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1. INTRODUCTION
Diffusion is the process of spreading molecules of one sub-
stance into another. It occurs due to a phenomenon known as
Brownian motion, i.e., the chaotic movement of molecules in
liquids and gases, which is caused by the collision of solute
molecules with the components of the fluid. It was first noticed
by botanist Robert Brown while observing pollen suspended
in liquids. In classical diffusion, the movement of molecules is
governed by law:

〈x2(t)〉 ∼ Dt, (1)

where 〈x2(t)〉 is a mean squared displacement of the diffusing
molecule in the course of time t, and D is the diffusion coeffi-
cient.

However, the relation (1) does not allow us to describe many
transport processes that occur in nature. In the papers [1, 2]
Kosztołowicz et al. experimentally proved that the transport of
glucose and sucrose in a gel solvent is subdiffusive.

Another experimental example of anomalous diffusion is the
experiment carried out by Weeks, Solomon and Swinney, the
results of which are presented in the papers [3, 4], where the
researchers studied the flow of fluid in a rotating ring-shaped
vesselx.
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In the paper [5], Humphries et al. shows that some open-
ocean predators may use Lévy flights to maximize the chances
of finding prey in food-poor habitats. At the same time, this sug-
gest that it is possible to change the foraging pattern to Brown-
ian motion when the prey is abundant.

Differential operators of fractional order are also used in
modeling problems related to thermal conduction [6].

The cited examples confirm that Brownian motion is only a
special case of transport processes called anomalous diffusion,
which is governed by the following law [7, 8]:

〈x2(t)〉 ∼ Dα tα , 0 < α ≤ 1, (2)

where Dα is the generalized diffusion coefficient.
In the paper the one-dimensional subdiffusion equation with

the source term is considered. In problems related to heat trans-
fer the source term is interpreted as an internal heat source,
while in the processes related to mass transfer it is related to the
reaction-diffusion equation. The aim of the article is to develop
a numerical method for solving the above-mentioned equation.
The problem considered is governed by subdiffusion equation
with time derivative in the Caputo sense. It should be noted
here that most of the problems of this type considered in the
literature are formulated using the Riemann-Liouville deriva-
tive [9–11].

The paper is organized as follows. In the next section, the
necessary definitions and properties used in the rest of the pa-
per are introduced. The initial-boundary value problem (IBVP)
is formulated in section three for which a numerical method
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is developed. The fourth section contains three examples com-
paring the numerical results obtained by the proposed method
with the closed analytical solutions. The last section contains
conclusions.

2. PRELIMINARIES
At the beginning, let us define two fractional operators [12]: the
left-sided Riemann-Liouville integral and the left-sided Caputo
derivative and property playing an important role in further con-
siderations.

Definition 1. The left-sided Riemann-Liouville integral of or-
der α , denoted as Iα

0+, is given by the following formula for
Re(α) ∈ (0, 1]:

Iα
0+ f (t) :=

1
Γ(α)

t∫

0

f (τ)dτ
(t − τ)1−α , (3)

where Γ is the Euler gamma function.

Definition 2. Let Re(α) ∈ (0,1]. The left-sided Caputo deriva-
tive of order α is given by the formula:

CDα
0+ f (t) :=




1
Γ(1−α)

t∫

0

f ′(τ)dτ
(t − τ)α , 0 < α < 1,

d f (t)
dt

, α = 1.

(4)

Property 1. Let function f ∈C1(0,T ). Then, the composition
rule for the left-sided Riemann-Liouville integral and the left-
sided Caputo derivative is given as follows:

Iα
0+

CDα
0+ f (t) = f (t)− f (0) . (5)

The next two definitions [13–16] contribute to the formation
of the examples considered in section four.

Definition 3. The generalized hypergeometric function de-
noted as pFq(β1, . . . ,βp;γ1, . . . ,γq; ·) is defined by the following
formula:

pFq(β1, . . . ,βp;γ1, . . . ,γq;z) :=
∞

∑
k=0

(β1)k . . .(βp)k

(γ1)k . . .(γp)k

zk

k!
, (6)

where (·)k is denoting the rising factorial or Pochhammer sym-
bol defined in terms of the Euler gamma function Γ for any real
x except the non-positive integers by

(x)k =
Γ(x+ k)

Γ(x)
. (7)

Definition 4. The regularized generalized hypergeometric
function denoted as pF̃q(β1, . . . ,βp;γ1, . . . ,γq; ·) is defined by
the following formula:

pF̃q(β1, ...,βp;γ1, ...,γq;z) := pFq(β1, ...,βp;γ1, ...,γq;z)
Γ(γ1)...Γ(γq)

. (8)

The numerical scheme proposed in the third section of the
paper uses a mesh of nodes defined as follows:

Definition 5. Let Π = {(x, t) : x ∈ [0, L]; t ∈ [0, T ]} be a con-
tinuous region of solutions for the partial differential equation.
Then the set Π =

{
(xi, t j) ∈ Π : xi = i∆x, i ∈ {0,1, . . . ,m},

∆x =
L
m

; t j = j∆t, j ∈ {0,1, . . . ,n}; ∆t =
T
n

}
we call the rect-

angular regular mesh described by the set of nodes.

