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Abstract: The coexistence of two congeneric amphipods, boreal Gammarus oceanicus, and 
arctic G. setosus, was studied during the summer seasons of 2017–2019 in the region of 
Isfjorden, Forlandsundet, and Prins Karl Forland island in the west-central part of the 
Svalbard archipelago (Arctic). Across the study area species distribution often overlapped, 
but the domination patterns mirrored environmental conditions preferred by each species. 
Both species, however, were able to survive in suboptimal conditions. On a small spatial 
scale (in one sample) the species were separated, which may suggest an antagonistic 
relationship between them. The ongoing changes in the environment of Svalbard will likely 
affect these two species differently. The increasing intrusion of Atlantic waters will 
probably favor the further expansion of G. oceanicus along the Svalbard coasts. This will 
be due to the gradual advance of the existing population, as an influx of individuals from 
the Nordic seas seems unlikely. G. setosus will remain the dominant species in cold-water 
areas such as the inner fjords and the northeastern coast of Svalbard and may find new 
suitable habitats in lagoons or estuaries fed by melting glaciers. Despite predicted changes 
in the distribution range of both species, their future coexistence should still be possible due 
to the wide range of environmental tolerance and the heterogeneity of the Svalbard coastal 
habitats. 
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Introduction 

The warming of the European Arctic is considered exceptionally fast (ACIA 
2005) and specific, as the local cold-water biota experiences not only temperature 
rise and sea-ice decay (as in Siberia and the Canadian Arctic) but also an increased 
influx of species-rich North Atlantic waters (Berge et al. 2005, 2015; Węsławski 
et al. 2011; Thyrring et al. 2017; Burrows et al. 2019). The west coast of the 
Svalbard archipelago is directly influenced by the relatively warm Atlantic waters 
carried by the West Spitsbergen Current (Willis et al. 2006; Piechura and 
Walczowski 2009; Walczowski et al. 2012) and its benthic fauna is poor in species 
and biomass compared to similar habitats in northern Europe (Kotta et al. 2016). 

Gammarid amphipods represented by over 30 species are among the key 
species of the North Atlantic intertidal zone (Węsławski et al. 2020). Many of 
them are known for their wide tolerance to salinity, temperature, and habitat 
changes (Tzvetkova 1975; Węsławski et al. 2020). Gammarids are brooders, 
lacking pelagic larvae, though able to move swiftly over short distances between 
stones or algae, they are generally poor swimmers, dispersing slowly and not 
known to exhibit migratory behavior (Tzvetkova 1975). Changes in gammarid 
distribution are usually attributed to a man-assisted introduction via ships or debris 
(Grabowski et al. 2006) but may be also induced by coastal currents (Węsławski 
et al. 2018). The entire Spitsbergen coastline is inhabited by the circumarctic, 
cold-water species Gammarus setosus Dementieva, 1931, and, within a smaller 
area, by the recently expanding population of its boreal congener Gammarus 
oceanicus Segerstråle, 1947 (Węsławski et al. 2018). In Spitsbergen, both species 
are similar in size, exhibit roughly the same breeding seasonality, and have 
comparable food and habitat preferences (Węsławski 1994; Węsławski and 
Legeżyńska 2002). Genetic analysis of the Spitsbergen Gammarus populations 
showed that G. setosus has much longer evolutionary history in the Arctic than 
G. oceanicus, a species of boreal origin, which started its expansion around the 
end of the Last Glacial Maximum (Grabowski et al. 2019). In recent decades, 
G. oceanicus has gradually expanded its range along the Spitsbergen shores. 
Initially, it was recorded mainly on the Atlantic-influenced southwestern coasts 
(Węsławski 1994), later spread northward, and started to colonize the southern 
shores of the fjords tracking the pathway of warm shelf waters entering the fjords 
along their south coasts (Węsławski et al. 2018). Currently, the boreal G. ocea-
nicus is also sporadically recorded in the northern part of Isfjorden, beyond the 
range of the direct influence of Atlantic waters (this study). Thus, the coastal area 
where the two species are observed to co-exist has increased significantly. 

