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Development of rapid and reliable cuckoo search
algorithm for global maximum power point tracking
of solar PV systems in partial shading condition

Khadidja BENTATA, Ahmed MOHAMMEDI and Tarak BENSLIMANE

The solar photovoltaic output power fluctuates according to solar irradiation, temperature,
and load impedance variations. Due to the operating point fluctuations, extracting maximum
power from the PV generator, already having a low power conversion ratio, becomes very
complicated. To reach a maximum power operating point, a maximum power point tracking
technique (MPPT) should be used. Under partial shading condition, the nonlinear PV output
power curve contains multiple maximum power points with only one global maximum power
point (GMPP). Consequently, identifying this global maximum power point is a difficult task
and one of the biggest challenges of partially shaded PV systems. The conventional MPPT
techniques can easily be trapped in a local maximum instead of detecting the global one. The
artificial neural network techniques used to track the GMPP have a major drawback of using
huge amount of data covering all operating points of PV system, including different uniform
and non-uniform irradiance cases, different temperatures and load impedances. The biological
intelligence techniques used to track GMPP, such as grey wolf algorithm and cuckoo search
algorithm (CSA), have two main drawbacks; to be trapped in a local MPP if they have not
been well tuned and the precision-transient tracking time complex paradox. To deal with these
drawbacks, a Distributive Cuckoo Search Algorithm (DCSA) is developed, in this paper, as
GMPP tracking technique. Simulation results of the system for different partial shading patterns
demonstrated the high precision and rapidity, besides the good reliability of the proposed DCSA-
GMPPT technique, compared to the conventional CSA-GMPPT.

Key words: photovoltaic system, maximum power point tracking, partial shading, cuckoo
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1. Introduction

Photovoltaic solar energy is considered to be one of the leading forms of re-
newable energies, which contribute in reducing the amount of electricity produced
by fossil fuels. It is used in residential applications such as electricity generation
for on-grid and off-grid remotely situated places such as schools, homes, clinics
and buildings. It is also utilized in industrial applications as backup source of
electricity for on-grid applications, and main source of electricity for off-grid re-
mote loads, such as large-scale water pumping systems, desalination plant, radio
and TV stations, lighthouse and warning light for aircraft. This is due to its nu-
merous advantages such as being freely available, inexhaustible, widely spread,
and environmental friendly [1].

Photovoltaic (PV) power array configuration is composed of a number of PV
panels, which are connected in series and/or in parallel. The maximum power
point (MPP) of the whole PV array is affected by environmental factors variation,
such as temperature and solar irradiance. In addition, partial shading conditions
due to clouds or buildings shadow makes the P-V characteristic curve more
complex [1].

Because of the non-linear output power characteristics of the PV array, the
improvement the efficiency of PV power generation system is realized by extract-
ing as much as possible power from the PV modules, using usually the maximum
power point tracking (MPPT) control method [2]. However, due to particular
impact of different partial shading conditions (PSCs) on the non-linear PV output
power-voltage (P-V) curve, the tracking of the optimal maximum power point
(MPP) became a challenging task [3]. Generally, three approaches are considered
to guarantee MPP tracking for partial shading conditions: (1) by retrofitting the
converter, connected to PV array, with special power electronics circuitry that
can recover the energy from the shaded modules [4], or (2) by employing a small
converter with its own MPPT for each module in the PV array (known in the PV
industry as the micro-converter) [5] or (3) by modifying the MPPT algorithm
of the central converter to be more intelligent and adaptable to PSCs. The first
technique is less preferable due to the additional and costly hardware that must be
retrofitted into the existing system. The second approach is practically feasible for
PV arrays with limited number of modules, in which individual micro-converter
can be fitted under each module. However, if the system is large, the complexity
and the additional costs of the electrical components increase significantly [6].
The third approach seems to be economically and technologically the most attrac-
tive technique. The MPPT algorithm can be enhanced by integrating intelligent
techniques into the software, to be more adapted to the partial shading condition.
Therefore, no additional hardware is needed [7].

Each one of the maximum power point tracking (MPPT) techniques has its
merits and demerits [8–11]. These techniques can be classified into two main



DEVELOPMENT OF RAPID AND RELIABLE CS ALGORITHM FOR GLOBAL MAXIMUM
POWER POINT TRACKING OF SOLAR PV SYSTEMS IN PARTIAL SHADING CONDITION 497

categories, conventional techniques and the soft computing techniques. The con-
ventional techniques such as Perturb and Observe, Incremental Conductance, Hill
Climbing can track the one maximum power point (MPP) in the P-V curve of
uniformly illuminated PV arrays [9,11,12]. They can easily be trapped in a Local
Maximum Power Point (LMPP), and fail to track the Global Maximum Power
Point (GMPP) in multi-maximum P-V curve of partially shaded PV arrays. The
soft computing techniques used smart/artificial intelligent or bio-inspired tech-
nologies to recognize the GMPP of P-V curve for either uniformly illuminated
or partially shaded PV array conditions [8,9,13]. The soft computing techniques
used in PVMPPT applications include Particle SwarmOptimization [9,14], Gray
Wolf Optimization [15], Cuckoo Search (CS), Ant Colony Optimization [16,17],
Krill Herd Optimization, Firefly algorithm, artificial bee colony, Multi-Verse
Optimizer, Ant Lion Optimizer, Sine Cosine Algorithm, Dragonfly Algorithm,
WhaleOptimizationAlgorithm,Moth-FlameOptimization, . . . etc. [18,19].Most
of these techniques can easily identify and track the GMPP in both cases of uni-
formly illuminated and partially shaded conditions of PV arrays. Nevertheless,
they have two main drawbacks when being used in PV applications. The first
one is associated with the dynamic or time variant GMPP position in P-V curves,
in which GMPP changes its position over time, due to the solar irradiance uni-
formity change. In this case, most of MPP Tracking soft computing techniques
identify the first GMPP at the beginning and stick around it, without recognizing
any change in GMPP position. The second one is the steady state high power
oscillations, due to random variables associated with all of these soft computing
techniques [19].