3. MATHEMATICAL FORMULATION AND NUMERICAL
SOLUTION OF THE PROBLEM

Consider the following subdiffusion equation with a nonlinear
source term

CDα
0+,tU(x, t) = Dα

∂ 2U(x, t)
∂x2 +Qα(x, t),

0 ≤ x ≤ L, 0 ≤ t ≤ T, (9)

supplemented with the boundary conditions

U(0, t) = f (t), U(L, t) = g(t), 0 ≤ t ≤ T, (10)

and initial condition

U(x,0) = h(x), 0 ≤ x ≤ L, (11)

where the generalized diffusion coefficient Dα is constant.
In the paper [17] the concept of the Crank-Nicolson method

for the parabolic equation was extended to the case of the one-
dimensional subdiffusion equation with the time derivative in
the Caputo sense. A similar approach can be applied to the
initial-boundary value problem defined by equations (9)–(11),
where the source term is presented.

By applying the left-sided Riemann-Liouville integral of or-
der α ∈ (0,1] to both sides of equation (9) and using property 1
we get the integro-differential equation in the following form:

U(x, t) =U(x,0)+
Dα

Γ(α)

t∫

0

1
(t − τ)1−α

∂ 2U(x,τ)
∂x2 dτ

+
1

Γ(α)

t∫

0

Qα(x,τ)dτ
(t − τ)1−α . (12)

The discretization of equation (12) on the grid of nodes de-
fined by definition 5 requires approximation of integral and dif-
ferential operators. Let’s start with determining the discrete val-
ues of the integral kernel of the left-sided Riemann-Liouville
integrals on the right-hand side of equation (12). For this pur-
pose, the integrant U is approximated with a linear function
U between two subsequent grid nodes with respect to the time
variable:

U(x, t) =U(x, t j)
t − t j+1

t j − t j+1
+U(x, t j+1)

t − t j

t j+1 − t j
, (13)
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for t j ≤ t ≤ t j+1, j = 0, . . . ,n−1. We act in the same way with
the source term Q:

Qα(x, t) = Qα(x, t j)
t − t j+1

t j − t j+1
+Qα(x, t j+1)

t − t j

t j+1 − t j
, (14)

for t j ≤ t ≤ t j+1, j = 0, . . . ,n−1. It should be emphasized here
that the above approximation in relation to partial differential
equations of fractional order was used in [18, 19]. The author,
a few years after the publication of the cited results, came to
the conclusion that the discretization of the integro-differential
equation in the node (i∆x,k∆t) is more transparent. The pre-
viously used notation was directly inspired by the results ob-
tained by Diethelm for the Adams-Bashforth-Moulton method
in [20]. Thus, the first integral term of equation (12) on the in-
terval [0, tk] can be approximated by the formula:

Dα

Γ(α)

tk∫

0

1
(tk − τ)1−α

∂ 2U(x,τ)
∂x2 dτ

≈ Dα

Γ(α)

tk∫

0

1
(tk − τ)1−α

∂ 2U(x,τ)
∂x2 dτ. (15)

From the theorem on additivity of an integral with respect to
the integration interval, we get:

Dα

Γ(α)

tk∫

0

1
(tk − τ)1−α

∂ 2U(x,τ)
∂x2 dτ

=
Dα

Γ(α)

k−1

∑
j=0

t j+1∫

t j

1
(tk − τ)1−α

×
(

∂ 2U(x, t j)

∂x2
τ − t j+1

t j − t j+1
+

∂ 2U(x, t j+1)

∂x2
τ − t j

t j+1 − t j

)
dτ

=
Dα

Γ(α)

∂ 2U(x, t0)
∂x2

t1∫

0

1
(tk − τ)1−α

τ − t1
t0 − t1

dτ

+
Dα

Γ(α)

k−1

∑
j=1

∂ 2U(x, t j)

∂x2




t j∫

t j−1

1
(tk − τ)1−α

τ − t j−1

t j − t j−1
dτ

+

t j+1∫

t j

1
(tk − τ)1−α

τ − t j+1

t j − t j+1
dτ




+
Dα

Γ(α)

∂ 2U(x, tk)
∂x2

tk∫

tk−1

1
(tk − τ)1−α

τ − tk−1

tk − tk−1
dτ.

