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Balancing of a linear elastic rotor-bearing system
with arbitrarily distributed unbalance using
the Numerical Assembly Technique

Georg QUINZ*, Marcel S. PREM, Michael KLANNER, and Katrin ELLERMANN

Graz University of Technology, Institute of Mechanics, Kopernikusgasse 24/IV, 8010 Graz, Austria

Abstract. In this paper, a new application of the Numerical Assembly Technique is presented for the balancing of linear elastic rotor-bearing
systems with a stepped shaft and arbitrarily distributed mass unbalance. The method improves existing balancing techniques by combining the
advantages of modal balancing with the fast calculation of an efficient numerical method. The rotating stepped circular shaft is modelled accord-
ing to the Rayleigh beam theory. The Numerical Assembly Technique is used to calculate the steady-state harmonic response, eigenvalues and
the associated mode shapes of the rotor. The displacements of a simulation are compared to measured displacements of the rotor-bearing system
to calculate the generalized unbalance for each eigenvalue. The generalized unbalances are modified according to modal theory to calculate
orthogonal correction masses. In this manner, a rotor-bearing system is balanced using a single measurement of the displacement at one position
on the rotor for every critical speed. Three numerical examples are used to show the accuracy and the balancing success of the proposed method.
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NOMENCLATURE

area of segments (m?)

amplitude matrix

spring constant (N/m)

damping constant (Ns/m)

Young’s modulus (N/m?)

second moment of area about x- and y-axis (m*)
external distributed moments (N)
bending moment (Nm)

external distributed forces (N/m)

shear forces (N)

time (s)

unbalance vector (kg m)

axial position (m)

angle of eccentricity (rad)

amount of eccentricity (m)

angular mass about x- and y- axis (kg m?)
density (kg/m?)

rotation of cross section (rad)

modal matrix

RIS @O U™ O XTI ~m o>

spin speed (rad/s)

1. INTRODUCTION

Rotary machines often encounter excessive vibrations due to
rotating unbalance. If the operating speed exceeds 70% of the
first flexural critical speed, a rotor system is considered flexi-
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ble and the displacement of the shaft cannot be neglected [1].
The goal of flexible balancing is to minimize the elastic dis-
placement of the rotor throughout the whole length of the shaft
and all operating speeds. There are two groups of methods for
the balancing of flexible rotors: influence coefficient methods
and modal balancing methods. The influence coefficient method
does not require any assumptions, except the linearity of the ro-
tor and measurement system, but needs a large number of test
runs. The modal balancing method requires only a small set of
test runs and is accurate up to higher modes. However, it is nec-
essary to know the mode shapes of the system to calculate the
orthogonal weight sets [2].

There are different methods to find these weight sets: intu-
itive [3], experimental [4] and numeric methods [5]. This paper
presents a new numeric modal balancing method. The Trans-
fer Matrix Method (TMM) is a common technique to find the
eigenvalues and the unbalance response necessary for balanc-
ing. Lee et al. [6] generalized the classical TMM and included
distributed unbalances in the calculation using Fourier series
representation instead of lumped parameter models. An ex-
tension of this method is the Numerical Assembly Technique
(NAT). In its original form introduced by Wu and Chou [7], it
is applicable for harmonic vibrations of one-dimensional struc-
tures. In recent years, the method has been extended to calculate
the whirling speed and the mode shape of rotor models accord-
ing to the Euler-Bernoulli beam theory [8] and Rayleigh beam
theory [9]. Distributed loading has been introduced by Klan-
ner and Ellermann [10]. NAT is a very powerful tool to inves-
tigate the behaviour of rotor-bearing systems since it leads to
quasi analytical solutions and it is computationally more effi-
cient than the Finite Element Method (FEM) [9]. In this pa-
per the NAT method according to Rayleigh beam theory devel-
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oped by Klanner et al. [9] is used to simulate rotor-bearing sys-
tems and thus transfer the benefits of NAT to a modal balancing
method.

2. BALANCING METHOD

The proposed method uses measurements from one rotor-
bearing system in different states of unbalance. The setup of
a rotor measurement test bed is shown in Fig. 1.
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Fig. 1. Rotor-bearing measurement system (adapted from [11])

The displacement of the rotor is determined by measure-
ment probes and the angular position by a photosensitive sen-
sor, commonly referred to as key phasor.

