associated
with D5(s) are

D1
5 (s) = 76.25s5 + 116.05s4 + 100.54s3 + 70.98s2 + 31.01s + 1.11, (27)

D2
5 (s) = 76.25s5 + 116.53s4 + 100.54s3 + 70.69s2 + 31.01s + 1.39, (28)

D3
5 (s) = 76.25s5 + 116.53s4 + 100.06s3 + 70.69s2 + 31.49s + 1.39, (29)

D4
5 (s) = 76.25s5 + 116.05s4 + 100.06s3 + 70.98s2 + 31.49s + 1.11. (30)

In article [22], it is proved that the method proposed by Sastry et al. [23] fails to
produce stable model for (21). The fifth-order model obtained for (21) using the
technique proposed by [23] is given as

GSa (s) =
A5(s)
B5(s)

=

[0.029, 13.395]s4 + [0.176, 71.442]s3

+[1.764, 803.7]s2 + [4.117, 1786]s + [2.941, 1339.5]
[1, 1]s5 + [0.14, 53.357]s4 + [0.118, 44.918]s3

+[0.084, 32.148]s2 + [0.036, 14.065]s + [0.0012, 0.67]

. (31)



AN IMPROVEMENT OF GAMMA APPROXIMATION FOR REDUCTION
OF CONTINUOUS INTERVAL SYSTEMS 357

The stability of model given in (31) is examined by means of KPs. The
corresponding four KPs associated with B5(s) are

B1
5 (s) = s5 + 0.142s4 + 44.918s3 + 32.148s2 + 0.036s + 0.0012,

B2
5 (s) = s5 + 53.357s4 + 44.918s3 + 0.084s2 + 0.036s + 0.6692,

B3
5 (s) = s5 + 53.357s4 + 0.118s3 + 0.084s2 + 14.065s + 0.6692,

B4
5 (s) = s5 + 0.142s4 + 0.118s3 + 32.148s2 + 14.065s + 0.0012.

(32)

The eigen-values of four KPs associated with different denominators of (21), (26)
and (31) are listed in Table 5.

Table 5: Eigen-values of system and models

System/
models Eigen-values

First KP Second KP Third KP Fourth KP

(21)

−28.7942 + 0.000i
−0.0149 + 0.7724i
−0.0149 − 0.7724i
−0.7705 + 0.2683i
−0.7705 − 0.2683i
−0.0350 + 0.0000i

−36.3956 + 0.000i
−0.0139 + 0.7616i
−0.0139 − 0.7616i
−0.7609 + 0.2626i
−0.7609 − 0.2626i
−0.0548 + 0.0000i

−36.6565 + 0.000i
−0.0060 + 0.7625i
−0.0060 − 0.7625i
−0.7639 + 0.2678i
−0.7639 − 0.2678i
−0.0537 + 0.0000i

−29.0053 + 0.000i
−0.0070 + 0.7731i
−0.0070 − 0.7731i
−0.7732 + 0.2732i
−0.7732 − 0.2732i
−0.0343 + 0.0000i

(26)

−0.0391
−0.0137 + 0.7700i
−0.0137 − 0.7700i
−0.7278 + 0.3131i
−0.7278 − 0.3131i

−0.0502
−0.0132 + 0.7643i
−0.0132 − 0.7643i
−0.7258 + 0.3081i
−0.7258 − 0.3081i

−0.0492
−0.0073 + 0.7649i
−0.0073 − 0.7649i
−0.7322 + 0.3112i
−0.7322 − 0.3112i

−0.0384
−0.0078 + 0.7705i
−0.0078 − 0.7705i
−0.7340 + 0.3161i
−0.7340 − 0.3161i

(31)

−0.7082
−0.0006 + 0.0055i
−0.0006 − 0.0055i
0.2847 + 6.7262i
0.2847 − 6.7262i

−52.5045
−0.8323
−0.2809
0.1288 + 0.1949i
0.1288 − 0.1949i

−53.3577
−0.6268
−0.0477
0.3361 + 0.5542i
0.3361 − 0.5542i

−3.0540
−0.4388
−0.0001
1.6764 + 2.7714i
1.6764 − 2.7714i

From Table 5, it is clearly visible that the system, i.e. (21), is stable as its all
eigen-values of associated four KPs are lying in left-half of s-plane. However, it
is observed that two eigen-values of all four KPs of model, given in (31), lie in
right-half of s-plane. Therefore, the technique due to [23] is producing unstable
model for stable system. Further, it can be seen from Table 5 that all the eigen-
values of four KPs of proposed model, given in (26), are located in left-half of
s-plane. Hence, it is clear that the proposed method produces stable model for
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stable system and suppresses the problem of instability of technique proposed
by [23]. Also, an interval model is ensured for interval system using proposed
technique in contrast to method proposed in [20].
Test case 2: Suppose, a second-order model is to be derived for system given in
(21). The second-order model can be defined as