Repeating the above reasoning for the second integral term in
equation (12), we get:

1
Γ(α)

tk∫

0

Qα(x,τ)dτ
(tk − τ)1−α ≈ 1

Γ(α)

tk∫

0

Qα(x,τ)dτ
(tk − τ)1−α . (16)

Using again the theorem on additivity of an integral with respect
to the integration interval, we get:

1
Γ(α)

tk∫

0

1
(tk − τ)1−α Qα(x,τ)dτ

=
1

Γ(α)

k−1

∑
j=0

t j+1∫

t j

1
(tk − τ)1−α

×
(

Qα(x, t j)
τ − t j+1

t j − t j+1
+Qα(x, t j+1)

τ − t j

t j+1 − t j

)
dτ

=
1

Γ(α)
Qα(x, t0)

t1∫

0

1
(tk − τ)1−α

τ − t1
t0 − t1

dτ

+
1

Γ(α)

k−1

∑
j=1

Qα(x, t j)




t j∫

t j−1

1
(tk − τ)1−α

τ − t j−1

t j − t j−1
dτ

+

t j+1∫

t j

1
(tk − τ)1−α

τ − t j+1

t j − t j+1
dτ




+
1

Γ(α)
Qα(x, tk)

tk∫

tk−1

1
(tk − τ)1−α

τ − tk−1

tk − tk−1
dτ.

Calculating the following integrals:

w0,k =
1

Γ(α)

t1∫

0

1
(tk − τ)1−α

τ − t1
t0 − t1

dτ

=
(∆t)α

Γ(2+α)

(
(α +1− k)kα +(k−1)α+1) , (17)

w j,k =
1

Γ(α)




t j∫

t j−1

1
(tk − τ)1−α

τ − t j−1

t j − t j−1
dτ

+

t j+1∫

t j

1
(tk − τ)1−α

τ − t j+1

t j − t j+1
dτ




=
(∆t)α

Γ(2+α)

(
(k− j+1)α+1

− 2(k− j)α+1 +(k− j−1)α+1) , (18)

wk,k =
1

Γ(α)

tk∫

tk−1

1
(tk − τ)1−α

τ − tk−1

tk − tk−1
dτ

=
(∆t)α

Γ(2+α)
, (19)

we obtain certain values of the integral kernel of the left-sided
Riemann-Liouville integral, determined for the appropriate grid
nodes with respect to the time variable t.

Bull. Pol. Acad. Sci. Tech. Sci. 69(6) 2021, e138240 3



3

The implicit numerical method for the one-dimensional anomalous subdiffusion equation with a nonlinear source term

Bull. Pol. Acad. Sci. Tech. Sci. 69(6) 2021, e138240

The implicit numerical method for the one-dimensional anomalous subdiffusion equation . . .

for t j ≤ t ≤ t j+1, j = 0, . . . ,n−1. We act in the same way with
the source term Q:

Qα(x, t) = Qα(x, t j)
t − t j+1

t j − t j+1
+Qα(x, t j+1)

t − t j

t j+1 − t j
, (14)

for t j ≤ t ≤ t j+1, j = 0, . . . ,n−1. It should be emphasized here
that the above approximation in relation to partial differential
equations of fractional order was used in [18, 19]. The author,
a few years after the publication of the cited results, came to
the conclusion that the discretization of the integro-differential
equation in the node (i∆x,k∆t) is more transparent. The pre-
viously used notation was directly inspired by the results ob-
tained by Diethelm for the Adams-Bashforth-Moulton method
in [20]. Thus, the first integral term of equation (12) on the in-
terval [0, tk] can be approximated by the formula:

Dα

Γ(α)

tk∫

0

1
(tk − τ)1−α

∂ 2U(x,τ)
∂x2 dτ

≈ Dα

Γ(α)

tk∫

0

1
(tk − τ)1−α

∂ 2U(x,τ)
∂x2 dτ. (15)

From the theorem on additivity of an integral with respect to
the integration interval, we get:

Dα

Γ(α)

tk∫

0

1
(tk − τ)1−α

∂ 2U(x,τ)
∂x2 dτ

=
Dα

Γ(α)

k−1

∑
j=0

t j+1∫

t j

1
(tk − τ)1−α

×
(

∂ 2U(x, t j)

∂x2
τ − t j+1

t j − t j+1
+

∂ 2U(x, t j+1)

∂x2
τ − t j

t j+1 − t j

)
dτ

=
Dα

Γ(α)

∂ 2U(x, t0)
∂x2

t1∫

0

1
(tk − τ)1−α

τ − t1
t0 − t1

dτ

+
Dα

Γ(α)

k−1

∑
j=1

∂ 2U(x, t j)

∂x2




t j∫

t j−1

1
(tk − τ)1−α

τ − t j−1

t j − t j−1
dτ

+

t j+1∫

t j

1
(tk − τ)1−α

τ − t j+1

t j − t j+1
dτ




+
Dα

Γ(α)

∂ 2U(x, tk)
∂x2

tk∫

tk−1

1
(tk − τ)1−α

τ − tk−1

tk − tk−1
dτ.