Cuckoo search algorithm (CSA) is one of the most widely used bio-inspired
optimization metaheuristic methods [20, 21]. It is characterized by relatively
a small convergence time and a slight steady state error [21–23]. Compared
to a variety of optimization algorithms, cuckoo search algorithm (CSA) has
attracted great attention of researchers and been successfully utilized in various
problems from different fields [24, 25]. This is due to its simple structure, few
control parameters and implementation easiness, besides small convergence time
and slight steady state error [2, 3, 23, 26–29]. However, the conventional CSA
shows a main drawback of using random initialization cuckoo population of host
nests, which declines the global exploration ability, deteriorates the convergence
performance of conventional CSA, and causes the conventional CSA to be easy
to trap into local optimum, in a multi-optimum system [30].

Several approaches have been proposed to enhance the performance of the
conventional CS applied in different fields. A modified cuckoo search algorithm
based on conventional CSA has been developed, in whichmodification comprises
adding the information exchange between the top eggs or the best solutions [31].
Another approach of CSA is proposed to solve structural optimization problems,
which is subsequently applied to 13 design complications reported in the spe-
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cialized literature [32]. The quantum-inspired cuckoo search algorithm has been
presented as an enhanced approach of CSA [33]. An improved cuckoo search al-
gorithm has been proposed for reliability optimization problems [34]. Orthogonal
learning method has been applied to enhance the performance of cuckoo search
algorithm [35]. CS algorithm with hybrid strategies has been used to solve the
flow shop scheduling problems [36]. An optimized hybrid method involving CS,
called Cuckoo Search based on Optimally Pruned Extreme Learning Machine,
has been applied to forecast solar irradiance [37]. An improved cuckoo search
algorithm has been utilized for photovoltaic models parameters estimation [30].
The hybrid algorithm, based on grey wolf optimizer and cuckoo search, has been
developed for parameters extraction of solar photovoltaic models [38].

The majority of enhancement efforts have been focusing on CSA applied for
two types of systems. The first one is the system of static nature, where the best
solutions are time-independent, whereas dynamic system has time-dependent
best solutions. The second type is system with one optimum solution, whereas
the multi-optimum solution systems have one global optimum solution amongst
many local optimum solutions. Even for optimization problems of systems with
multi-optimum and time-dependent solutions, such asMPPT of PV output power,
the enhancement works of CSA have been oriented towards hybrid approaches.
Therefore, to address the aforementioned drawbacks of conventionalCSA, applied
for a system with multi-optimum and time-dependent solutions, such as MPPT
of PV output power, and to improve its rapidity and reliability performance,
the Distributive Cuckoo Search Algorithm (DCSA) has been developed for PV
application. In this frame, the key contributions of this paper are highlighted as
follows:

• A well-tuned intelligent cuckoo search algorithm is developed to track
rapidly and reliably the global maximum point of PV system under rapidly
variable uniform solar irradiance and non-uniform solar irradiance (partial
shading) conditions. The developed cuckoo search algorithm shows a global
maximum point tracking quality with high precision, good reliability and
assures a short convergence time with less power fluctuation.

• A new method is developed, based on PV system measurable electrical pa-
rameters, for estimation, characterization and differentiation of the different
irradiance states for MPPT-DCSA-controlled PV system. The estimated ir-
radiance states are : Constant uniform irradiance state, Variable uniform
irradiance state and Partial shading state). The estimation approach is based
on the evolution of PV array output power versus DC-DC converter duty
cycle ratio.

The rest of this paper is organized as follows. In Section 2, the PV system
is described and modeled. In Section 3, the impact of uniform solar irradiance
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and non-uniform solar irradiance on PV array output power is highlighted. In
Section 4, conventional MPPT-CSA and proposed MPPT-DCSA are presented.
Simulation results are provided and discussed in Section 5. Finally, conclusions
are given in Section 6.

2. System description and modelling

The system considered in this paper is composed of PV array feeding a
resistive load via MPPT-controlled boost converter (Fig. 1).
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Figure 1: Schematic diagram of MPPT-controlled PV-fed boost converter

2.1. PV cell model

Different models have been utilized to describe the electrical characteristics of
PV cells, where SDM andDDM are the widely used ones, especially for electrical
engineering applications [39–42]. Due to low complexity of SDM compared to
DDM, it is the mostly adopted model for describing the static characteristics (I-V
and P-V) of a PV cell [43]. The equivalent circuit of SDM is illustrated in Fig. 2.

This equivalent model includes a photo generated current source in parallel
with a diode, a series resistor referring to the Ohmic losses associated with load
current and a shunt resistor representing the leakage current [30]. Thus, the PV
cell terminal current It can be expressed by:

It = Iph − Id − Ish = I, (1)

where Iph denotes the photo generated current, Id symbolizes the diode current,
and Ish represents the shunt resistor current, respectively. Moreover, in term of
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Figure 2: Equivalent circuits of a PV cell

Shockley equation, Id can be calculated by:

Id = Isd

[
exp

(
q (Vt + It Rs)

akT

)
− 1

]
, (2)

where Isd refers to the diode reverse saturation current, Vt represents the cell
terminal voltage, Rs is the series resistance, a denotes the diode ideality factor, k is
the Boltzmann constant (1.380 × 10−23 J/K), q is the electronic charge (1.602 ×
10−19 C), and T is the PV cell absolute temperature in Kelvin, respectively.
Moreover, via Kirchhoff’s voltage law, Ish can be obtained as:

Ish = (Vt + It Rs) /Rsh , (3)

where Rsh is the shunt resistance. Consequently, by combining Eqs. (1), (2) and
(3), the I-V relationship of the SDM can be written as follows [4, 30]:

It = Iph − Isd

[
exp

(
q (Vt + It Rs)

akT

)
− 1

]
− (Vt + It Rs) /Rsh . (4)

As a consequence, SDM has five unknown parameters, namely, Iph, Isd , a, Rs
and Rsh) that can be identified based on experimental I–V data.