A stable co-occurrence of several closely related (congeneric) species is 
widespread among littoral amphipods, both on regional (sympatry) and habitat 
(syntopy) scale (Croker 1967; Ingólfsson 1977; Kolding and Fenchel 1979; Hill 
and Elmgren 1983; Lancelotti and Trucco 1993; Guerra-Garcia et al. 2010; 
Korpinen and Westerbom 2010; Beermann and Franke 2012; Vader and Tandberg 
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2019). Within genus Gammarus up to a dozen or so species may have overlapped 
regional distribution (Ingolfsson 1977; Vader and Tandberg 2019; Węsławski 
et al. 2020), and between two and five species are often found in the same habitat 
(Kolding and Fenchel 1979; Skadsheim 1983; Korpinen and Westerbom 2010). 
The co-existence of closely related, ecologically similar species may result in 
interspecific competition, leading to reduction or even local extinction of species 
that have weaker competitive abilities. To minimize competition congeneric 
gammarids often diverge by one or more traits when they share the same habitat 
(Kolding and Fenchel 1979). Coexistence is also facilitated by small-scale niche 
partitioning, for example, spatial segregation along environmental gradients such 
as wave exposure (Lancelotti and Trucco 1993), temperature, and salinity 
(Kolding and Fenchel 1979; Ikko and Luyubina 2010) or type of macroalgal 
cover (Korpinen and Westerbom 2010). Identifying the factors underlying 
species coexistence has been a major focus of theoretical ecological studies 
(e.g., Boer 1980; Simberloff 1982), and the subject of experimental 
(e.g., Skadsheim 1983; Jermacz et al. 2017) and field-based research on 
intertidal crustaceans (e.g., Kolding and Fenchel 1979; Guerra-Garcia et al. 2010; 
Korpinen and Westerbom 2010; Beermann and Franke 2012). 

This article is the fourth in a series presenting Gammarus distribution in 
Svalbard. It was initiated by a publication describing the large-scale spatial 
distribution of G. setosus and G. oceanicus clearly related to the presence of 
Arctic and Atlantic water masses (Węsławski 1994). In the following work, 
Węsławski et al. (2018), described the gradual expansion of the boreal 
G. oceanicus along the coasts of Spitsbergen as a result of climate warming 
over the past 30 years. Finally, in the third study, it was showed that the 
population of G. setosus in Svalbard is genetically diverse, while G. oceanicus 
shows little genetic heterogeneity, which confirms the long history of the first 
species and the recent appearance of the second one (Grabowski et al. 2019). The 
purpose of this article is to discuss the phenomenon of coexistence of two species 
in the part of the west Spitsbergen coast, where the increasing impact of warm 
West Spitsbergen Current is observed, but the inner fjord basins contain local, 
glacier-impacted cold water and are periodically covered by fast-ice. Strong 
gradients of environmental conditions over small geographic scales make west 
Spitsbergen an ideal site for monitoring the impact of climate change on the 
Arctic marine ecosystem. 

Using our distribution data, we discuss the following scenarios for the future 
fate of the two studied species in a warming Svalbard: 

1. Gradual expansion of G. oceanicus caused by the intensification of warm 
Atlantic water supply and limitation of the range of G. setosus to typically arctic 
locations (such as inner glacial fjords). 

2. The further coexistence of both species despite changing climatic 
conditions, possible due to their wide tolerance to environmental conditions and 
the diversity of habitats available in the fjords and on the coast of west Svalbard. 
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Study area 

The Svalbard archipelago is situated between the Barents and Greenland 
Seas, expanding from 74° to 81°N and from 10° to 35°-E. The research was 
conducted in the central region of western Svalbard, in Isfjorden, the largest fjord 
complex (3084 km2) of Spitsbergen, on the Prins Karl Forland isle and in the 
90 km long sound Forlandsundet, separating Prins Karls Forland and Spitsbergen 
(Fig. 1). Oceanographic conditions in this region are strongly related to the 
characteristics of the currents flowing northward along the west Spitsbergen 
coast: West Spitsbergen Current which carries relatively warm and salty Atlantic 
waters and weaker coastal Spitsbergen Polar Current transporting cold and fresh 
Arctic waters from the Barents Sea. Additionally, the fjord and Forlandsundet 
receive substantial amount of freshwater from: calving and ablation of glaciers 
(c.a. 1% of the entire fjord volume per year), melting of sea ice, precipitation, and 
rivers (Nielsen et al. 2008; Skogseth et al. 2020). In the fjord, the mean summer 
temperature of surface waters is 4–5°C and the total tidal amplitude is about 
1 m (Skogseth et al. 2020). The sea-ice cover usually forms in January and may 
last up to five months in the side fjords of Isfjorden, while its central basin and 
outside coast generally remain ice-free during the whole year. The west coast of 
Spitsbergen is directly affected by global warming. Hydrographic data collected 
since 2002 in this area show an increase of 2°C over 20-year observations with 
the strongest increase in sea temperature in winter (Cottier et al. 2019). Since 
2006, a significant reduction in the extent and thickness of sea ice has also been 
observed (Gerland et al. 2020). 