G2(s) =
N2(s)
D2(s)

=
e1s + e0

f2s2 + f1s + f0
. (33)

Using (20) and (24), the numerator polynomial of (33) is obtained as

N2(s) = [50.05, 92]s + [2053.22, 3814.9]. (34)

Using (12), the denominator polynomial of (33) obtained from Table 3 is given as

D2(s) = [5.14, 5.14]s2 + [17.28, 17.37]s + [1.25, 1.25]. (35)

From (34) and (35), the second-order interval model obtained is written as

G2(s) =
[50.05, 92]s + [2053.22, 3814.9]

[5.14, 5.14]s2 + [17.28, 17.37]s + [1.25, 1.25]
. (36)

Now, to prove the efficacy of the proposedmethod, the second-order approximants
of (21) are also obtained by other prevailing methods available in the literature.
The second-order interval models obtained using methods due to Sastry et al.,
[23], Kumar et al., [37], Mangipudi and Begum [38], Bandyopadhyay et al., [19],
Singh et al., [6] and Dolgin et al., [16] are given in (37)–(42), respectively.

GSa (s) =
[32.69, 92]s + [23.33, 69]

[1, 1]s2 + [0.3, 0.73]s + [0.009, 0.035]
, (37)

GK (s) =
[1170.9, 3684.17]s + [836.56, 2752]

[1, 1]s2 + [10.37, 28.9]s + [0.335, 1.39]
, (38)

GMB (s) =
[−390, 88.5]s + [35, 44]

[1, 1]s2 + [0.23, 0.68]s + [0.014, 0.022]
, (39)

GB (s) =
[−1.62 × 106, 6.42 × 105]s + [1500, 5040]

[−2.73, 13.59]s2 + [−140.35, 66.33]s + [0.9, 1.68]
, (40)

GS (s) =
[−4.095, 20.39]s + [1500, 5040]

[−2.73, 13.59]s2 + [−140.35, 66.33]s + [0.9, 1.68]
, (41)

GDZ (s) =
[−1.73 × 105, 1.17 × 105]s + [1666.7, 4500]
[2.33, 7.82]s2 + [−5.21, 24.08]s + [1, 1.5]

. (42)
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Figures 1–3 compares the step, impulse and frequency responses of system i.e.
(21), proposedmodel i.e. (36), andmodels given in (37)–(42) due to other relevant
methods.

Figure 1: Step responses of models and original system

Figure 2: Impulse responses of models and original system
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Figure 3: Frequency responses of models and original system

It is clear from Figs. 1–3 that the step, impulse and frequency responses of the
proposed interval model, (36), is matching closely to the original interval system,
(21), when compared with other models given in (37)–(42). Also, it is clearly
visible from Fig. 1 that the models, (40)–(42), produce unstable responses. The
eigen-values of system, (21), and different models calculated for associated four
KPs [39] are listed in Table 6.

From the eigen-value analysis presented in Table 6, it can be seen that eigen-
values of models, (40)–(42), are lying in right-half of s-plane. Hence, it is again
confirmed from eigen-value analysis that the models given in (40)–(42) produce
unstable interval models for stable system.

Table 7 tabulates the time-domain specifications of system and different mod-
els. From the results listed in Table 7, it is clearly observed that the value of peak
amplitude of proposed model, (36), is closer to the respective value of system,
(21). In addition to this, it is observed that the value of steady-state error is mini-
mum in case of proposedmodel, (36), when compared to other models, (37)–(42).
Therefore, it can be concluded that response of proposed model is better matched
to the response of system. This proves that the proposed technique produces better
ROCIM for continuous interval system over other prevailing methods.
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Table 6: Eigen-values of system and models

System/
model Eigen-values

First KP Second KP Third KP Fourth KP

(21)