Repeating the above reasoning for the second integral term in
equation (12), we get:

1
Γ(α)

tk∫

0

Qα(x,τ)dτ
(tk − τ)1−α ≈ 1

Γ(α)

tk∫

0

Qα(x,τ)dτ
(tk − τ)1−α . (16)

Using again the theorem on additivity of an integral with respect
to the integration interval, we get:

1
Γ(α)

tk∫

0

1
(tk − τ)1−α Qα(x,τ)dτ

=
1

Γ(α)

k−1

∑
j=0

t j+1∫

t j

1
(tk − τ)1−α

×
(

Qα(x, t j)
τ − t j+1

t j − t j+1
+Qα(x, t j+1)

τ − t j

t j+1 − t j

)
dτ

=
1

Γ(α)
Qα(x, t0)

t1∫

0

1
(tk − τ)1−α

τ − t1
t0 − t1

dτ

+
1

Γ(α)

k−1

∑
j=1

Qα(x, t j)




t j∫

t j−1

1
(tk − τ)1−α

τ − t j−1

t j − t j−1
dτ

+

t j+1∫

t j

1
(tk − τ)1−α

τ − t j+1

t j − t j+1
dτ




+
1

Γ(α)
Qα(x, tk)

tk∫

tk−1

1
(tk − τ)1−α

τ − tk−1

tk − tk−1
dτ.

Calculating the following integrals:

w0,k =
1

Γ(α)

t1∫

0

1
(tk − τ)1−α

τ − t1
t0 − t1

dτ

=
(∆t)α

Γ(2+α)

(
(α +1− k)kα +(k−1)α+1) , (17)

w j,k =
1

Γ(α)




t j∫

t j−1

1
(tk − τ)1−α

τ − t j−1

t j − t j−1
dτ

+

t j+1∫

t j

1
(tk − τ)1−α

τ − t j+1

t j − t j+1
dτ




=
(∆t)α

Γ(2+α)

(
(k− j+1)α+1

− 2(k− j)α+1 +(k− j−1)α+1) , (18)

wk,k =
1

Γ(α)

tk∫

tk−1

1
(tk − τ)1−α

τ − tk−1

tk − tk−1
dτ

=
(∆t)α

Γ(2+α)
, (19)

we obtain certain values of the integral kernel of the left-sided
Riemann-Liouville integral, determined for the appropriate grid
nodes with respect to the time variable t.
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Thus, the integral kernel of the left-sided Riemann-Liouville
integral can be expressed in the form of weights:

w j,k :=
(∆t)α

Γ(2+α)




(α+1−k)kα +(k−1)α+1, j = 0,

(k− j+1)α+1 −2(k− j)α+1

+(k− j−1)α+1, 0 < j < k,

1, j = k.
(20)

To discretize equation (12) with respect to the spatial variable
x, the following differential quotient approximates the value of
the second-order derivative in mesh node (i∆x, j∆t):

(
∂ 2U(x, t)

∂x2

)

i, j
=

Ui−1, j −2Ui, j +Ui+1, j

(∆x)2 +O((∆x)2). (21)

Finally, equation (12) in discrete form can be written as:

Ui,k =Ui,0 +Dα

k

∑
j=0

w j,k
Ui−1, j −2Ui, j +Ui+1, j

(∆x)2

+
k

∑
j=0

w j,kQα i, j , (22)

where Ui, j and Qi, j denote the approximate values of the func-
tions U and Q at the mesh node (i∆x, j∆t), respectively.

After some standard mathematical transformations, we get
an implicit numerical scheme:

−
Dα wk,k

(∆x)2 Ui−1,k +

(
1+

2Dα wk,k

(∆x)2

)
Ui,k −

Dα wk,k

(∆x)2 Ui+1,k

=Ui,0 +
k−1

∑
j=0

Dα w j,k

(∆x)2

(
Ui−1, j −2Ui, j +Ui+1, j

)

+
k

∑
j=0

w j,kQα i, j , (23)

which can be written in matrix form

AUk = B, (24)

where matrixes A and B are defined as

A =




1+2a −a 0 0 · · · 0 0 0
−a 1+2a −a 0 · · · 0 0 0
0 −a 1+2a −a · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 −a 1+2a −a 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · −a 1+2a −a
0 0 0 0 · · · 0 −a 1+2a




,

B =




b1 +aU0,k

b2

b3
...

bi
...

bm−2

bm−1 +aUm,k




.

The elements of matrixes A and B are defined by the formulas:

a :=
Dα wk,k

(∆x)2 ,

bi :=Ui,0 +
k−1

∑
j=0

Dα w j,k
(
Ui−1, j −2Ui, j +Ui+1, j

)
+

k

∑
j=0

w j,kQα i, j .