The first set of measurements is taken in the initial state of the
system before balancing. Measurements of vibrations at every
critical speed up to the operating speed are taken. Furthermore,
the geometric parameters and material properties of the initial
system are used to simulate a digital model, which is excited by
a standardised unbalance.

The second state is described by this digital model. It is used
to determine eigenvalues, mode shapes and the unbalance re-
sponse at critical speeds caused by a known unbalance. Due to
these values, an orthogonal weight set for each mode shape can
be found.

The rotor is balanced by mounting the compensation
weights. By comparing the vibration levels of the system in its
balanced and in its initial state, the balancing success is evalu-
ated. The steps are summarised in Fig. 2.

Initial Measure initial
system vibrations
Calculate Calcul‘ate
. generalised
eigenvalues
v unbalance
. easure
Determine L standard L
parameter P
vibrations Calculate
balancing
weights
Simulate Determme. Balanced
system modal matrix
system

Fig. 2. Flowchart of the balancing process
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2.1. Simulation

The rotor system is simulated using the Numerical Assembly
Technique. The main advantages of this technique are the quasi-
analytical solutions and its low computational effort. In [9],
numerical comparisons show a reduction of the computational
time by a factor of ten compared to FEM. Each rotor segment
is modelled according to the Rayleigh beam theory, which is
based on the same assumption as the Euler-Bernoulli beam the-
ory, but includes rotary inertias and gyroscopic effects [9, 12].
The space fixed coordinate system Oxyz is chosen, so that 0z
passes the undeflected axis of the rotor in its bearings. Ox and Oy
are perpendicular to each other and transverse to 0z. The state
of the rotor is described by the displacements u, and u,, the
rotations of the cross section ¢, and @, the bending moments
M, and M, and the shear forces O, and Qy. The equilibrium of
forces and moments on an infinitesimal rotor element leads to
the equations of motion

Mur(z,r) I *u(z,t)
2z P 072012
d%u,(z,1) B
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where E is the Young’s modulus, / is the second moment of area
of the cross section about the x- and y-axis, p is the density, Q is
the spin speed, m, are the external distributed moments, g, are
the external distributed forces, A is the area of the cross-section,
€ is the amount of eccentricity and f3 is its angular position [9].
The rotations of the cross section are defined by

duy(z,t)
P01 = =5 (2a)
duy(z,t
ouler) = -2, (2b)
Z
the bending moments are defined by
azux(za t)
My(z,1) = Eligzz , (3a)
9%uy(z,1)
M(z,1) = —15157Z2 (3b)
and the shear forces can be computed by
u(z,1) 82uy (z,1)
Oclat) =pI—555 ~ +2P10—5 5
Duy(z,t
- El% —my(z,1), (4a)
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Oy(z,1) = pI&BaL?Z(;’;) - 2p1£282;“;gzz’t)
— Elmbgz(f’t) +my(z,1). (4b)
The proposed method assumes a solution of the form
uy(z,1) = it} () + i, (z)e ¥, (52)
uy(z,1) = ity (2)e!¥ + iy (z)e ¥, (5b)

which leads to four ordinary differential equations. The differ-
ential equations for u™ (z) and u™ (z) are completely decoupled,
since the solutions of u™(z) and u™(z) have to be complex con-
jugated to yield the real solutions for u(z,t). Therefore only two
of these equations

L S o,
a4§y;(z) o0 azﬁgz(zz) - pf;!z i)

are necessary. An approach similar to Wu et al. [8] would also
result in equivalent system equations. In NAT, analytical solu-
tions of the governing equations (6) are used to fulfil the bound-
ary and interface conditions. The particular solutions include
concentrated and generally distributed unbalances. The assem-
bly of the total solutions of each rotor segment leads to a system
of linear equations [9, 12].

For a detailed description of the boundary conditions and the
assembly process, the reader is referred to Klanner et al. [9].

The parameters necessary to describe the rotor-bearing sys-
tem are split into two groups: station- and segment-parameters.
Stations separate segments and represent bearings, discs or
steps in the rotor. They are described by up to ten parameters:
axial position, mass, angular mass about x- and y- and about z-
direction, eccentricity of discs and the angular position of this
eccentricity and spring and damping coefficient in each direc-
tion for the description of bearings. Setting parameters of the
disc or bearing to zero facilitates every possible configuration
at the stations [9]. The spring and damper constants of the bear-
ings are not necessarily equal in both directions, therefore the
simulation of anisotropic behaviour is possible. Since this pa-
per focuses on modal balancing of isotropic rotor systems, this
behaviour is not yet included. Segments are cylinder elements
between these stations. They are described by four parameters:
Young’s modulus, density, area of cross section and second mo-
ment of cross section area. The simulation of the rotor-bearing
system with standard imbalance assumes that the rotor is ex-
cited by a single concentrated imbalance. As the system is lin-
ear, the magnitude and position of the imbalance can be chosen
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arbitrarily. We use a standard imbalance of 1 kgm at the 0° po-
sition of a cross section. It is important that the position in ax-
ial direction is not on a node of one of the considered bending
modes.

