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On elastic contact problems of micro-periodic slant
layered composite pressed by a rigid punch
with a parabolic or rectangular shape
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Abstract. The paper presents an analysis of the influence of the shape of the rigid body pressed into the micro-periodic composite half-space
on the examples of two punch shapes — parabolic and rectangular. The presented material is a layered body that consists of infinitely many thin
alternately arranged homogenous layers. Layers of the presented composite are oblique to the boundary surface. Two cases of punch tip shape
are examined — parabolic and rectangular. The presented problem has been formulated within the framework of a homogenized model with
microlocal parameters and solved using the elastic potentials method and averaged boundary condition. Fourier integral transform method has
been used to obtain the solution and the inverse integrals have been calculated numerically. Solutions in terms of contact pressure and maximum

pressure characteristics were shown in the form of graphs.
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1. INTRODUCTION

The contact problems of elastic solids are widely studied due to
their engineering applications, when considering the contact of
friction pairs or other processes related to the transfer of load
from one body to another, among others. The problems of the
classical theory of elasticity are still intensively analyzed for
both homogeneous [1-3] and heterogeneous media [4, 5] in-
cluding materials with a structural gradation of properties [6,7],
materials with coatings [8—11] or composites [12—14]. For these
types of materials, solving problems and describing mechani-
cal properties often comes down to the use of various averaging
methods, e.g., homogenization methods. One of the examples
of such methods is the homogenization method with microlo-
cal parameters given by WoZniak [15] used, among others, for
heterogeneous composite materials — see [13, 15]. One of the
examples of these materials is micro-periodic composites with
a laminated structure, which occur in nature in the form of lay-
ered sedimentary rocks. The process of machining layered rock
is one engineering example showing the importance of the anal-
ysis of the presented problem. In these issues, an important role
is played by the shape of the pressed body (punch) in contact
with the considered material, because it significantly affects the
formation of the contact zone, the value of contact pressure, and
the stress distribution in a loaded body. For this reason, the pre-
sented work examines the two most common shapes of punches
pressed into a composite half-space with layering inclined at
any angle.
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2. PROBLEM FORMULATION

In this section, we will describe the presented contact problem
and the approach to a mathematical description based on the
use of two coordinate systems and the homogenization method.
The presented problem is defined as pressing an infinitely long
rigid punch into an elastic composite half-space without fric-
tion. Composite half-space consists of many thin alternately
arranged homogenous layers as presented in Fig. 1. Layers of
two kinds are stacked obliquely at an angle o to the boundary
surface. Conditions of ideal contact between the layers were
assumed. The plane contact problem has been formulated as
pressing a rigid punch into the composite body for two ex-
amples of punch cross-section: the first case of a parabolic
punch (Fig. 1a) and the second case of a rectangular punch
(Fig. 1b).

For both cases (see Fig. 1) parameter a represents half-width
of the contact zone. In the case of a punch with a parabolic
tip, the width of the contact zone is unknown, which causes the
mixed boundary problem to become non-linear and the width of

Fig. 1. Scheme of considered contact problems for: a) parabolic
punch, b) rectangular punch
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the contact zone a is calculated using the equilibrium condition,
see for example [1, 16]

[ pan)ax =P (1)

where p(x;) is an averaged contact pressure.

In the presented layered composite, two kinds of isotropic
layers have thicknesses defined as /1 and I, (see Fig. 1), and the
layer thickness ratio 1 is given by:

Lo
=1 2
T 2

n:

where [ is the total thickness of a layer.