4. NUMERICAL EXAMPLES
In order to validate the developed numerical method, three ex-
amples of initial-boundary value problems are presented for
which closed analytical solutions are known. Sixty-four sim-
ulations were run for each of the examples. The following pa-
rameters values were adopted:
i) the generalized diffusion coefficient Dα = 1,

ii) the order of the left-sided Caputo derivative
α ∈ {0.25,0.5,0.75,0.9999},

iii) the mesh parameters: L = 1, T = 1,

(∆x,∆t) ∈
{

1
25

,
1
50

,
1

100
,

1
200

}
×
{

1
25

,
1
50

,
1

100
,

1
200

}
.

4.1. Example 1
Consider the first subdiffusion equation with a nonlinear source
term

CDα
0+,tU(x, t) =

∂ 2U(x, t)
∂x2

+
1
6

(
(x+1)(2x−3)t2−α

Γ(3−α)
−2t2 +8

)
, (25)

supplemented with the boundary conditions

U(0, t) =−1
4
(t −2)(t +2), (26)

U(1, t) =−1
6
(t −2)(t +2), (27)

and initial condition

U(x,0) =−1
3
(x+1)(2x−3). (28)

The solution to the initial-boundary value problem (IBVP)
given by equations (25)–(28) can be expressed by the function
of two variables defined by the formula:

U(x, t) =
1
12

(t −2)(t +2)(x+1)(2x−3), (29)

the approximation of which is shown in Fig. 1.
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Fig. 1. The numerical solution of the initial-boundary value problem
from the first example for α = 0.9999

Figures 2–5 show the absolute error generated by the pro-
posed numerical method depending on the order of the Caputo
derivative. All the presented figures have a common feature as
they show the smallest error value close to the boundary condi-
tions, i.e., for x = 0, x = 1 and its largest value near the initial
condition, i.e., for t = 0.

Fig. 2. The absolute error generated by the numerical method

for the first example, α = 0.9999, ∆x =
1

200
, ∆t =

1
200

Fig. 3. The absolute error generated by the numerical method

for the first example, α = 0.75, ∆x =
1

200
, ∆t =

1
200

Tables 1–4 show the mean absolute errors generated by the
numerical method in the [0, 1]× [0, 1] area for sixteen mesh
variants and four values of the order of the Caputo derivative.
Among all the results, those presented in Table 1 deserve spe-
cial attention, as they indicate that the scheme works most ac-

Fig. 4. The absolute error generated by the numerical method

for the first example, α = 0.5, ∆x =
1

200
, ∆t =

1
200

Fig. 5. The absolute error generated by the numerical method

for the first example, α = 0.25, ∆x =
1

200
, ∆t =

1
200

Table 1
The average absolute error generated by the numerical method

for the first example, α = 0.9999

m = 25 m = 50 m = 100 m = 200

n = 25 3.03e-9 3.093e-9 3.124e-9 3.14e-9

n = 50 8.585e-10 8.762e-10 8.852e-10 8.896e-10

n = 100 2.387e-10 2.436e-10 2.461e-10 2.473e-10

n = 200 6.549e-11 6.685e-11 6.753e-11 6.787e-11

Table 2
The average absolute error generated by the numerical method

for the first example, α = 0.75

m = 25 m = 50 m = 100 m = 200

n = 25 4.077e-6 4.162e-6 4.204e-6 4.226e-6

n = 50 1.083e-6 1.105e-6 1.116e-6 1.122e-6

n = 100 2.827e-7 2.886e-7 2.915e-7 2.93e-7

n = 200 7.304e-8 7.456e-8 7.532e-8 7.57e-8

curately for α = 0.9999. Moreover, all four tables confirm a
certain dependence such us a two-fold reduction of the mesh
time step results in a nearly four-fold reduction in the mean ab-
solute error.
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Fig. 1. The numerical solution of the initial-boundary value problem
from the first example for α = 0.9999

Figures 2–5 show the absolute error generated by the pro-
posed numerical method depending on the order of the Caputo
derivative. All the presented figures have a common feature as
they show the smallest error value close to the boundary condi-
tions, i.e., for x = 0, x = 1 and its largest value near the initial
condition, i.e., for t = 0.