All measurements are taken according to the N plane method
[13]: If the system is to be balanced in the first N bending
modes, it needs to be balanced at N positions. When the forms
of the bending modes are known, only the amplitude and phase
angle of the displacement on a single position on the rotor are
needed. Nodes of the eigenmodes have to be excluded. Ev-
ery measurement is taken using a single test run without trial
masses. Additional measurements can be used to compensate
for measurement errors with the least squares method. The vi-
brations of the rotor are measured for each relevant critical
speed. The amplitudes and the angle of maximum displace-
ment of each measurement are combined in one complex value,
where the displacement in x-direction corresponds to the real
part and the displacement in y-direction to the imaginary part.
The complex values of all measurements are gathered in the am-
plitude matrix of the initial system A,. The amplitude matrices
for the standardised system A, and for the balanced system A ,
are formed in the same manner. In the matrix A , one entry per
critical speed is sufficient for balancing. The matrix és has to
be fully populated to determine the mode shapes and the modal
matrix. Since these values are calculated by the NAT simula-
tion, there is no associated measurement effort. To be able to
compare the balancing success, the matrix of the balanced sys-
tem A has to be populated the same way as A .

In this paper, the measurements of the real and balanced sys-
tem are simulated using the FEM software package ANSYS®
2019R2. This facilitates the testing of the proposed balancing
method for many different cases.

2.2. Recursive eigenvalue search

At every critical speed, the coefficient matrix of the Transfer
Matrix Method and also of the NAT model is singular [14]. Usu-
ally, the singularity of a matrix is checked by its determinant
to be zero [15]. For this a modification of a numeric recursive
eigenvalue search algorithm developed by Bestle ef al. [16] is
used. This algorithm reduces the zero search to a minimization
problem, which is more robust and can be solved faster. Clas-
sical root search strategies look for a change of the sign of the
determinant of the coefficient matrix. This can be problematic
when two zeros are close to each other or in the case of double
roots. If the step size is to big, these eigenvalues might be over-
looked. The method of Bestle er al. [16] solves this problem by
searching for local minima in the absolute value of the determi-
nant of the coefficient matrix. It is also a recursive algorithm:
Every time a local minimum of the function is found, the algo-
rithm is repeated in an area of one step size in both directions
around the lowest value, until the desired accuracy is met. Since
the space between critical speeds usually increases with higher
frequencies, the algorithm searches in logarithmic steps instead
of linear ones. In the case of a damped rotor-bearing system,
the eigenvalues are complex numbers and the zero search prob-
lem depends on two variables, the damped critical speed @y
and the modal damping coefficient d. In this case, the algorithm
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searches a matrix of those two variables for values, which are
a minimum in both directions and repeats this process until the
desired accuracy is met [16].

2.3. Modal balancing
The proposed method builds on the N plane method. In this
method, the modal components of imbalance are corrected in
a progressive way in the vicinity of critical speeds without af-
fecting already balanced modes [13, 17]. The modal matrix is
needed to find orthogonal balancing weights that influence only
a single mode shape. It consists of the relations of displace-
ments of the rotor on each critical speed and at each measure
position. Since the matrix of the real system might not be com-
pletely filled, the matrix of the simulated model A, is used. It
is made non-dimensional to get the modal matrix ¢. The re-
quirement for perfect balance is the vanishing of displacements
on all measurement points. The exciting unbalances consist of
two parts: an initial unbalance U; and an imbalance mounted
for compensation Uc. The equation
¢"Uc=—9"U ™
is fulfilled for a completely balanced system. This equation is
split into N independent equations, one for each critical speed
¢ Uc=—¢1U;, n=1.N. (8)
The initial unbalance Uy is usually unknown. Practical modal
balancing facilitates the fact that at a resonance point the ac-
cording mode shape is dominant [13].