Material and methods  

Gammarids were sampled in the area between 77°43’N to 78°54’N during 
July–August 2017–2019 in Isfjorden, on its adjacent coasts, and the Prins Karls 
Forland (Fig. 1). The samples were collected by hand net at low tide from under 
loose stones, from a 20x20 cm area. In 2017 and 2018, samples were collected 
from approximately 100 meters long sections of the coast. At one site from one to 
several samples (squares) were collected depending on the presence of animals. 
One sample contained gammarids collected from under several small stones or 
from under one large stone. The samples taken in 2019 were used to investigate 
a small-scale distribution of the two species and each sample consisted of animals 
collected from a single large stone (of approximately 400 cm2 area). The samples 
were collected only from typical gammarid habitat (loose flat stones in sheltered 
areas); the habitats with exposed gravel and sand beach, rocks, silty estuaries 
were omitted, so there are no ‘absent’ data. The animals were preserved in 
ethanol and subsequently identified in the laboratory according to the keys by 
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Tzvetkova (1975) and Vader and Tanberg (2019). Only specimens longer than 
6 mm were identified, as the species-specific features in smaller ones are not 
fully distinguishable. A set of basic environmental parameters and the percentage 
share of the boreal species in the total number of collected Gammarus spp. were 
determined for each sampling site. Hydrographic data were collected during the 
summer cruises of r/v Oceania and data on fast-ice extension and duration were 
taken from Urbański and Litwicka (2021). The presence or absence of Atlantic 
and local cold waters in summer was coded as 1 or 0, respectively. Ice conditions 
were coded according to the following scale: 0 – fast-ice occurrence <1 week 
a year; 1 – fast-ice occurrence < 1 month per year, 2 – occurrence of fast-ice from 
1 to 3 months, 3 – fast ice occurrence > 3 months. Data regarding present (2017– 
2019) and archival (2008–2016) Gammarus sampling are available at https:// 
adamant.iopan.pl/adamant/taxa_observations/. 

The impact of environmental conditions (presence of Atlantic water, local 
cold water, and fast ice duration) on the Gammarus oceanicus contribution to the 
total Gammarus abundance was tested with type II permutation analysis of 
variance (Permanova) based on Euclidean distance among samples and 9999 
permutations (adonis.II() function from RVAideMemoire package (Hervé 2021)). 

Fig. 1. Occurrence of Gammarus oceanicus (boreal species) and Gammarus setosus (Arctic 
species) in the West Svalbard region during the 2017–2019 summer seasons. An overview of the 
circulation pattern for the Arctic Water (ArW, blue arrow in the surface) and the AW (red arrow in 
deeper layers) in the Isfjorden Trough and the connection to Isfjorden and Forlandsundet (modified 
after Nielsen et al. 2016). Fast ice duration based on observational data from 2005–2018 provided 
in Urbański and Litwicka (2021). 
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Pairwise post hoc comparisons were performed with rank sums Dunn’s test with 
Bonferroni correction for multiple comparisons. All the calculations were 
performed in R 4.0.4 (R Core Team 2021). 

Results  

A total of 123 samples were collected from 71 sites, which resulted in 3662 
identifiable individuals (Table 1; Fig. 1). The distribution of G. oceanicus and 
G. setosus was largely related to environmental conditions. The relative 
proportion of the two species was influenced by the presence of the Atlantic 
water (Permanova F(1, 65) = 8.34, p < 0.01) and presence of the fast ice (F(3, 65) 
= 4.66, p < 0.01), but not by the presence of local cold water (F(1, 65) = 0.01, 
p = 0.91). The median of G. oceanicus contribution to the total Gammarus 
abundance at sites influenced by Atlantic waters was 87%, while 15% at no 
influenced sites. In the case of fast-ice presence, areas with fast-ice duration <1 
week had statistically significant (Dunn’s test <0.05) higher contribution of 
G. oceanicus (median = 89%) compared to stations with longer fast ice duration 
(median from 9 to 26%). The majority of the samples were dominated by one 
species and only at a few sites an equal share of both species was noted. At the 
small scale (sample under single stones) the two species tended to avoid each 
other (Fig. 2). The highest domination of one of the species characterized the 
most abundant samples (Fig. 3). 