2.2. PV Panel and PV array model

The PV panel contains Ncellpar parallel strings of Ncellser cells per string. So,
it comes that:

Ipanel =

Ncellpar∑
i=1

Iti,Ncellpari = NcellparIt = NcellparI,

Vpanel =

Ncellser∑
i=1

Vti,Ncellseri = NcellserVt = NcellserV .

(5)
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Similarly, the PV array containing Npar parallel branches of Nser panels per
branch; can be modeled, in case of uniform irradiance condition, by the following
equation systems:

Ipv =

Npar∑
i=1

Ipaneli,Npari = NparIpanel , Vpv =

Nser∑
i=1

Vpaneli,Nseri = NserVpanel . (6)

In case of partial shading, the partially shaded string will produce a current
Ipaneli of lower value compared to the uniformly illuminated strings, since the
partially shaded panel will be short-circuited by the bypass diode. And since the
partially shaded string and the uniformly illuminated strings are connected in
parallel, the voltage across all of them Vpv will be the same.

2.3. Boost converter model

The boost converter is used to extract the maximum power from the PV array
via duty ration control. The instantaneous values model of boost converter can
be expressed by the following voltage and current equations:

Vc2 = (Vc1 − VL) g + Vc2(1 − g) =
(
Vpv − VL

)
g + Vc2(1 − g), (7)

VL = (Vc1)g + (Vc1 − Vc2) (1 − g) = L
d IL

dt
, (8)

Ic1 = C1
d Ic1

dt
= Ipv − IL , (9)

Ic2 = C2
d Ic2

dt
= IL (1 − g) − Io . (10)

The average values model of the boost converter can be presented by the two
following equations:

Vc2 =
1

1 − D
Vc1 , (11)

Io = (1 − D)IL = (1 − D)Ipv . (12)

3. Impact of uniform solar irradiance and non-uniform solar irradiance
on PV array output power

To study the behavior of PV array, associating the same parameters PV mod-
ules (Table 1) under uniform solar irradiance and non-uniform solar irradiance
(partial shading), simulation tests have been carried out for various patterns of
irradiance conditions (Table 2) on different PV array configurations (Fig. 3):



502 KH. BENTATA, A. MOHAMMEDI, T. BENSLIMANE

a) four PV modules connected in two parallel branches with two modules
connected in series for each branch (2S/2P),

b) four PV modules in series (4S),

c) six PV modules connected in two parallel branches with three modules
connected in series for each branch (3S/2P),

d) six PV modules connected in series (6S).

Table 1: PV module parameters (Tata Power Solar Systems TP250MBZ)

Pmax Vmp Imp Voc Isc
249 30 8.3 36.8 8.83

Ipv

Ipv

Ipv

Ipv

Vpv

Vpv

Vpv

Vpv

(a) (b) (c) (d)

Figure 3: Configurations of PV array under partial shading, (a) two PV modules in series
and two in parallels (2S/2P), (b) four PV modules in series (4S), (c) three PV modules in
series and three in parallels (6S) (3S/2P), (d) six PV modules in series (6S)

Three patterns of irradiance are considered for each of the four PV array
configurations. One pattern presents a uniform irradiance condition and two
patters present two different partial shading conditions (Table 2).

According to simulation results of Fig. 4, some remarks have been made:

• A uniform irradiance condition is featured by the presence of only one
maximum point power point.
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Table 2: Irradiance (W/m2) of each module in various patterns

Configuration (2S/2P) Configuration (4S) Configuration (3S/2P) Configuration (6S)

Panel Pattern Pattern Pattern Pattern Pattern Pattern Pattern Pattern Pattern Pattern Pattern Pattern
(M) 1 2 3 4 5 6 7 8 9 10 11 12

M-I 400 1000 600 800 1000 400 600 1000 600 200 1000 200

M-II 200 1000 200 600 1000 400 400 1000 400 200 1000 400

M-III 800 1000 600 400 1000 1000 200 1000 200 400 1000 600

M-IV 600 1000 200 200 1000 1000 1000 1000 600 400 1000 800

M-V – – – – – – 900 1000 400 600 1000 900

M-VI – – – – – – 800 1000 200 600 1000 1000

• A partial shading condition is characterized by the presence of one global
maximum power point, besides many local maximum power points.

• More the number of panels having the same level of irradiance increases,
more the number of maximum power points decreases and vice versa.

• More the PV panels have remarkable different irradiance levels; more the
maximum power points are remarkably noticed and vice versa.

• During partial shading conditions, the maximum power points are clearly
remarked in series connected PV array configurations such as 4S and 6S
(Fig. 4b and Fig. 4d) compared to parallel-series connected PV array con-
figurations such as 2S/2P and 3S/2P (Fig. 4a and Fig. 4c).

Based on the above remarks, to improve the power conversion efficiency of the
PV array, it is compulsory to control the PV array output voltage in a manner to
extract the maximum power. This can be a difficult task especially during partial
shading conditions, where one global maximum power point emerges between
many local maximum power points. Therefore, an efficient and reliable maximum
power point tracking control technique should be used to determine and to force
the PV system to track precisely the real global maximum power point.