−28.7942 + 0.000i

−0.0149 + 0.7724i

−0.0149 − 0.7724i

−0.7705 + 0.2683i

−0.7705 − 0.2683i

−0.0350 + 0.0000i

−36.3956 + 0.000i

−0.0139 + 0.7616i

−0.0139 − 0.7616i

−0.7609 + 0.2626i

−0.7609 − 0.2626i

−0.0548 + 0.0000i

−36.6565 + 0.000i

−0.0060 + 0.7625i

−0.0060 − 0.7625i

−0.7639 + 0.2678i

−0.7639 − 0.2678i

−0.0537 + 0.0000i

−29.0053 + 0.000i

−0.0070 + 0.7731i

−0.0070 − 0.7731i

−0.7732 + 0.2732i

−0.7732 − 0.2732i

−0.0343 + 0.0000i

(36)
−3.2879
−0.0740

−3.2879
−0.0740

−3.3058
−0.0736

−3.3058
−0.0736

(37)
−0.2662
−0.0338

−0.15 + 0.1118i

−0.15 − 0.1118i

−0.67848
−0.0516

−0.7175
−0.0125

(38)
−10.3376
−0.0324

−10.2342
−0.1358

−28.8518
−0.0482

−28.888
−0.0116

(39)
−0.115 + 0.0278i

−0.115 − 0.0278i

−0.115 + 0.0937i

−0.115 − 0.0937i

−0.6459
−0.0341

−0.6587
−0.0213

(40)
10.3210
0.0064

−51.4222
0.0120

24.3220
−0.0253

−4.8672
−0.0136

(41)
10.3210
0.0064

−51.4222
0.0120

24.3220
−0.0253

−4.8672
−0.0136

(42)
0.331 + 0.1300i

0.331 − 0.1300i

1.8966
0.3394

−10.2721
−0.0627

−3.0372
−0.0421

Table 7: Time-domain specifications of system and models

System/model Peak amplitude Steady-state error
(21) 3081.5 −−

(36) 3049.8 24.51
(37) 2455.7 562.3
(38) 2501.3 526.7
(39) 2499.9 518.5
(40) ∞ ∞

(41) ∞ ∞

(42) ∞ ∞
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Test case 3: Consider a third-order interval system given by transfer function

G(s) =
[2, 3] s2 + [17.5, 18.5] s + [15, 16]

[2, 3] s3 + [17, 18] s2 + [35, 36] s + [20.5, 21.5]
(43)

Its desired second-order approximant can have the form given as

G2(s) =
N2(s)
D2(s)

=
e1s + e0

f2s2 + f1s + f0
(44)

The modified Routh table (Table 1) of the denominator polynomial (43) becomes
Table 8.

Table 8: Modified Routh table

s3 [2, 3] [35, 36]
s2 [17, 18] [20.56, 21.44]
s1 [32.06, 32.94]
s0 [20.56, 21.44]

Using (12), the denominator polynomial of (44) from Table 8 turns out to be

D2(s) = [17.5, 17.5]s2 + [32.06, 32.94]s + [20.56, 21.44] (45)

The constructed Gamma table for numerator of (43) is given in Table 9.

Table 9: Gamma table

γ1 =
[20.5, 21.5]

[35, 36]
[20.5, 21.5] [35, 36] [17, 18] [2, 3]

[35, 36] [17, 18] [2, 3]

γ2 =
[35, 36]

[15.16, 16.86]
[35, 36] [15.16, 16.86] [2, 3]

[15.16, 16.86] [2, 3]

γ2 =
[15.16, 16.86]

[2, 3]
[15.16, 16.86] [2, 3]

[2, 3]

From Table 9, the calculated Gamma parameters are

γ1 = [0.57, 0.62], γ2 = [2.08, 2.37], γ3 = [5.05, 8.43] (46)

The numerator polynomial derived using (20) and (46) is given as

N2(s) = [20.75, 26.92]s + [15.25, 18.77] (47)



AN IMPROVEMENT OF GAMMA APPROXIMATION FOR REDUCTION
OF CONTINUOUS INTERVAL SYSTEMS 363

Therefore, the desired second-order approximant, (44), obtained from (45) and
(47), becomes

G2(s) =
N2(s)
D2(s)

=
[20.75, 26.92]s + [15.25, 18.77]

[17.5, 17.5]s2 + [32.06, 32.94]s + [20.56, 21.44]
(48)

The second-order approximants are given in (49)–(54) obtained due the tech-
niques proposed by Sastry et al., [23], Kumar et al., [37], Mangipudi et al., [38],
Hote et al., [20], Bandyopadhyay et al., [19], and Sharma et al., [40], respectively.