The presented problem has been solved using two coordinate
systems: a (x,y,z) system associated with layering directions
and the (x1,y1,z1) system associated with the boundary surface.
The system (x1,y1,z1) is obtained by rotating the (x,y,z) system
around the z-axis by the angle ¢, o € (0, 90°) as follows:

X] =Xxcoso —ysina,
Y1 =xsin® +ycos o, 3)

1 =2

The displacement vector in the (x,y,z) system is denoted as
u(x,y) = [u,v,O] and as ul(xl,yl) = [ul,vl,O] in (x1,y1,21)
system. Similar nomenclature was used to designate the com-
ponents of the stress tensor in the aforementioned systems —
Oxxs Oxys Oyy, Oz @nd Oy, x;» Ox,y;» Oy,y;» Oz z;» T€spectively. The
presented problem was solved with the use of a homogenized
model with microlocal parameters, wherein the components of
a displacement vector are described as follows [17, 18]

“

where U = U (x,y), V = V(x,y) are macro-displacement vector
components in the x and y directions, respectively; gx = gx(x,y),
gy = gy(x,y) are the unknown microlocal parameters and & =
h(x) is the shape function given as [17, 18]

x—0.51, for 0<x <1y,
h(x) = § —nx/(1-1) — 0.5, + 1, (1—7) S
for [} <x <, )

h(x+1) = h(x).

The shape function was given a priori so that the continu-
ity conditions at the interfaces connecting individual layers
were met.

Let A; and u; be Lame constants of the material of j-th layer.
Using equations (4) in classical equations of the theory of elas-
ticity and applying the homogenization procedures described
in [17], we obtain:

. 2’V U
(A+ >(8y8x Era

> Iy <82U 82U)

() 20y G+ ()52

0
(h+R) 827V+82U va 82v o*v
H dy?  dyox 8y
aCIx aQy
I+ =0

)

ox ’
where microlocal parameters satisfy a system of equations:

SN v U U
(+2) =15+ 5 ) ~2m 50

N av U

with the following notation:

(N

F=0. =uw, F=(e?). ®

where (f) stands for an average value defined as:
1
= [ ©
0
and i* = h*(x) is a derivative of the shape function /(x)

dh:{l
dx  |-n/(1-n)

The homogenized model takes the following assump-
tions [17, 18]

~ \

for 0 <x<Iy,
for [} <x<I.

n*(x) = (10)

ou JU du JU
uNU? ai’\“g‘i»hqxa aiy’\"aiyv
d d d av (o
v v . v _dV
VNV, awg‘th);, ainay
Stresses in individual layers are given by [17, 18]
O — 2w OV 4 a4 p 0%
ox’ = (Aj+2u;) < 5, THaxth &x)
vV  dgq,
w20y %)
() U dgx IV 9qy
Oy j(& +hay+8 +h y+hax
oV dg,
+ 4 (ay +ha}), (12)
vV dg,
Gy(f>—(7tj+2ﬂj)<a +ha;)
au dqx
+ A (ax+h "+hax)’
() v 9gx a£ * dqx
2z _A’](& hay+(9 +hCIx+h8x s
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where j = 1,2. For j = 1 stress component corresponds to the
sublayer of the first kind and for j = 2 — the sublayer of the
second kind of composite component.

Seeing that |h(x)| < [ for every x then for the small thick-
nesses [ the terms containing A(x) are small and will be ne-
glected, It should be noted that the derivative 4*(x) is not small
and cannot be ignored. These conclusions and the use of equa-
tions (7) lead to the elimination of the microlocal parameters
from equations (6) and (12). After eliminating the microlocal
parameters (see [15]) in the plane strain state, the presented
problem could be described by a system of equations as fol-
lows [17,18]

*U v _J’U
2 2 2 (13)
0%V 0°U 0°V
A287y2+(B+C)78x&y+CW_O’

where Ay, Az, B, C are the homogenized model parameters re-
lated to composite material properties [17, 18], see Appendix,
equation (A.1).

Stress tensor in j-th component can be expressed as fol-
lows [17,18]

0 _ oU A% 0 .3U 'aV
Oxx —Al—ax —|—B—ay7 Oyy —D]—ax —i—E,—ay,
0 0 A (1
() _ u_ dv A (/) ()
ny _C< ay + ax> , Oz = }LJ-’—ZI.LJ (Gxx +ny )7

where D;, E; are the homogenized model parameters [17, 18].
The stress tensor components c,ﬁ? and O'g) in formula (14) are
continuous and effective modulus A1, B and C do not depend on
Jj due to the continuity conditions at the interfaces connecting
both composite components. This conclusion makes it possible
to confirm with certainty that, within the homogenized model
with microlocal parameters, the ideal conditions of continuity at
the interfaces connecting the various components are satisfied.