Fig. 2. The absolute error generated by the numerical method
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1

200
, ∆t =

1
200

Fig. 3. The absolute error generated by the numerical method

for the first example, α = 0.75, ∆x =
1

200
, ∆t =

1
200

Tables 1–4 show the mean absolute errors generated by the
numerical method in the [0, 1]× [0, 1] area for sixteen mesh
variants and four values of the order of the Caputo derivative.
Among all the results, those presented in Table 1 deserve spe-
cial attention, as they indicate that the scheme works most ac-
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1

200
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1
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Fig. 5. The absolute error generated by the numerical method
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1

200
, ∆t =

1
200
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m = 25 m = 50 m = 100 m = 200

n = 25 3.03e-9 3.093e-9 3.124e-9 3.14e-9

n = 50 8.585e-10 8.762e-10 8.852e-10 8.896e-10

n = 100 2.387e-10 2.436e-10 2.461e-10 2.473e-10

n = 200 6.549e-11 6.685e-11 6.753e-11 6.787e-11

Table 2
The average absolute error generated by the numerical method

for the first example, α = 0.75

m = 25 m = 50 m = 100 m = 200

n = 25 4.077e-6 4.162e-6 4.204e-6 4.226e-6

n = 50 1.083e-6 1.105e-6 1.116e-6 1.122e-6

n = 100 2.827e-7 2.886e-7 2.915e-7 2.93e-7

n = 200 7.304e-8 7.456e-8 7.532e-8 7.57e-8

curately for α = 0.9999. Moreover, all four tables confirm a
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time step results in a nearly four-fold reduction in the mean ab-
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Table 3
The average absolute error generated by the numerical method

for the first example, α = 0.5

m = 25 m = 50 m = 100 m = 200

n = 25 4.75e-6 4.849e-6 4.898e-6 4.923e-6

n = 50 1.236e-6 1.262e-6 1.275e-6 1.281e-6

n = 100 3.169e-7 3.235e-7 3.268e-7 3.284e-7

n = 200 8.053e-8 8.22e-8 8.304e-8 8.346e-8

Table 4
The average absolute error generated by the numerical method

for the first example, α = 0.25

m = 25 m = 50 m = 100 m = 200

n = 25 3.735e-6 3.812e-6 3.851e-6 3.871e-6

n = 50 9.956e-7 1.016e-6 1.027e-6 1.032e-6

n = 100 2.61e-7 2.664e-7 2.692e-7 2.705e-7

n = 200 6.767e-8 6.908e-8 6.978e-8 7.013e-8

4.2. Example 2
Consider the second subdiffusion equation with a nonlinear
source term

CDα
0+,tU(x, t) =

∂ 2U(x, t)
∂x2

+ t2 −16e−(x−1)4
(x−1)6 +12e−(x−1)4

(x−1)2, (30)

supplemented with the boundary conditions

U(0, t) =
1
e
− 2sin(πα)Γ(−α −2)tα+2

π
, (31)

U(1, t) = 1− 2sin(πα)Γ(−α −2)tα+2

π
, (32)

and initial condition

U(x,0) = e−(x−1)4
. (33)

The solution to the initial-boundary value problem given by
equations (30)–(33) can be expressed by the function of two
variables defined by the formula:

U(x, t) = e−(x−1)4 − 2sin(πα)Γ(−α −2)tα+2

π
. (34)

the approximation of which is shown in Fig. 6.
The distribution of absolute errors presented in Figs. 7–10

clearly shows that its least values occur near the boundary con-
ditions, i.e., for x = 0, x = 1 and its largest value near the
x = 0.3.

The analysis of the results collected in Tables 5–8 shows that
a simultaneous double reduction of the time and spatial steps
(elements on the diagonal) increases the accuracy of the nu-
merical scheme about four times.

Fig. 6. The numerical solution of the initial-boundary value problem
from the second example for α = 0.9999

Fig. 7. The absolute error generated by the numerical method

for the second example, α = 0.9999, ∆x =
1

200
, ∆t =

1
200

Fig. 8. The absolute error generated by the numerical method

for the second example, α = 0.75, ∆x =
1

200
, ∆t =

1
200

Fig. 9. The absolute error generated by the numerical method

for the second example, α = 0.5, ∆x =
1

200
, ∆t =

1
200
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Fig. 10. The absolute error generated by the numerical method