Cuckoo search algorithm (CSA) is among the most widely used techniques
of MPPT, for both uniform and non-uniform irradiance conditions [20]. This
methodology is characterized by a better convergence and a higher proficiency,
showing a minimum temporary fluctuations and a small steady state error, un-
like other techniques such as Perturb and Observe and Particle Swarm Opti-
mization [21]. Therefore, in this paper, CSA will be adopted as MPPT control
technique for study and improvement purposes.
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(a) 2S/2P (b) 4S

(c) 3S/2P (d) 6S

Figure 4: P–V characteristics of PV array

4. MPPT control techniques for PV system

4.1. Conventional Cuckoo search based MPPT algorithm

4.1.1. Bio-inspiration Behind Conventional Cuckoo search

Cuckoo search algorithm (CSA), inspired by the reproduction behavior of
cuckoo birds, was introduced for the first time in 2009 by Xin-She Yang and
Suash Deb [21]. Cuckoo birds look for a host nest to lays their eggs, so they
hatch earlier. The cuckoo birds’ new chicks destroy some of the host bird’s eggs
to increase their opportunity of survivability by keeping all the food for them.
Generally, when host birds find out that the eggs in their nests are strange eggs,
they destroy them or abandon the nest. Therefore, to increase the survivability of
their eggs, cuckoo birds pursue a new approach via laying larger number of eggs
in multiple nets.

The advantages of CSA over other bio-inspired algorithms are mainly its
convergence efficiency, high accuracy, and least parametric tuning.
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4.1.2. Lévy flight

Searching for a host nest amongst many host nests is curried out randomly
involving small,mediumand large step sizes. Step sizes variations during host nest
searching are mathematically modeled by using Lévy flight randommathematical
function. In other words, Cuckoo search algorithm utilizes the Lévy flight random
mathematical function to compute the random step sizes of Cuckoo search, using
the following power law distribution:

y = l−λ, (13)

where l refers to the flight length and λ represents the variance. Therefore,
1 < λ < 3 yields infinite variance for y. Lévy flight model yields a search
steps distribution comprising small random steps and large ones. This approach
proved its effectiveness inmultimodal,multi-objective and nonlinear optimization
problems. Generating new generation of particles x (t+1) by CS Lévy flight is
achieved by using the following equation:

x (t+1)
i = xt

j + α ⊕ Levy(λ), (14)

where i refers to the sample number, t symbolizes the iteration number and α
represents the step size α > 0. α is generally computed using the following
equation [44]:

α = α0
(
xt

j + xt
i

)
, (15)

where α0 represents the initial step change.

4.1.3. Adaptation of conventional cuckoo search algorithm for MPPT control of PV system

One of the main applications of Cuckoo search technique in photovoltaic
systems is the maximum power point tracking of PV array. In fact, under uniform
irradiance condition, the PV array output Power-Voltage characteristic has a
nonlinear bell shape with one maximal point. Under partial shading condition,
many local maximums emerge with only one global maximum. In both cases,
to maximize the PV conversion operation, the PV system must be controlled
to operate under maximum power point. Therefore, a DC-DC converter, fed by
the PV array, is used to control the PV array’s output voltage via its duty cycle
ratio in order to force the PV array to operate at the maximum power point. The
cuckoo search algorithm, developed by Xin-She Yang and Suash Deb [21], can
be adapted to control the DC-DC converter for MPPT of PV array system like
depicted in Fig. 5. The input variables of the CS-basedMPPT are PV array output
voltage and current, while the output variable is the duty cycle ratio of DC-DC
converter.
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NO 
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d(i)=leveyflight(dbest,d(i))
j=i+1

d(i)=leveyflight(dbest,d(i))

j=i+1

d(iworst)=leveyflight(dbest,d(iworst))

NO
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Initialization and storing of 
duty cycle (D) vector values 

randomly 

Initialization
(i, j, d, β, K)
 

Sense and store of PV array’s and  values 
corresponding to duty cycle vector values

Find, among the stored duty cycle values, the one corresponding to the maximum power and
consider it dbest and the one corresponding to the minimum power considered as dworst

Calculate the power 

END

Vpv Ipv

rand (1) > Pa

Ppv

Figure 5: Flow chart of the CS algorithm for MPPT control of PV system

4.1.4. Conventional cuckoo search algorithm Parameters tuning

CS is a nature-inspired optimization algorithm and one of the latest and most
efficient ones. It is specifically inspired by some cuckoo species obligate brood
parasitic behavior combined with some birds and fruit flies Lévy flight behavior.
Generally, parasitic cuckoo bird searches for a nest with recently laid eggs; so,
the cuckoo eggs hatch slightly before than their host bird eggs [21]. The steps of
host nest searching by cuckoo bird are described by a Lévy flight mathematical
model. A Lévy flight is represented mathematically as a randomwalk, where step
sizes are extracted from Lévy flight mathematical equation.
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A flowchart of the CS algorithm is shown in Fig. 5, including its significant
cornerstones rules. Performance of this algorithm depends upon many factors,
including population size, convergence speed, number of iterations, and infor-
mation sharing efficiency in the mechanism. A small size population of particles
magnifies CS algorithm defects significantly; whereas, a large size population,
amplifies the computational process and convergence time. Besides that, conven-
tional CS-based MPPT displays some drawbacks such as:

• The PV array output power oscillation during steady-state conditions due
to the randomly calculated variables (duty cycle) using these bio-inspired
soft computing techniques.

• The use of random initialization cuckoo population of host nests, which
decreases the global exploration ability, and causes the convergence of
original CSA to deteriorate and results in being easy to trap into local
optimum.

• To be trapped at the first maximum power point that can be a local one, and
to fail to track the real global maximum power point during partial shading
conditions.

• The lack of reliable and practical detection technique of irradiance variation
and partial shading conditions.

All these drawbacks will be addressed using an efficient, robust, fast and
smart version of CS algorithm, which is called Distributive Cuckoo Search Al-
gorithm (DCSA).

4.2. Proposed Distributive Cuckoo search based MPPT algorithm
4.2.1. Description

Unlike the conventional cuckoo search algorithm, based on generating a small
number of randomly generated initial values particles (duty cycle values), the
developed DCS is based on generating a sufficient number of initial particles with
successively increasing values. Besides that, an optimized algorithm limiting the
research space according to the evolution of duty cycle values and corresponding
difference between maximum and minimum values of PV output powers, is
introduced. This allows swapping all the particles’ research space, and rapidly
and smoothly reaching the steady GMP point.