For the plane problem of the theory of elasticity, the displace-
ment condition is impossible to meet due to the infinity of the
punch [19]. In this case, the condition for the derivative of the
displacement has to be fulfilled. This is a standard approach in
contact mechanics (see [19]).

For the presented contact problem, the following boundary
conditions are defined:

Vi (x1,0) dg(x1)
=- for [x1| <
ox ox, 0 for nf=a,
O-}glj))’l (XI,O) =0, for |x1\ >a, (15)
O-)Elj))’l (xlao) :07 for X1 GR,

where g(x;) represents the punch cross-section shape and V;
represents a component of the macro-displacement vector in the
direction of the y; axis.
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Regularity conditions at infinity are as follows:

GX(IJJ%I ) 6151]))‘1 ) Gy(ljy)l =0 for xj+)y7—eo. (16)
The function g(x;) represents a punch cross-section in the

form:
2

g(1) =D~ 3L

arabolic punch),
2R p P

7)

gx1)=D (rectangular punch),

where R = const and D is the depth of punch penetration.
In the boundary conditions (15), the stress tensor components
\<1j y)l, Jj = 1,2 are discontinuous on the interfaces between sub-
layers, which makes the solution problematic, hence we apply
the averaged boundary condition in the form [13]:

(%) (1)

oy 0 =10, @
yiyi = MO0y

+(1—n)oyy - (18)
This condition was successfully used in similar problems [13].
Moreover, its accuracy was also verified in [12] and a conclu-
sion was drawn that the averaged boundary condition can be
used when the ratio of laminate thickness to the width of a
contact zone is sufficiently small (//a < 0.05) for a lamination
perpendicular to the boundary. In the case of a layering paral-
lel to the boundary, the solution using a homogenized model
also gives good results (for //a < 0.2), see [20]. In previous
works [8, 12, 13], we can find conclusions on the applicability
of the homogenized model to modeling micro-periodic layered
composites. The works [12, 13] investigated examples of prob-
lems that can be solved using the homogenized model and an
exact model, i.e., within the theory of elasticity. In these cases,
an enormous amount of work is required to obtain a solution
within the framework of the theory of elasticity. The use of di-
rect numerical methods, like FEM, also entails significant com-
putational complications, if we want to obtain a solution at the
boundary. Therefore, the accuracy of the solution depends on
the thickness of the layers and the authors refer to the solutions
obtained for extreme cases, because the ratio //a for the con-
sidered problem will depend on the angle «.

3. SOLUTION METHOD

In order to solve the presented problem, it is necessary to de-
termine the solution of the system of equations (13) describ-
ing the macro-displacements, taking into account the boundary
conditions (15). A solution has been obtained by the use of the
elastic potentials method, where the potentials ¥ = ¥ (x1,y1),
Y, = Wy(x1,y1) associated to the (xj,y1,z1) system (3) are
given as [12]:

0¥, oY,
U=x— +k——
ox + 2 ox

Y,
V= T ey

o>

19)

where k; = (A2¥? —C)/(B+C) and ¥, k= 1,2 are the solutions
to the following characteristic equation [13]:

ArCY} + (B> +2BC — A1A2) 1 +A1C=0. (20)
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In this case, the following equations are obtained [13]:

2, %Y,
— 4+ —=—=0, k=12 21
gzt 5> = 7 1)
Equations (21) have real roots +y;, £ as follows [13]:
1
~ (AA,—2BC-B2F VA’
Na2= 24,C ) 22)

A= (B>+2BC—A1A;)” —4A,1A,C* > 0.