GSa (s) =
[0.94, 1.35]s + [0.84, 1.17]

[1, 1]s2 + [2.08, 2.38]s + [1.18, 1.46]
, (49)

GK (s) =
[1.172, 1.3682]s + [1.0269, 1.1097]

[1, 1]s2 + [2.344, 2.6232]s + [1.14, 1.26]
, (50)

GMB (s) =
[0.96, 1.08]s + [0.84, 0.94]

[1, 1]s2 + [1.94, 2.12]s + [1.14, 1.26]
, (51)

GH (s) =
15

17s2 + 31.2s + 21.5
, (52)

GB (s) =
[1.01, 1.26]s + [0.84, 1.12]

[1, 1]s2 + [2.02, 2.44]s + [1.15, 1.15]
, (53)

GSh(s) =
[1.038, 1.221]s + [0.87, 1.09]

[1, 1]s2 + [2.08, 2.38]s + [1.18, 1.46]
. (54)

The step, impulse and frequency responses for system i.e. (43), proposed model
i.e. (48), and models due to other relevant methods given in (49)–(54) are plotted
in Figs. 4–6, respectively.

It is evident from Fig. 4 that the step response of the proposed interval model,
(48), is closely matched to the response of original interval system, (43), as
compared to the other models given in (49)–(54). The same is true for impulse
and frequency responses as plotted in Figs. 5 and 6. Therefore, it can be concluded
that proposed model (48) is an improved approximant of original system (43) as
compared to other models.

The time-domain specifications and eigen-values of system, (43), and models,
(48)–(54), are presented in Table 10 and Table 11 respectively. From the Table 10,
it is obvious that the proposed model (48) provides satisfactory results when
compared to the models given in (49)–(54). The model due to the technique of
Hote et al. [20] is given in (52). From the model, it is clear that the technique
produces non-intervalmodel for interval system.However, the proposed technique
produces interval model, as obtained in (48), for interval system.

It is clear from Table 11 that all the eigen-values of proposed model (48) are
negative which indicate that the proposed technique produces stable model for
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Figure 4: Step responses of models and original system

Figure 5: Impulse responses of models and original system

stable system. Additionally, it can be seen for model given in (52) that KPs are not
existing since model is non-interval one. Therefore, from the results presented in
Figs. 4–6 and Tables 10 and 11, it can be concluded that the proposed technique
provides better model when compared to other prevailing methods.
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Figure 6: Frequency responses of models and original system

Table 10: Time-domain specifications of system and models

System
/model

Peak
amplitude

Settling
time

Rise
time

Steady-state
error

(43) 0.714 2.2484 0.8325 −

(48) 0.793 4.5624 0.8456 0.0131
(49) 0.808 3.9047 1.2366 0.0811
(50) 0.730 4.0044 0.7733 0.0199
(51) 0.695 4.0263 1.0341 0.0301
(52) 0.706 3.4554 2.2491 0.0031
(53) 0.821 4.0930 0.8312 0.0455
(54) 0.802 4.0713 0.9156 0.0506

Test case 4: Consider multi-input-multi-output (MIMO) continuous interval sys-
tem [41] is given as

H (s) =
[
H11(s) H12(s)
H21(s) H22(s)

]
(55)

The transfer functions H11(s), H12(s), H21(s) and H22(s) are mentioned below

H11(s) =
[0.622, 1.622]s + [1.007, 2.007]

[0.537, 1.537]s2 + [1.379, 2.379]s + [1, 2]
, (56)
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Table 11: Eigen-values of system and models