As long as the system is linear, the proposed method can cal-
culate the amount of imbalance at a single point of the rotor,
which leads to the same response as the distributed unbalance
of the real system at one specific critical speed

C1 %A{k
Uden =22 Y 2 ©
gen Mk:]Agk

where j is the index of the critical speed and M is the number of
measurement positions [2]. The solution of equation (9) is used
as the starting value for a solver that minimizes the error across
all measured positions according to the least squares method.
Usually this generalised unbalance Ugen has a different amount
and direction for every critical speed and quantifies how much
a mode shape is excited by the initial unbalance. If the gen-
eralised unbalance for the first mode shape is mounted on the
opposite side of the rotor, the vibration at the first critical speed
is minimized, but the unbalance response at any other critical
speed is also influenced.

To solve the problem that every set of balancing weights also
influences all other modes, the generalised imbalances are com-
puted with the modal matrix to generate orthogonal balancing
weights

0] = ~(@])™" (6] Usen) - (10)
Each of these sets of weights balances a single mode without
influencing the others. Thus it is possible to balance the first N

critical speeds of the rotor-bearing system so that the operat-
ing speed can be reached. If N — oo, the system is completely
balanced. In this case the relation

N .
U =-Y U (11
j=1

is valid [13]. The correction weights are mounted on the rotor
by adding weights at the balancing positions. It is also possi-
ble — although rarely done — to remove the same amount of
mass from the opposite direction of the rotor. In the case of
the following experiments, the initial rotor is simulated using
ANSYS® 2019R2, therefore the balancing weights are mounted
by adding centrifugal forces to the system parameters. The bal-
ancing success is evaluated by comparing the amplitude of the
vibration of the original and the balanced system at every criti-
cal speed and every measurement position. The average of these
values is called the balancing success rate.

3. EXPERIMENTS

To prove the viability of the balancing method, it is used on
three numeric simulations of rotor-bearing systems. For every
experiment the balancing success rate, the calculated balanc-
ing weights and the Frequency Response Functions (FRFs) — of
the initial and the balanced state of the rotor — are shown. The
displacements of the FRFs are the average values of the vibra-
tion amplitude of all measurement positions. All calculations
are performed on an Intel® Core™ i7-8700 CPU with 3.2 GHz
running on a Windows 10 operating system. Due to small dif-
ferences between the NAT and the numerical ANSYS® 2019R2
calculation, the critical speeds calculated by the search algo-
rithm may differ from the critical speeds visible in the FRFs.

3.1. Example 1: Three-disc rotor in rigid bearings
The first example consists of a thin rotor with three discs of
different weight. The setup is shown in Fig. 4. The parameters
to describe the stations of the NAT model are shown in Table 1.
All segments have a density of 7800 kg/m>, a Young’s modulus
of 2.1- 10" N/m? and a diameter of 30 mm.

As a first step, the critical speeds of the system are calculated
using the recursive search algorithm. The eigenvalues are found

Table 1
Stations of example 1

z | my (¢} (O € B c d
(m) | (kg) | (kgm?) | (kgm?) | (um) | (rad) | (N/m) | (Ns/m)

0|0 0 0 0 0 0 0
013] 0 0 0 0 0 107 0
031 25 | 0.013 | 0.026 | 20 0 0
0.47| 20 | 0.01 002 | 25 [05-7 0
071 | 15 | 0.008 | 0.016 | 80 n 0
091 0 0 0 0 0 107 0
1.04| 0 0 0 0 0 0

Bull. Pol. Acad. Sci. Tech. Sci. 69(6) 2021, e138237



www.czasopisma.pan.pl P N www.journals.pan.pl
=

Balancing of a linear elastic rotor-bearing system with arbitrarily distributed unbalance using the Numerical Assembly Technique

eccentricity e, (pm)

axial position z (m)

Fig. 3. Visualisation of distributed eccentricity
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Fig. 4. Rotor-bearing system, example 1

in 0.56 seconds. Since the system is only balanced in the first
three bending modes, only the first three critical speeds at 1347
rotations per minute (rpm), 5124 rpm and 11140 rpm are impor-
tant. The measure and balancing positions are the planes of the
three discs. The software computes the results in 0.189 seconds.
It estimates the balancing weights as is shown in Table 2. This
matches the initial unbalance rotated by 180°. In this simple
example the vibrations are nearly completely eliminated. The
balancing success rate is at 99.99%. In Fig. 5 the FRFs of the
balanced and the unbalanced system are shown.