4.2.2. Tuning steps of Distributive Cuckoo search based MPPT algorithm

The DCS algorithm is designed based on the following steps:
• Initialize the parameters of the DCS process using the parameters listed in
Table 3.
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• Start by generating and storing the duty cycle vector values (D) [0.1:0.1:0.9].
• Sense the PV array’s output voltage and current (Vpv and Ipv) correspond-
ing to duty cycle values, Store them in a vector form and Calculate the
corresponding power values Ppv.

• Arrange the power values in ascending order from the smallest one to the
biggest one [P1 : P9]. Put the corresponding duty cycle values in vector form
[d1 : d9], and Calculate delta_P, delta_d, where delta_P = (P1 − P9)/P1
and delta_d = (d1−d9). The given values can be divided into four different
parts in terms of treatment method:
– the first part: delta_d > 10−2 && delta_P > 20%: corresponding to the
transitional regime 1.
Update duty cycle values d using CSA where d[d1 : d9].

– the second part: delta_d > 10−2 && delta_P < 20%: corresponding to
the transitional regime 2.
At this part, the search process is accelerated when replacing the 3
worst duty cycle ratios corresponding to smallest power values by
the best duty cycle ratio corresponding to the biggest power, and the
duty cycle values d[d1:d9] are updated using the Levy flight: d(i) =
leveyflight(dbest, d(i)), i = 1 : 1 : 9.

– the third part: delta_d < 10 − 2 && delta_P < 20%: corresponding to
the steady state regime.
At this part, the search process is accelerated when replacing the 6
worst duty cycle ratios corresponding to smallest power values by
the best duty cycle ratio corresponding to the biggest power, and the
duty cycle values d[d1:d9] are updated using the Levy flight: d(i) =
leveyflight(dbest, d(i)), i = 1 : 1 : 9.

– the fourth part: delta_d < 10−8 && delta_P > 20%: corresponding to
partial shading detection.
At this part, any changes in solar irradiance including partial shading are
detected and the whole algorithm is initialized.

The basic idea behind DCSA-based MPPT can be summarized like follow:
• Relatively High-precision sweeping of the whole duty cycle ratio interval

[0.1, 0.9] by applying a sufficient number of duty cycle ratios of succes-
sively increasing values with small increment (for example 9 duty ratio
values increasing with increment rate of 0.1). The small variation (incre-
ment) of duty cycle ratio is adopted to minimize the transient time of the
corresponding output power response. When applying a duty cycle with
small increment, the PV output power will reach the steady state after a
very small transient time. When the duty cycle variation (increment) is
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relatively large (0.3), PV output power will reach the steady state after a
relatively longer transient time.

• Replace the 3worst duty cycle ratios corresponding to smallest power values
by the best duty cycle ratio corresponding to the biggest power, and update
duty cycle values using the Levy flight: d(i) = leveyflight(dbest, d(i)).
This allows reducing the number of output powers corresponding to the
duty cycle ratios from 9 output powers to 6, which limits duty cycle ratio
variation, when generating new 9 values of duty cycle ratios vector using
d(i) = leveyflight(dbest, d(i)). More the duty cycle variations become
small, more the duty cycle converges to a steady state value.

Figure 6: Flow chart of the DCS algorithm
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• Replace the 6worst duty cycle ratios corresponding to smallest power values
by the best duty cycle ratio corresponding to the biggest power, and update
duty cycle values using the Levy flight: d(i) = leveyflight(dbest, d(i)). This
allows reducing the number of output powers corresponding to the duty
cycle ratios from 9 output powers to 3, which limits more duty cycle ratio
variation, when generating new 9 values of duty cycle ratios vector using
d(i) = leveyflight(dbest, d(i)). More the duty cycle variations become
small, more the duty cycle converges to a steady state value.

• Any changes in solar irradiance including partial shading are detected and
the whole algorithm is initialized.

5. Simulation results of PV array under PSC

MATLAB/SIMULINK-based simulation tests are performed for GMPPT-
based CSA and proposed GMPPT-based DCSA, under the three patterns of
irradiance of Table 2 for each of the four PV array different configurations
of Fig. 3.

The MATLAB/SIMULINK schematic diagram of the considered system,
associating PV array, boost converter and resistive load, is shown in Fig. 7.
DCSA, CSA and boost converter parameters are shown in Table 3. To evaluate the
performances of the proposed DCS algorithm versus conventional CS algorithm,
both algorithms are applied to control the boost converter as MPP techniques
under three patterns of irradiance for four PV array different configurations.

Table 3: Parameters of CS and DCS algorithms and boost converter details

Particulars Specifications

DCSA Fraction Pa = 0.25, β = 3/2, K = 0.8.
Population size (duty cycle ratio) = 9,
Initial Population (duty cycle ratio)= [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
(Swapping the duty cycle population using successively increasing values
with small increment of (0.1))

CSA Fraction Pa = 0.25, β = 3/2, K = 0.8.
Population size (duty cycle ratio) = 4,
Initial Population (duty cycle ratio) = [0.1, 0.4, 0.7, 0.9] (Swapping the duty
cycle population using randomly increasing values with large increment)

Boost converter L = 1.928 mH, C1 = 10e − 6F, C2 = 0.4676e − 3F

Sampling period Ts = 10−4 s
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Figure 7: Simulink model of the studied system

5.1. Simulation results of two series-two parallel PV array configuration (2S/2P)

The simulated test irradiance patterns are given in Table 2. Each pattern lasts
2 seconds, starting with first partial shading pattern (Pattern 1), where each PV
panel has a different level of irradiance. Pattern 2 presents uniform irradiance
condition of 1000 W/m2 during time-period from t = 2 s to t = 4 s. The second
partial shading (Pattern 3) is considered from t = 4 s to t = 6 s with same level
of irradiance for each 2 PV panels of the 4 ones.