According to (14) and (19), we could determine the stress ten-
sor components as functions of elastic potentials Wy, k = 1,2
as [12]:

2 2 2
() 0°¥; d ‘I‘k>
Oxy’ = AlKy——+B—— |,
kz’]< Sre dy?
2
() 0"
Xy — 1 )
oy Ck;( +Kk)8x8y
(23)
2 2 2
) _ ( Y .9 \pk)
Oyy = D'Kk + y
Yy k;l J a 2 J ayz
W__ A (Gm H,(/;)) =12
2z Z(AJ—I— j) XX yy )

Assuming the averaged contact pressure p(X;) in the contact
Zone as:
plx1) =npW(x) + (1 =1)p® (x1), (24)

where p(j) (x1), j = 1,2 is the contact pressure for j-th com-
posite body component, we could move from the displacement
problem to the boundary pressure load problem [21].

Fourier integral transform method was used to obtain the
solution for (21), which is presented in detail in [22], where
Fourier transform of the function f(x,y) is denoted as:

F(s,3) =F[f(x,y);x — 3]

:\/%/f(x,y)exp(—im)dx. (25)

The solution which satisfies the condition (16) in the form of
elastic potential can be found in [21] as:

oo

1 .
‘Pk(xh)’l):E/eXP (—a'f|s|y1+,s (m-alﬁ)’l))'

1
. (A,({l)p +isgn(s)A,({2)p> ﬁ(s)s—zds,

k=1,2. (26)

where A,((l)p , Af)p are the constants given in [22], see Appendix,

equation (A.3).

To simplify notation, the solutions were considered in dimen-
sionless coordinates related to half-width of the contact zone a
in the form of ¥; = x;/a, ¥ = y1/a. Furthermore, pressures
(and thus stress tensor components) were considered relative to
the mean contact pressure pg = P/2a as p = p/po.

For the punch of any smooth shape, the general solution is
given as a system of dual integral equations in the form of:

> (55 + A Fpdr) _ dg(x)
5 Tk AR}
=1 kP T . X —t 8)?1 ’
xul €<_171>7 (27)
/ﬁ(il)exp(—ifil) dil = O7 )fl ¢ <—1,1>,
where B,(cl), B,({z), k = 1,2 are the parameters related to mechan-

ical properties of the composite components and lamination an-
gle a, see Appendix, Eq. (A.2).
System of equations (27) has a solution in the form [23]:

4 2105
pl¥)=—(1-x ;o He(=1 1),
7 (177 (28)
px) =0, ¢ (-1 1),
for a parabolic punch and:
2 -0.5
() == (1-2 , Xe(—1;1),
=2 (-8 meeny,
p) =0, X ¢ (=1 1),

for a rectangular punch [24].
From (1) and (28), we obtain half-width of the contact zone
as [25]:

2
2_ %2 (p@ )
@@= (Bl + B, )RP, (30)

where Bgz)’ B<22>

tion (A.2).
Having elastic potentials Wy, k = 1,2, we could determine
the Fourier transform of contact pressure p (§) as [26]:

are the constants given in Appendix in equa-

oy 2 Pl (§
P =2, (31)
for a parabolic punch and [26]:
P = —=To(5), ()
V2arn

for a rectangular punch, where Jo(+), J;(-) are the Bessel func-
tions of the first kind [26].

Having Fourier transform of the contact pressure, the stress
tensor components can be easily calculated using equations (23)
and (26). For the case of contact pressure /) () it could be
calculated as:

ﬁ(j) (xul) = lim (ux(ljv")l (ilvil)) ) ]: 1727

¥1—0F

(33)
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0) _ o)

where the stress tensor component G, ) /po could be

Y11
defined by:

2)k o o
fP)Slyz”sm<(x1 fazyl)s )ds, =12, (34
for a parabolic punch and:
() 23 [ "
s ) =2 ¥ [Jo@exp (~diin)
T2
0
1)k o o o
( ;IQUCOS (( 1 fa§y1> s) +
Dk . o o o o .
_ yfl}iljsm((x, —a’gy])s)) ds, j=1.2, (35

for a rectangular punch, where pllk  pl2)k

. . Vv Ty
Appendix, equation (A.9).
Thus, we have the contact pressure in the j-th composite
component in the form of:

are given in the

0
'cos(ils“)—Pv(2>kAsin()Z1s“)> 45, j=1,2, (36)