for the second example, α = 0.25, ∆x =
1

200
, ∆t =

1
200

Table 5
The average absolute error generated by the numerical method

for the second example, α = 0.9999

m = 25 m = 50 m = 100 m = 200

n = 25 2.701e-4 8.313e-5 3.556e-5 2.36e-5

n = 50 2.584e-4 6.942e-5 2.117e-5 9.011e-6

n = 100 2.56e-4 6.612e-5 1.76e-5 5.341e-6

n = 200 2.557e-4 6.537e-5 1.673e-5 4.432e-6

Table 6
The average absolute error generated by the numerical method

for the second example, α = 0.75

m = 25 m = 50 m = 100 m = 200

n = 25 2.678e-4 8.244e-5 3.521e-5 2.332e-5

n = 50 2.562e-4 6.887e-5 2.102e-5 8.941e-6

n = 100 2.538e-4 6.558e-5 1.747e-5 5.306e-6

n = 200 2.535e-4 6.483e-5 1.659e-5 4.399e-6

Table 7
The average absolute error generated by the numerical method

for the second example, α = 0.5

m = 25 m = 50 m = 100 m = 200

n = 25 2.666e-4 8.155e-5 3.434e-5 2.245e-5

n = 50 2.559e-4 6.868e-5 2.086e-5 8.787e-6

n = 100 2.537e-4 6.553e-5 1.744e-5 5.281e-6

n = 200 2.535e-4 6.481e-5 1.659e-5 4.394e-6

Table 8
The average absolute error generated by the numerical method

for the second example, α = 0.25

m = 25 m = 50 m = 100 m = 200

n = 25 2.631e-4 7.783e-5 3.055e-5 1.863e-5

n = 50 2.558e-4 6.806e-5 2.008e-5 7.959e-6

n = 100 2.546e-4 6.562e-5 1.733e-5 5.116e-6

n = 200 2.546e-4 6.507e-5 1.662e-5 4.375e-6

4.3. Example 3
Consider the third subdiffusion equation with a nonlinear
source term

CDα
0+,tU(x, t) =

∂ 2U(x, t)
∂x2

+π3/22α−4(x+1)(2x−3)t2−α
1 F̃2

(
1;

3
2
−α

2
,2−α

2
; − 1

16
π2t2

)

+
4cos

(πt
2

)

π
, (35)

supplemented with the boundary conditions

U(0, t) =
3cos

(πt
2

)

π
, (36)

U(1, t) =
2cos

(πt
2

)

π
, (37)

and initial condition

U(x,0) =− (x+1)(2x−3)
π

. (38)

The solution to the initial-boundary value problem given by
equations (35)–(38) can be expressed by the function of two
variables defined by the formula:

U(x, t) =−
(x+1)(2x−3)cos

(πt
2

)

π
. (39)

Figure 11 shows the approximate solution of the IBVP from the

third example obtained for α = 0.9999, ∆x =
1

200
, ∆t =

1
200

.

Fig. 11. The numerical solution of the initial-boundary value problem
from the third example for α = 0.9999

Figures 12–15 show the very interesting behavior of the ab-
solute error generated by the numerical method. In all cases, its
lowest value is observed in the vicinity of the boundary condi-
tions, i.e., for x = 0, x = 1. In the case of α = 0.9999, its highest
value is observed for a large t. Decreasing the value of the or-
der of the Caputo derivative results in the scheme beginning to
generate the greatest errors for a small t.
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Fig. 10. The absolute error generated by the numerical method

for the second example, α = 0.25, ∆x =
1

200
, ∆t =

1
200

Table 5
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4.3. Example 3
Consider the third subdiffusion equation with a nonlinear
source term

CDα
0+,tU(x, t) =
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lowest value is observed in the vicinity of the boundary condi-
tions, i.e., for x = 0, x = 1. In the case of α = 0.9999, its highest
value is observed for a large t. Decreasing the value of the or-
der of the Caputo derivative results in the scheme beginning to
generate the greatest errors for a small t.
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Fig. 12. The absolute error generated by the numerical method

for the third example, α = 0.9999, ∆x =
1

200
, ∆t =

1
200

Fig. 13. The absolute error generated by the numerical method

for the third example, α = 0.75, ∆x =
1

200
, ∆t =

1
200

Fig. 14. The absolute error generated by the numerical method

for the third example, α = 0.5, ∆x =
1

200
, ∆t =

1
200

Fig. 15. The absolute error generated by the numerical method

for the third example, α = 0.25, ∆x =
1

200
, ∆t =

1
200

Based on the results collected in Tables 9–12, we can draw
similar conclusions as in the case of the first example like a two-
fold reduction of the mesh time step results in a nearly four-fold
reduction in the mean absolute error.