These irradiance patterns are applied on two series-two parallel PV array
configuration (2S/2P) feeding a resistive load via boost converter controlled by
CSA-based MPPT, and then, controlled by proposed DCSA-based MPPT. The
corresponding simulation results (PV power, load voltage, load current and duty
cycle waveforms) are shown in Fig. 8.

Under the first pattern (pattern 1) condition, the steady state power ob-
tained by DCSA-MPPT is about 422.17 watts achieved after a tracking time
of 0.044 seconds; whereas, the steady state power obtained by CSA-MPPT is
about 422.18 watts attained after a tracking time of 0.149 seconds. DCSA-MPPT
and CSA-MPPT achieve equally the power efficiency of 99.96% of the calculated
reference global maximum power (422.32Watts) corresponding to this pattern of
partial shading condition. During both transient tracking and steady state, the pro-
posed DCSA-MPPT shows less power fluctuations compared to the CSA-MPPT
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(b) (c)

(d)

Figure 8: Simulation results of two series-two parallel PV array configuration (2S/2P)
feeding a resistive load via boost converter controlled by CSA-based MPPT and by
proposed DCSA-based MPPT
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(Fig. 8a). Therefore, DCSA-MPPT allows reaching the actual GMPP almost
3.5 times faster than CSA-MPPT with much less power oscillations. The duty cy-
cle updating indicates that DCSA-MPPT can detect and converge to GMPP faster
than CSA-MPPT (Fig. 8b). The corresponding voltage and current are presented
in (Fig. 8c) and (Fig. 8d).

Under second pattern (pattern 2) condition, both DCSA-MPPT and CSA-
MPPT allows getting 989.29 watts of power after a transitory tracking time of
0.073 seconds for the first control technique and 0.820 seconds for the second
one. Under this uniform irradiance, DCSA-MPPT and CSA-MPPT both achieved
energy efficiency of 99.58% of the full rated power (993.4 Watts), calculated
for uniform irradiance condition of 1000 W/m2. The corresponding PV array
output voltage is equal to 59.6 V, which is tightly close to the maximum power
point voltage of PV array calculated according to PV module parameters of
Table 1 (Vmp = 2 × 30 = 60 V). As regards the transient period of tracking, it is
characterized by huge power fluctuations for CSA-MPPT control technique, and
insignificant ones for DCSA-MPPT control technique. Besides that, the proposed
DCSA-MPPT achieved a transient tracking period more than eleven times shorter
than the conventional CSA-MPPT (Fig. 8a). The duty cycle ratios corresponding
to both CSA-MPPT and DCSA-MPPT converge to the same value of 0.46, with
shorter convergence time and less fluctuations of DCSA-MPPT duty cycle ratio
compared to CSA-MPPT duty cycle ratio (Fig. 8b). The corresponding load
voltage and current are presented in Fig. 8c and Fig. 8d.

For third pattern (pattern 3) condition, the CSA-MPPT outperformed DCSA-
MPPT by an insignificant slight difference in terms of energy efficiency with
99.91% compared to 99.56% of the calculated reference global maximum power
(288.75 W Watts), by scoring a power of 288.5 Watts for CSA-MPPT and 287.5
Watts for DCSA-MPPT. In terms of tracking speed, DCSA-MPPT achieved a
transient tracking time more than five times shorter than transient tracking time
scored by CSA-MPPT (Fig. 8a). The corresponding duty cycle ratio, voltage and
current are depicted in Figs. 8b, 8c and 8d.

5.2. Simulation results of four series PV array configuration (4S)

The simulated test irradiance patterns (pattern 4, pattern 5 and pattern 6) given
in Table 2 are applied successively during 2 seconds of time for each pattern.
These irradiance patterns are applied on four series PV array configuration (4S)
feeding a resistive load via boost converter controlled by CSA-based MPPT, and
then, controlled by proposed DCSA-based MPPT. The corresponding simulation
results (PV power, load voltage, load current and duty cycle waveforms) are
depicted in Fig. 9.

During the partial shading condition of pattern 4, the power obtained by
DCSA-MPPT is about 327.68Wattswith transient tracking time of 0.061 seconds;
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Figure 9: Simulation results of four series PV array configuration (4S) feeding a resistive
load via boost converter controlled by CSA-based MPPT and by proposed DCSA-based
MPPT
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while the power obtained by CSA-MPPT is around 281.2 Watts with a transient
tracking time of 0.166 seconds. The proposed DCSA-MPPT has achieved a power
efficiency of 99.88% of the calculated reference global maximum power (328.06
Watts) corresponding to this pattern of partial shading condition. As regard,
the CSA-MPPT, it tracked the GMPP of 328.06 Watts with lower efficiency of
85.716% (Fig. 9a). The tracking accuracy (efficiency) is decreased because of
using CSA with limited population size (duty cycle ratio) of 4 particles, which
corresponds to the population size commonly chosen for conventional CSA. To
increase the tracking accuracy (efficiency), the population size (duty cycle ratio)
should be increased, but the transient tracking time will be increased too, which
decreases the tracking speed. DCSA-MPPT duty cycle ratio and CSA-MPPT duty
cycle ratio have different values, which are successively 0.255 and 0.158.

As regard the partial shading condition of pattern 6, when the PV system
is controlled by DCSA-MPPT, it succeeded to track the actual Global MPP of
482.693 Watts by achieving a MPP of 482.06 Watts, which is 99.868% of the
actual GMPP. When the same PV system is controlled by CSA-MPPT, it was
trapped in the Local MPP of 425.43 W by achieving 425.41 Watts, which is
88.132% of the actual Global MPP of 482.693 Watts (Fig. 9a). Hence, DCSA-
MPPT duty cycle ratio and CSA-MPPT duty cycle ratio have different values,
which are successively 0.626 and 0.102.

According to these results of both partial shading conditions of pattern 4
and pattern 6, it is quite clear that DCSA-MPPT is highly efficient and reliable
in GMPP tracking compared to CSA-MPPT. The load voltage and current, cor-
responding to both partial shading conditions of pattern 4 and pattern 6, are
displayed in Fig. 9c and Fig. 9d.