: (P(l)k-cos (#15) — P =12, (37

Yy j
for a rectangular punch.
Integrals in (36) and (37) were calculated numerically, based
on a proprietary numerical algorithm based on typical inte-
gration methods, i.e., using a Gaussian quadrature and Python
SciPy package. The results of those calculations are presented
below.

4. RESULTS

Results for each composite component were drawn in different
colors — grey lines for the first material component (j = 1) and
black for the second one (j = 2).

Figure 2 shows the distribution of dimensionless contact
pressure p\/) (%) = pU) (%) /po, j = 1,2 for two different
punches (rectangular punch on the left and parabolic punch on
the right).

Figures show that both the shape of the punch and the layer-
ing angle have a significant impact on the pressure distribution
and the maximum values obtained. For the stratification per-
pendicular to the edge, the graph corresponds to the results ob-
tained by Perkowski ef al. [13]. The solutions obtained in this
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paper are consistent with [13] and the presented results are a
generalization for the layers arranged at any angle.

Figures 3a and 3b present the characteristics describing the
pressure value in the center of the contact zone ﬁ(j)(0,0) =
p(0,0)/po, j = 1,2 depending on the ratio of Young’s modu-

3 3
()| @)a=0° E/E,=8 ()| b)a=0°  E|[E,=8
P - =1 p -j=1
24 e -Jj=2 2 4\ ~j=2
. /
// N Mo ,//
14/ A 1 - Minnenan a1
__________ \ \ ,
o - 0 R
-1 05 0 05 %1 -1 05 0 05 %1
3 3
~()| c) a=30° EJE,=8 _(j)| d) @=30° E JE,=8
p - j=1 p -j=1
2 =2 24\ =2
R \\\ \ \ /
14 7 \\ 1 A Bne ,/// /
/ LeeTTTTTTESR ~ \\ nnnonn Ve
, \\\ al SESERERESRERESREE 4 =
O T T T 0 T T T
-1 05 0 05 %1 -1 05 0 05 %1
3 o
—(j) e)a:45° EI/E2_=8 —() \f)a=45 EI/EZ':S
p —.[:l p —JZI
2 - =J=2 2 'f‘z/
RANHBIBEN \
] /
11 ///’ _____ \\\\\ 1_\\\\ N~ — - ’///
iy N T e
0 T T T O 17 T T
-1 -0.5 0 05 x 1 -1 -0.5 0 0.5 x 1
3 3 -
=) g)a=60° EI/EZ=8 =(J) h) =60 EI/EZ.:g
p -j=1 p -Jj=1
2 - - J=2 2 - mJ=2
S ERIN AN
// ” N N
0 T T T 0 T T T
-1 05 0 05 %1 -1 05 0 05 %1
3 31— -
(/) l) a=90° EI/E2A=8 =(/) .]) a=90 EI/E2_=8
p - j:l p —'A]ZI
2 - J=2 2 - —J=2
1 4
0 T T T 0 T T T
-1 -0.5 0 05 x 1 -1 -0.5 0 05 X 1

Fig. 2. Contact pressures pU) (%) =pl) (#1)/po, j=1,2 for j-th
component of the composite body at E1/E, =8, vi = v, = 0.3,
n = 0.5 for different lamina angles and different punch shapes:
a), ¢), e), g), i) — parabolic punch, b), d), f), h), j) — rectangular punch
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lus of the components of the composite medium. They show
that the greatest differences in pressure between the compo-
nents of the composite occur at the perpendicular lamination
to the edge.