Discussion  

Many factors may govern the distribution and co-occurrence patterns of the 
two species inhabiting in the Spitsbergen littoral. It is known that the arctic 
G. setosus is better adapted to low salinity and low temperatures than the boreal 
G. oceanicus what affects their large-scale distribution in the Arctic (Tzvetkova 
1975; Węsławski 1994; Ikko and Luyubina 2010) and sub-Arctic localities 
(Steele and Steele 1970, 1972; Vader and Tandberg 2019). Both species, 
however, can tolerate a wide range of temperatures and salinity (Tzvetkova 
1975), therefore these factors do not always determine species occurrence in the 
coastal waters of the Arctic and sub-Arctic. It is worth mentioning that G. setosus 
occurs also on Bjørnøya, the isolated, southernmost island of the archipelago 
situated at 74°N, at present in very mild Atlantic climate (Węsławski et al. 1997; 
confirmed by samples collected in 2018 on courtesy of Hallvard Strøm, Norsk 
Polarinstitutt). As documented by our data, G. oceanicus presence is not 
restricted to Atlantic waters, however, it performs worse in cold-water areas with 
long-lasting fast-ice, for example on the north coast of Isfjorden or the east coast 
of Prins Karls Forland. Progressive warming may differently affect the two 
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species. The thermophilic G. oceanicus will likely continue its spread and 
gradually strengthen its dominance in already occupied areas, while cold-water 
G. setosus will simultaneously retreat toward the northeast coasts of Svalbard or 
the innermost parts of glacial bays where arctic conditions still prevail. On the 
other hand, the temperature rise will result in more intensive fresh-water runoff 
from the retreating glaciers and glacier-fed rivers and streams (Węsławski et al. 
2011). The G. setosus population will likely benefit from a freshening of coastal 
waters and may increase in habitats in proximity to brackish lagoons and 
estuaries. 

Potentially, the already established population of G. oceanicus may be 
further fed by specimens advected with Atlantic waters from the Nordic Seas. 
The poleward distribution shifts of boreal species due to the increasing influx of 
Atlantic waters into the Arctic (Polyakov et al. 2020) were observed for biota 
including pelagic amphipods (Kraft et al. 2013), and benthic mollusc Mytilus 
edulis (Berge et al. 2005). For the species that lack a pelagic life-stage such as 
G. oceanicus, rafting on floating objects may be an important way of dispersal. 
Detached macroalgae seem to be a particularly suitable floating substrate for 
Gammarus due to their structural complexity and high nutritional value 
for grazers (Kiessling et al. 2015). Observations made around Iceland suggested 
that many species of intertidal crustaceans, including Gammarus spp., may 
use floating seaweed as a means of dispersal (Ingólfsson 1995). On the other 

Fig. 2. Histogram and kernel density curve of the contribution of Gammarus species in the same 
microhabitat in 2019 (data from single sample, average area 400 cm2, one large stone). 
Contribution – (N / (NG.o + NG.s)) * 100%, where N – number of individuals species, G.o – 
Gammarus oceanicus, G.s – Gammarus setosus. 
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hand, a strong decrease in the abundance of rafting organisms with increasing 
distance from the shore was reported (Ingólfsson 1995). Taking into 
consideration the distance between North Norway and Spitsbergen (>900 km) 
and challenging sea conditions in this region that may accelerate the 
disintegration of floating algal clumps, effective mass transport of G. oceanicus 
with drifting macroalgae seems low probable. It is known that the transport of 
boreal taxa may also occur with the vast amount of plastic litter transported by 
ocean currents to the Arctic (Csapó et al. 2021). Plastics are particularly 
persistent, remain positively buoyant for long periods, and may transport 
associated organisms over extensive distances (Kiessling et al. 2015; Węsławski 
and Kotwicki 2018; Kotwicki et al. 2021). This type of raft, however, suits 
organisms that can survive on plastic firmly attached to its smooth surface and 
acquire food from surrounding waters (such as sessile suspension-feeding 
barnacles or mollusc), while it may be of limited use for species that are unable 
to settle on this kind of substrate and are macrophagous, such as G. oceanicus 
(Kiessling et al. 2015). Indeed, a recent (2017–2019) inspection of plastic litter 
beached on the West Spitsbergen coast and in Isfjorden did not reveal the 
presence of Gammarus spp. (Kotwicki et al. 2021). Better knowledge on 
abundance and dispersal trajectories of biotic and abiotic floating items and the 
species capacity to survive on a different type of substrate is required to 
correctly assess the efficiency of long-distance rafting dispersal of G. oceanicus. 
However, considering the issues described above it appears that advection from 
the south likely occurs only sporadically. This is also supported by the fact that 

Fig. 3. The relation between density and species co-occurrence based on single sample. 
Contribution – (NG.o / (nG.o + nG.s)) * 100%, where N – number of individuals, G.o – Gammarus 
oceanicus, G.s - Gammarus setosus.  
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G. oceanicus was not found on Bjornøya, an island halfway between Svalbard 
and the Norwegian mainland (Węsławski et al. 1997). 