Under uniform irradiance condition of pattern 5, where only one MPP exists,
both DCSA-MPPT and CSA-MPPT succeeded in scoring a MPP of 994.4 Watts,
which is 99.97% of the actual GMPP of 994.66 Watts. The corresponding PV
array output voltage is equal to 119.71 V, which is tightly close to the maximum
power point voltage of PV array calculated according to PVmodule parameters of
Table 1 (Vmp = 4× 30 = 120 V). As regards the transient tracking times, they are
0.089 seconds for DCSA-MPPT and 0.702 seconds for CSA-MPPT, in which the
PV system experienced significant power fluctuation when controlled by CSA-
MPPT compared to DCSA-MPPT (Fig. 9a). The duty cycle ratios corresponding
to both CSA-MPPT and DCSA-MPPT converge to the same value of 0.465,
with shorter convergence time and less fluctuations of DCSA-MPPT duty cycle
ratio compared to CSA-MPPT duty cycle ratio (Fig. 9b). The corresponding load
voltage and current are illustrated in Fig. 9c and Fig. 9d.

5.3. Simulation results of three series-two parallel PV array configuration (3S/2P)

For partial shading condition of pattern 7, DCSA-MPPT successfully tracked
the GMPP with an efficiency of 99.94% of the 797.7 Watts actual GMPP, by
achieving a power of 797.3Watts in a transient tracking time of 0.046 seconds. For
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the same partial shading, CSA-MPPT failed for the third time to track the GMPP
with an efficiency of 93.93% by being trapped in a local MPP of 749.3 Watts in a
transient tracking time of 0.165 seconds (Fig. 10a). The corresponding duty cycle
ratios converge to different values, which are 0.222 for DCSA-MPPT and 0.158
for CSA-MPPT, with significantly shorter convergence time and less fluctuation
observed on DCSA-MPPT duty cycle ratio compared to CSA-MPPT duty cycle
ratio (Fig. 10b).

The load voltage and current, corresponding to partial shading conditions of
pattern 7, are presented in Fig. 10c and Fig. 10d.

With the uniform irradiance of pattern 8, although DCSA-MPPT and CSA-
MPPT tracked the 1486 Watts maximum power point with high efficiency of
99.96% by recording a power of 1485.5 Watts, DCSA-MPPT is nine times faster
with a transient tracking time of 0.084 seconds versus 0.776 seconds for CSA-
MPPT (Fig. 10a). Therefore, the duty cycle ratios corresponding to both DCSA-

(a) (b)

(c) (d)

Figure 10: Simulation results of three series-two parallel PV array configuration (3S/2P)
feeding a resistive load via boost converter controlled by CSA-based MPPT and by
proposed DCSA-based MPPT
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MPPT and CSA-MPPT converged approximately to the same value of 0.453, with
convergence time difference (Fig. 10b). The load voltage and current, correspond-
ing to uniform irradiance of pattern 8, are presented in Fig. 10c and Fig. 10d.

Same remarks have been observed regarding partial shading condition of pat-
tern 9. Both DCSA-MPPT and CSA-MPPT reached the 418.4 Watts GMPP with
power efficiency of 99.96% by recording a power of 418.24 Watts. However,
DCSA-MPPT achieved this power in a transient tracking time five times shorter
than CSA-MPPT, with less power fluctuation (Fig. 10a). Therefore, the duty cycle
ratios corresponding to both DCSA-MPPT and CSA-MPPT converged approx-
imately to the same value (0.293 for DCSA-MPPT and 0.292 for CSA-MPPT),
with convergence time difference (Fig. 10b). The load voltage and current, cor-
responding to partial shading condition of pattern 9, are shown in Fig. 10c
and Fig. 10d.

5.4. Simulation results of six series PV array configuration (6S)

Under partial shading condition of pattern 10, the power obtained by using
DCSA-MPPT was 656.45 Watts after transient tracking time of 0.078 seconds;
while, the power obtained by using CSA-MPPTwas 565.44Watts after a transient
tracking time of 0.22 seconds. In other words, the DCSA-MPPT attained the
Global MPP by achieving 99.88 % of the 657.2 Watts actual GMPP; whereas,
CSA-MPPT is trapped in one of the Local MPPs with 86.03% of the actual
GMPP power (Fig. 11a). Therefore, after transient tracking time, the duty cycle
ratios of DCSA-MPPT and CSA-MPPT showed two different steady states of
0.398 for DCSA-MPPT duty cycle ratio and 0.155 for CSA-MPPT duty cycle
ratio (Fig. 11b). The load voltage and current, corresponding to partial shading
conditions of pattern 10, are presented in Fig. 11c and Fig. 11d.

With a uniform irradiance condition pattern like pattern 11, one only actual
MPP will characterize the PV array’s Power-Voltage curve. In pattern 11 case,
this MPP corresponds to 1491.8 Watts power. With DCSA-MPPT, the PV out-
put power reaches 99.91% of actual MPP with 1490.55 Watts, after a transient
tracking time of 0.089 seconds. With CSA-MPPT, the PV output power attains
99.67% of actual MPP with 1486.90 Watts, after a transient tracking time of
0.632 seconds. So, while both of the MPPT techniques succeeded in tracking the
GMPP, DCSA-MPPT technique demonstrated high tracking speed (more than 7
times faster) compared to CSA-MPPT technique (Fig. 11a). The corresponding
duty cycle ratios are depicted in Fig. 11b, while the corresponding load voltage
and current are presented in Fig. 11c and Fig. 11d.