From Fig. 3 it can also be seen that regardless of the angle,
the values of this pressure in the center of the zone are twice as
high for a parabolic punch than for a rectangular punch, which
is consistent with the known solutions for the lamination per-
pendicular to the boundary, see [13]. Additionally, for the lam-
ination parallel to the boundary, it can be seen that for both
layers the results are in full compliance with the homogenous
material, for which ppm.,x = p(0,0) = 4py /7 — parabolic punch
and pyin = p(0,0) = 2py /7 — rectangular punch.

Figures 4a and 4b present the contact pressure at the cen-
tral point of the contact zone for different ratios of layer thick-
ness for the composite with component Young’s modulus ra-
tio E|/E; = 8. As can be seen, the values differ significantly
with a changing angle a and the differences are the highest for
lamination perpendicular to the boundary surface (ot = 0°) and
nonexistent for layering parallel to the surface. It could also be
seen that the graphs converge to the specific values of contact
pressure (4po/7) and (2po/7) for the values of layer thickness
ratio n — 1 and 1 — 0 — for the first and second components,
respectively.

E/E, 1 E/E, 1

Fig. 3. Contact pressure /) (0,0) = p()(0,0)/po, j = 1,2 for j-th

component of the composite body at the central point of the contact

zone (x = 0, y = 0) for different stiffness ratios E;/E, and different
lamina angles « for: a) parabolic punch, b) rectangular punch

6 - a) El/EZ:8 V1=VZ=-O'? 6 J b) EI/E2=8 V1=V2=0A3
=(J -J= —(j —j=1
V) = U J
4 A 4 -

2 4 2

0 0

0 02 04 06 08711 0 02 04 06 08771

Fig. 4. Contact pressure 5/)(0,0) = p{/)(0,0)/py, j = 1,2 for j-th
component of the composite body at the central point of the contact
zone (x =0, y = 0) for different ratios of layer thickness 1) and
different lamina angles « for the case of a) parabolic punch,

b) rectangular punch

5. CONCLUSIONS

The presented work discusses the elastic contact problem of

micro-periodic elastic half-space in a plane strain state pressed

by a rigid punch. The homogenized model with microlocal
parameters has been used to solve the considered problem.

Two examples of punch cross-section have been considered:

parabolic and rectangular. For both shapes of the punch cross-
section, the contact pressure has been analyzed and the char-
acteristics of its relation to the composite structure have been
drawn.

From this analysis, the following conclusions can be drawn:

1. Results show that averaged contact pressure distribution for
the contact problems for the composites with slant lamina-
tion is related to the shape of the punch in a similar fashion
as it is for the homogenous bodies.

2. In the case of per-component contact pressures it could be
seen that their maximum values differ the more the higher
stiffness ratios E|/E, are, so it is not justified to consider
only the averaged values and an approach that allows us to
determine the stresses in each layer separately should be
used — as is possible with the homogenized model with mi-
crolocal parameters.

3. For each composite component, the contact pressures for
both punch shapes differ in the same way — as they differ for
the composite with lamination perpendicular to the bound-
ary and the differences decrease with the transition to the
composite with lamination parallel to the boundary surface.
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APPENDIX
Parameters used above in the text [21]:

oo a2 Gat2n)
(1—=m) (M +2u)+n (Aa+2w) ~ 7

)
4n(1-mn) (1 —t) (M = A+ — o)

Ay =A1+ (1—1) (A +2u1)+1 (Aa+2u2) >0,
1-mAy (A1 +2 A (A2
2
— >0, D= A >0
S = 4%?;5].) T ijz B0 =12

B\ = (A,((l)aé —|-A]((2)alf> (K sin® @ +cos” &) +
+al
BY = (A,iz)ag —A,(Cl)a’{> (K sin® @ +cos” &) +

+AY

sinacosor (1 —xy), (A2)

sinacosor (1 —xy),

k=1,2.
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A} +A3
(k) (k)
ARP _ AlA; —AoAy k=12
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1 2

1) 1)k
Ay = Agl)AgZ) _A(12)A£1)+

2) , (3—k 2) , (3—k
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