System/
models Eigen-values

First KP Second KP Third KP Fourth KP

(43)
−1.0675
−2.4662 + 0.5646i
−2.4662 − 0.5646i

−1.0521
−2.3073 + 1.2199i
−2.3073 − 1.2199i

−5.6516
−1.7794
−1.0690

−6.4588
−1.4362
−1.1050

(48)
−0.9160 + 0.5795i
−0.9160 − 0.5795i

−0.9160 + 0.6214i
−0.9160 − 0.6214i

−0.9411 + 0.5826i
−0.9411 − 0.5826i

−0.9411 + 0.5377i
−0.9411 − 0.5377i

(49)
−1.0400 + 0.3137i
−1.0400 − 0.3137i

−1.0400 + 0.3136151i
−1.0400 − 0.6151i

−1.1900 + 0.2095i
−1.1900 − 0.2095i

−1.6759
−0.7041

(50)
−1.6553
−0.6887

−1.5090
−0.8350

−1.9901
−0.6331

−2.0734
−0.5498

(51)
−0.9700 + 0.4462i
−0.9700 − 0.4462i

−0.9700 + 0.5469i
−0.9700 − 0.5469i

−1.0600 + 0.3693i
−1.0600 − 0.3693i

−1.0600 + 0.1281i
−1.0600 − 0.1281i

(52)
−0.9176 + 0.6501i
−0.9176 − 0.6501i

(53)
−1.0100 + 0.3604i
−1.0100 − 0.3604i

−1.0100 + 0.6999i
−1.0100 − 0.6999i

−1.2200 + 0.1470i
−1.2200 − 0.1470i

−1.8017
−0.6383

(54)
−1.0400 + 0.3137i
−1.0400 − 0.3137i

−1.0400 + 0.3136151i
−1.0400 − 0.6151i

−1.1900 + 0.2095i
−1.1900 − 0.2095i

−1.6759
−0.7041

H12(s) =
[462.6, 463.6]s + [715.265, 716.626]

[0.537, 1.537]s2 + [1.379, 2.379]s + [1, 2]
, (57)

H21(s) =
[3.563, 4.563]s + [4.858, 5.858]

[0.54, 1.537]s2 + [1.38, 2.37]s + [1, 2]
, (58)

H22(s) =
[610.44, 611.45]s + [1000.35, 1001.35]

[0.537, 1.537]s2 + [1.379, 2.379]s + [1, 2]
. (59)

Let, the first-order model of (55) is desired which is given as

R(s) =
[
R11(s) R12(s)
R21(s) R22(s)

]
. (60)

The first-order interval transfer function R11(s) corresponding to H11(s) derived
using section 2.1 and section 2.2 turns out to be

R11(s) =
[0.309485, 6.7919428]

[1.423261, 2.314324]s + [1.06, 1.94]
(61)
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Figure 7: Step responses of H11 and R11

Figure 8: Step responses of H12 and R12

Likewise, the transfer functions R12(s), R21(s) and R22(s) obtained are

R12(s) =
[219.7792987, 2424.901808]

[1.423261, 2.314324]s + [1.06, 1.94]
, (62)
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Figure 9: Step responses of H21 and R21

Figure 10: Step responses of H22 and R22

R21(s) =
[1.49299, 19.82519]

[1.423261, 2.314324]s + [1.06, 1.94]
, (63)

R22(s) =
[307.3767059, 3388.336444]

[1.423261, 2.314324]s + [1.06, 1.94]
. (64)
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The step responses of MIMO interval transfer function (55) and its model (60)
are plotted in Fig. 7 to Fig. 10. It is clearly observed from Fig. 7 to Fig. 10 that
the step responses of interval system (55) match to the respective responses of
proposedmodel (60). The reducedmodel preserves all the essential characteristics
of system. Also, the derived model is a stable. So, it is understandable that the
proposed model (60) is an excellent approximation of given MIMO interval
system (55). From this test case, it can be inferred that the proposed method can
be extended for reduction of MIMO continuous interval systems.

4. Conclusion

In this investigation, an improved technique based on improved Gamma ap-
proximation is developed for diminishing the order of continuous interval systems.
The improved Gamma approximation is utilized to derive numerator of model,
where as, improved Routh approximation is adopted for determining denominator
polynomial ofmodel. The key advantages of the proposedmethod are: (i) it always
produces stable model for stable system (ii) it always generates interval model for
interval system, and (iii) it can be applied to any system having arbitrary order.
Further, the efficacy of the proposed method is illustrated by considering three
test cases. The results and discussion provided conclude that the proposedmethod
provides better reduction when compared to other relevant techniques. The future
scope of this investigation lies in extending the work for MIMO discrete interval
systems. It would also be interesting to extend the work for controller design
of discrete interval SISO and MIMO systems [7, 36]. It is also of considerable
importance to develop reduction methods utilizing optimization algorithms for
interval systems.

Appendix A

Suppose, an interval polynomial [39] is described as

K (s) =
[
$−0 , $

+
0

]
+

[
$−1 , $

+
1

]
s +

[
$−2 , $

+
2

]
s2 + · · · (65)

the associated four Kharitonov polynomials (KPs) are given as

K1(s) = $−0 +$
−
1 s +$+2 s2 +$+3 s3 +$−4 s4 + · · · , (66)

K2(s) = $+0 +$
−
1 s +$−2 s2 +$+3 s3 +$+4 s4 + · · · , (67)

K3(s) = $+0 +$
+
1 s +$−2 s2 +$−3 s3 +$+4 s4 + · · · , (68)

K4(s) = $−0 +$
+
1 s +$+2 s2 +$−3 s3 +$−4 s4 + · · · . (69)
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