The overlapping occurrence of the two Gammarus species dwelling in 
Spitsbergen littoral is probably forced by and limited availability of preferred 
habitat and predation pressure. Predation pressure on Gammarus species is 
usually very strong. Because of their size, poor mobility, density, and energetic 
value they are preyed upon by a variety of animals (Macneil et al. 1999; Gerhardt 
et al. 2011), in the Arctic mainly by seals, seabirds (Lydersen 1989), and 
numerous species of small and medium-sized coastal fish (Węsławski and 
Kuliński 1989). In consequence, G. setosus and G. oceanicus inhabit Arctic 
intertidal zone living, almost exclusively, under loose stones, which offer 
protection from carnivores (Steele and Steele 1974; Tzvetkova 1975; Węsławski 
1994). Strong predation pressure may result in the coexistence of closely related 
species (Simberloff 1982). Experiments on freshwater amphipods showed that 
the predator presence increases the aggregation level of prey gammarids 
(Jermacz et al. 2017). Habitats preferred by Gammarus on Svalbard are sheltered 
skjerra, covered with large clumps of Fucus L. and loose stones, which conceal 
hiding places (Węsławski 1994; Ikko and Luyubina 2010). Such habitats have 
limited range (c.a. 16% of the whole coastline) and may be separated by the 
kilometre-long stretches of ‘unusable’ shores: gravel and stony beaches (dynamic 
and unstable), muddy tidal flats (turbid and very dynamic), and rocky coasts, 
which provide little shelter as they are mostly barren or covered by tiny 
filamentous algae (Węsławski et al. 1993). Moreover, the available space is also 
vertically limited by the low amplitude of tides on Svalbard (1–1.5 m). In the 
extensive intertidal zones of Newfoundland or Iceland (with tides of several 
meters) G. oceanicus and G. setosus are known to be spatially segregated by the 
tide levels, the former being usually noted in low intertidal and shallow subtidal, 
and the latter occurring generally above the zone populated by G. oceanicus in 
intertidal (Ingólfsson 1977). 

Both species are similar in size, feeding behaviour, and reproduction time 
(Węsławski and Legeżyńska 2002), which suggests strong competitive tensions 
between them in a spatially limited habitat of the Spitsbergen coast. Indeed, our 
data document a clear separation of the two species on the scale of a single 
sample. Only at three sampling locations, both species were equally abundant. 
Partly, it can be explained by environmental patchiness and preferences of each 
species, but it also strongly suggests an antagonistic relationship between the 
species. Our field observations agree with the results of experiments performed 
on two species of freshwater gammarids Dikerogammarus villosus (Sovinsky, 
1894) and Pontogammarus robustoides (G.O. Sars, 1894) (Jermacz et al. 2017). 
Both species, when choosing shelters, preferred those already occupied by 
conspecific and avoided aggregating with heterospecific. The authors commented 
that antagonistic reaction toward the other species may contribute to their 
separation at a scale of microhabitat natural environment and in consequence 
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decrease the risk of competition between them. Further experimental studies are 
needed to better understand mechanisms regulating interspecific relations at 
a microhabitat scale. 

In conclusion, the distribution of the two species reflects their environmental 
preferences. Both species, however, can persist in suboptimal due to the wide 
range of environmental tolerance. The ongoing warming will likely enable 
further expansion of the boreal species of G. oceanicus in the Arctic. In Svalbard, 
this will result from a gradual advance of the existing population, since an influx 
of specimens from the Nordic seas seems unlikely. The local, arctic species 
G. setosus will remain a dominant species in cold-water areas such as the inner 
fjords and the northeast coast of Svalbard. This species may benefit from the 
freshening of coastal waters and find suitable habitats in lagoons and outlets of 
rivers and streams fed by glacier meltwater. It seems that the two species, due to 
their wide range of environmental tolerance and the patchiness of littoral habitats, 
will continue their sympatric occurrence on the West Spitsbergen coast. To 
understand mechanisms regulating co-occurrence of the two species on a small 
spatial scale further field studies and laboratory experiments are required. The 
observations so far indicate that on the microhabitat scale the two congeners tend 
to avoid each other. 
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