Table 9
The average absolute error generated by the numerical method for

the third example, α = 0.9999

m = 25 m = 50 m = 100 m = 200

n = 25 2.048e-5 2.09e-5 2.112e-5 2.122e-5

n = 50 5.127e-6 5.234e-6 5.288e-6 5.315e-6

n = 100 1.283e-6 1.31e-6 1.323e-6 1.33e-6

n = 200 3.209e-7 3.276e-7 3.309e-7 3.326e-7

Table 10
The average absolute error generated by the numerical method for

the third example, α = 0.75

m = 25 m = 50 m = 100 m = 200

n = 25 1.968e-5 2.009e-5 2.029e-5 2.04e-5

n = 50 5.173e-6 5.281e-6 5.335e-6 5.362e-6

n = 100 1.344e-6 1.372e-6 1.386e-6 1.393e-6

n = 200 3.461e-7 3.533e-7 3.569e-7 3.587e-7

Table 11
The average absolute error generated by the numerical method

for the third example, α = 0.5

m = 25 m = 50 m = 100 m = 200

n = 25 1.585e-5 1.618e-5 1.634e-5 1.642e-5

n = 50 4.154e-6 4.24e-6 4.283e-6 4.305e-6

n = 100 1.071e-6 1.094e-6 1.105e-6 1.11e-6

n = 200 2.735e-7 2.792e-7 2.82e-7 2.834e-7

Table 12
The average absolute error generated by the numerical method

for the third example, α = 0.25

m = 25 m = 50 m = 100 m = 200

n = 25 1.082e-5 1.105e-5 1.116e-5 1.122e-5

n = 50 2.901e-6 2.962e-6 2.992e-6 3.007e-6

n = 100 7.629e-7 7.788e-7 7.867e-7 7.907e-7

n = 200 1.981e-7 2.023e-7 2.043e-7 2.054e-7

5. DISCUSSION
Anomalous subdiffusion is a physical process whose existence
is confirmed by experimental research. They are solved analyti-
cally, but only in some specific cases. The computational exam-
ples presented in the fourth chapter were to confirm the correct
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operation of the proposed numerical method. Analytical solu-
tions used for method validation were obtained by solving the
initial-boundary value problems "from the end" - first a solution
was established, and then the appropriate boundary conditions,
initial condition and source term were adjusted. This procedure
allows to obtain simple analytical solutions with the source term
which can only be considered theoretically – it loses the physi-
cal aspect.

The proposed approach, however, has a certain limitation,
it does not solve the problems with source term of the form
Qα(x, t,U(x, t)), which is typical for the reaction-diffusion
equation. The further work plan assumes the improvement of
the proposed method of solving the subdiffusion equation with
the source term dependent on the function U .

6. CONCLUSIONS
The method proposed in the paper is an extension of the gen-
eralized Crank-Nicolson method for the one-dimensional subd-
iffusion equation, where the source term is additionally taken
into account. In the part of the method where the left-sided
Riemann-Liouville integral was discretized, minor changes
were made in the nodes numbering, which resulted in a more
concise notation. The obtained numerical results are largely
consistent with closed analytical solutions. The numerous sim-
ulations that were carried out for the three examples (192 in
total) did not indicate that the method was unstable in any of
them. On the basis of the obtained results, it can also be con-
cluded that the method is convergent. Let us point out that the
method can be extended to the multidimensional case.

7. NOMENCLATURE
x – space variable
t – time variable
L – fixed value of x
T – fixed value of t
∆x – space step size
∆t – time step size
Π – considered region
i, j,k,m,n – natural numbers
w – discrete form of the integral kernel of the left-

sided Riemann-Liouville integral
A – matrix
B – vector
Uk – vector
U – concentration
Qα – source term
pFq – generalized hypergeometric function
pF̃q – regularized generalized hypergeometric function
D – diffusion coefficient
Dα – generalized diffusion coefficient
Iα
0+ – left-sided Riemann-Liouville integral

CDα
0+ – left-sided Caputo derivative

α – fractional order
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initial condition and source term were adjusted. This procedure
allows to obtain simple analytical solutions with the source term
which can only be considered theoretically – it loses the physi-
cal aspect.

The proposed approach, however, has a certain limitation,
it does not solve the problems with source term of the form
Qα(x, t,U(x, t)), which is typical for the reaction-diffusion
equation. The further work plan assumes the improvement of
the proposed method of solving the subdiffusion equation with
the source term dependent on the function U .

6. CONCLUSIONS
The method proposed in the paper is an extension of the gen-
eralized Crank-Nicolson method for the one-dimensional subd-
iffusion equation, where the source term is additionally taken
into account. In the part of the method where the left-sided
Riemann-Liouville integral was discretized, minor changes
were made in the nodes numbering, which resulted in a more
concise notation. The obtained numerical results are largely
consistent with closed analytical solutions. The numerous sim-
ulations that were carried out for the three examples (192 in
total) did not indicate that the method was unstable in any of
them. On the basis of the obtained results, it can also be con-
cluded that the method is convergent. Let us point out that the
method can be extended to the multidimensional case.

7. NOMENCLATURE
x – space variable
t – time variable
L – fixed value of x
T – fixed value of t
∆x – space step size
∆t – time step size
Π – considered region
i, j,k,m,n – natural numbers
w – discrete form of the integral kernel of the left-

sided Riemann-Liouville integral
A – matrix
B – vector
Uk – vector
U – concentration
Qα – source term
pFq – generalized hypergeometric function
pF̃q – regularized generalized hypergeometric function
D – diffusion coefficient
Dα – generalized diffusion coefficient
Iα
0+ – left-sided Riemann-Liouville integral

CDα
0+ – left-sided Caputo derivative

α – fractional order
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