Since the unbalance is concentrated only in the three discs,
it is sufficient to balance those three positions (at the first three
critical speeds) to evaluate the initial unbalance and balance the
system completely. Therefore, the vibrations of the forth and
the fifth mode are also reduced.

Table 2
Balancing weights of example 1

axial position amount angular position
(m) (g mm) ©)
0.31 500 180.00
0.47 500 269.95
0.71 1200 359.99
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Fig. 5. FRFs of example 1

3.2. Example 2: Rotor with stepped shaft and elastic
bearings

In example 2, the mass is not primarily concentrated at discs,
but distributed along a stepped shaft. The diameter changes ac-
cording to Fig. 6. The bearings are isotropic and flexible com-
pared to the rotor with a spring constant of 600 kN/m and a
damping constant of 80 Ns/m. The imbalance is distributed like
a corkscrew along the area between the bearings as is seen

1040 mm
910 mm
710 mm
470 mm
310 mm

g =] =) g

g =] g g

130 mm = 2 2 =
S S S e L
= ¥ f % e

Fig. 6. Rotor-bearing system, example 2
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Table 3
Balancing weights of example 2
axial position amount angular position
(m) (g mm) ©)
0.31 157 29.10
0.47 847 297.88
0.59 976 90.64
0.71 397 299.14

in Fig. 3. This is assumed to be the most challenging case to
balance [18]. For this example a magnitude of eccentricity of

€ =—0.007z* +0.0122° +0.00522 +3-10"*z+2-10~* (12)
and a direction of imbalance of

B=2m-z (13)
have been arbitrarily chosen. The first four eigenvalues are
found by the recursive 2D search algorithm at 2723 rpm,
3987 rpm, 14 392 rpm and 30 317 rpm. The balancing positions
are at 0.31 m, 0.47 m, 0.59 m and 0.71 m. The system is bal-
anced in 0.187 seconds with an success rate of 95.13%. The
calculated compensation unbalances are shown in Table 3. The
first two mode shapes are the mode shapes of the elastic bear-
ings, where little flexural displacement of the rotor occurs. The
third and the forth mode shape of the system are the first and
second flexural mode shape of the rotor. In Fig. 7, the depicted
FRFs show that all four modes are balanced.

3.3. Example 3: Three-disc rotor with stepped shaft
in three bearings

The third example combines the three discs of the first example
with the stepped shaft and distributed unbalance of the second
example. The rotor is constrained by three rigid, damped and
isotropic bearings as is shown in Fig. 8. The first five eigenval-
ues are 4516 rpm, 8964 rpm, 18910 rpm, 22164 rpm and 30220
rpm and the balancing positions are 0.31 m, 0.39 m, 0.47 m,

Table 4
Balancing weights of example 3

axial position amount angular position
(m) (g mm) )
0.31 357 95.49
0.39 1365 224.42
0.47 1294 356.88
0.65 735 135.14
0.71 1698 346.82

0.65 m and 0.71 m. The example is balanced in 0.202 seconds
with an success rate of 97.58%. The compensation unbalance
is approximated according to Table 4. The FRFs in Fig. 9 show
that the system is balanced throughout all speeds.

To show the effect of measurement uncertainties, example 3
is balanced again, but this time each amplitude of the unbalance
response in x- and y-direction is multiplied with a uniformly
distributed random number between 0.95 and 1.05. Despite the
added noise, these tests result in a balancing success rate of
96.26% (average of ten tests). The specifics and the balancing
success of every example are shown in Table 5.
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Fig. 9. FRFs of example 3
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Table 5
Summary of results
example | imbalance | bearings | dampin balancing
p £ ping success
1 concentrated | 2rigid | undamped 99.99%
2 distributed | 2 elastic | damped 95.13%
3 distributed | 3 rigid damped | 97.58%/96.26%

4. CONCLUSION

The proposed balancing method is successfully applied in three
different test cases. The influence of multiple discs, multiple
bearings, stepped shafts, arbitrarily distributed unbalance and
external damping are taken into account. The method can only
be properly applied on isotropic rotor-bearing systems, the ex-
tension to anisotropic systems is the focus of further research.
The simulation via NAT is computationally efficient, with com-
putation times below one second for all three tests. Systems
with concentrated unbalance are ideally balanced as is shown
in example 1. For complex systems with distributed unbalance
and noise, success rates of more than 95% are achieved in ex-
amples 2 and 3. Recursive search algorithms are well suited
to find eigenvalues of the system matrix of NAT. The results
indicate that the proposed balancing method can be applied ef-
fectively.
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