Same remarks have been observed during partial shading condition of pat-
tern 12. DCSA-MPPT achieved 99.882% of actual GMPP power of 828.92 Watts
by scoring 827.95 Watts. CSA-MPPT reached 99.886% of actual GMPP power
of 828.92 Watts by scoring 827.98 Watts. Thus, both MPPT techniques success-
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fully tracked the actual GMPP, with the difference of tracking speed in which
DCSA-MPPT demonstrated higher performance versus CSA-MPPT (Fig 11a.
The duty cycle ratios corresponding to partial shading condition of pattern 12
are illustrated in Fig. 10b, while the corresponding load voltage and current are
displayed in Fig. 11c and Fig. 11d.

(a) (b)

(c) (d)

Figure 11: Simulation results of six series PV array configuration (6S) feeding a resistive
load via boost converter controlled by CSA-based MPPT and by proposed DCSA-based
MPPT

To evaluate the performance of the proposed DCSA-MPPT versus the conven-
tional CSA-MPPT, simulation results of PV system controlled by DCSA-MPPT
are compared quantitatively and qualitatively to the simulation results of the same
PV system controlled by CSA-MPPT for the same PV array configurations and
the same patterns of irradiance (Fig. 12, Table 4 and Table 5).

It is quite clear that over 12 cases of irradiance patterns, the conventional
CSA-MPPT control technique succeeded in tracking the actual GMPP in 8 cases
(pattern 1, pattern 2, pattern 3, pattern 5, pattern 8, pattern 9, pattern 11, pat-
tern 12), and failed for the 4 other cases (pattern 4, patter 6, patter 7 and pattern 10),
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Table 4: Quantitative comparison of DCSA-MPPT and CSA-MPPT performances for 12
patterns of irradiance
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Pattern 1
DCSA 422.17 72.065 5.8582 0.1398 0.044 Yes

422.32
99.96

CSA 422.18 72.063 5.8579 0.1393 0.149 Yes 99.96

Pattern 2
DCSA 989.29 110.25 8.962 0.46 0.073 Yes

993.4
99.58

CSA 989.29 110.25 8.962 0.495 0.820 Yes 99.58

Pattern 3
DCSA 287.5 59.48 4.836 0.506 0.085 Yes

288.75
99.56

CSA 288.5 59.56 4.482 0.514 0.470 Yes 99.91

4S

Pattern 4
DCSA 327.68 128.513 2.559 0.255 0.061 Yes

328.06
99.884

CSA 281.2 119.045 2.362 0.158 0.166 No 85.716

Pattern 5
DCSA 994.403 223.755 4.439 0.465 0.089 Yes

994.66
99.974

CSA 994.4 223.755 4.439 0.465 0.702 Yes 99.973

Pattern 6
DCSA 482.06 155.87 3.092 0.626 0.085 Yes

482.693
99.868

CSA 425.41 146.428 2.905 0.102 0.379 No 88.132

3S
/2
P

Pattern 7
DCSA 797.3 119.795 6.655 0.222 0.046 Yes

797.7
99.949

CSA 749.3 116.135 6.452 0.158 0.165 No 93.932

Pattern 8
DCSA 1485.5 163.55 9.086 0.453 0.084 Yes

1486
99.966

CSA 1485.5 163.55 9.086 0.453 0.776 Yes 99.966

Pattern 9
DCSA 418.24 86.754 4.820 0.293 0.087 Yes

418.4
99.961

CSA 418.21 86.750 4.819 0.292 0.470 Yes 99.954

6S

Pattern 10
DCSA 656.45 211.28 3.107 0.398 0.078 Yes

657.2
99.885

CSA 565.44 196.08 2.883 0.153 0.22 No 86.037

Pattern 11
DCSA 1490.55 318.36 4.682 0.431 0.089 Yes

1491.8
99.916

CSA 1486.90 317.98 4.676 0.425 0.632 Yes 99.671

Pattern 12
DCSA 827.95 237.28 3.489 0.488 0.089 Yes

828.92
99.882

CSA 827.98 237.28 3.489 0.485 0.534 Yes 99.886

like shown in Fig. 12a, Fig. 12b and Table 4. Besides that, when CSA-MPPT con-
trol technique succeeded in tracking the actual GMPP, the transient tracking time
(convergence time) was relatively long (Fig. 12c and Table 4). On the contrary,
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(a) (b)

(c)

Figure 12: PV output power, Efficiency and MPP tracking time of DCSA-MPPT and
CSA-MPPT for 12 patterns of irradiance: (a) power, (b) efficiency, (c) tracking time

the proposed DCSA-MPPT control technique succeeded in tracking the actual
GMPP in all 12 cases, with shorter transient tracking time (convergence time)
(Fig. 12a, Fig. 12b, Fig. 12c and Table 4).

Table 5: Quantitative comparison of DCSA-MPPT and CSA-MPPT
performances for 12 patterns of irradiance

Parameters CSA DCSA
Tracking success Good Excellent
Tracking speed Moderate Fast
Iterations More Less
Initial particles Dependent Independent
Number of particles 4 9/6/3
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6. Conclusion

Power efficiency enhancement of PV systems, already having low power con-
version ratio, have been the main research axis of many research works. There-
fore, PV arrays output power maximization was a key factor for improvement
of PV systems Power efficiency. As PV array output power is strongly depen-
dent on solar irradiance value and uniformity level and uniformity, which are
time-dependent factors, makes PV power maximization very complicated. Many
control techniques have been developed for maximum power point tracking of
PV array output power in both conditions of uniform and non-uniform solar ir-
radiance. MPPT based on Cuckoo search algorithm is one of these techniques,
which proved a good performance in terms of precision and rapidity, especially in
uniform solar irradiance condition. Even though, under partial shading condition
of PV array, it demonstrated a low level of reliability in tracking the actual global
maximum power point, by being trapped in local maximum ones. To overcame
these drawbacks, distributive cuckoo search algorithm have been developed, in
this paper, for maximum power point tracking of PV array under both conditions
of uniform and non-uniform conditions. The developed MPPT-DCSA revealed
a high level of precision and reliability, high tracking speed and low fluctuating
output power of PV array.
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