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Classification and Decision-Making of Fully Mechanised  
Mining Technology Pattern for Thin Seam 

As one of the most important decision-making problems in fully mechanised mining, the corresponding 
mining technology pattern is the technical foundation of the working face. Characterised by complexity 
in a thin seam fully mechanised mining system, there are different kinds of patterns. In this paper, the 
classification strategy of the patterns in China is put forward. Moreover, the corresponding theoretical 
model using neural networks applied for patterns decision-making is designed. Based on the above, optimal 
selection of these patterns under given conditions is achieved. Lastly, the phased implementation plan for 
automatic mining pattern is designed. As a result of the industrial test, automatic mining for panel 22204 
in Guoerzhuang Coal Mine is realised.
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1.	I ntroduction

The reserves of a thin seam (less than 1.3 m in thickness) are enormous in China. Among 
95 national key coal enterprises, more than 750 thin seams exist in 445 coal mines. There are 
approximately 6.5 billion tons of thin seams found in recoverable reserves. The thin seams make 
up 20% of total recoverable coal reserves [1,2]. The intensity of coal excavation in China has 
remained significantly high, and it is of the utmost importance to balance the productivity of 
the mines and excavate the thin seams. Current examples are in minefields in Huaibei, Huainan, 
Zibo, Yanzhou, Xuzhou, Handan and Yulin. 
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Currently, the intensity of excavating thin seam is increasing. However, these coal mines 
have been in long-term difficulties because of high labour intensity, low mechanisation, safety 
and economic efficiency. Limited by the detrimental factors, the production of thin seam takes 
merely 10.4% of the total coal production nationwide [3], which is extremely inharmonious 
concerning the recoverable reserves. Therefore, efficient excavating technology for thin seam 
has become the focus of social concern.

In China, developed fully-mechanised mining technologies include longwall mining involv-
ing coal shearer [4], or coal plough, auger mining, and room and pillar mining by a continuous 
miner. The latter two have been rarely used due to their low recovery rates. Coal shearer has the 
advantages of high cutting efficiency, coal-rock breaking ability and adaptability. It is the primary 
approach for thin seam excavation [5]. Among the mechanised working faces of a thin seam, 
those involving coal shearers takes 85% according to incomplete statistics. Without explanation, 
fully-mechanised mining technology in this paper involves shearer [6]. 

A fully mechanised mining technology pattern (FMMTP) is the technical foundation of the 
working face. It plays a leading role in the man-machine working environment. With the develop-
ment of fully mechanised mining technology for a thin seam, diversified FMMTPs are derived 
for a thin seam based on the different geological conditions, mining environment, equipment 
matching and management level.

An innovative classification strategy of the FMMTPs in China is put forward from existing 
research findings. For the patterns decision-making, the corresponding theoretical model using 
a neural network is established. Under given conditions, optimal selection of these patterns is 
achieved. Moreover, the phased implementation plan for automatic mining patterns is designed 
and implemented.

2.	 Classification of FMMTPs for thin seam

There are several classification methods of FMMTPs for a thin seam. According to the 
control mode of the shearer, it can be divided into four patterns: Machinery-tracked FMMTP, 
Subdivision controlled FMMTP, Automatic FMMTP and Intelligent FMMTP [7-10]. 

Machinery-tracked FMMTP is how the operator controls the shearer to complete the coal 
cutting process while remaining behind the shearer. The operator usually bends over to control 
the shearer.

In the subdivision controlled FMMTP, the length of the working face is divided into several 
equal-length segments according to the distance of the remote control shearer. A shearer operator 
is prearranged in a segment. The shearer will be operated remotely by the operator in a designated 
segment in turns to complete coal cutting of the full-length in the working face.

As for automatic FMMTP, the shearer is automatically operated to complete coal cutting 
according to the operating parameters preset. Currently, presetting can be achieved by sampling 
cut or advanced geological exploration. Using memory cutting, visual video surveillance and 
shearer positioning technology, automatic FMMTP can be realised.

Intelligent FMMTP is developed by injecting human consciousness and thinking. Compared 
with the automatic FMMTP, the artificial intelligence of the pattern is improved, such as coal-rock 
identification. Therefore, it belongs to a higher level FMMTP. Concerning future development, 
it is a promising and necessary approach to realised unmanned mining for the thin seam [11]. 
Table 1 is the detailed technical comparison of several FMMTPs.
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Table 1

Technical comparisons of several FMMTPs 

FMMTP Characteristics Advantages Disadvantages

Machinery-
tracked

The shearer operator is 
involved in the simultaneous 

controlling shearer

Strong adaptability, low 
equipment investment and 

mature technology

High labor intensity, 
low safety

Subdivision 
controlled 

Operator was assigned to 
control the shearer in turns  

at each section, 

Reduced labor intensity, low 
equipment investment and 

mature technology
Many workers 

Automatic
Assistant memory cutting, 
visual video surveillance  

and positioning technology

Fewer people freed the 
shearer driver.

Poor adaptability, 
must have manual 

intervention

Intelligent 
Increase of artificial 

intelligence factors, such  
as the identification of coal

Unmanned, Artificial 
Intelligent decision making Immature technology

The above patterns belong to different development stages of fully mechanised mining 
technology. With the continuous development and improvement in China, the FMMTP is enter-
ing into the automatic pattern and stepping forward the intelligent pattern.

3.	D ecision-making method of FMMTP for thin seam

Generally, a fully mechanised mining system of the thin seam is very complex and change-
able. It is impossible to predict or determine the correlation accurately between related factors 
and results in the system. The decision-making of FMMTP is a typical nonlinear programming 
problem. Using an artificial neural network, a non-linear model for decision-making is constructed. 
In the paper, BP neural network is selected for the decision-making. In the model, the complex 
decision-making system of FMMTPs is considered as a black box. The sample data is imported 
into the neural network. The correlation between factors is hidden in the hidden layer of the 
network, and the weights in the network are adjusted by an error feedback mechanism. Using 
this method, the impact of human factors on modelling will be reduced, and the objectivity of 
the decision-making will also be improved [12].

3.1.	 Principle of BP neural network

BP neural network is the error backpropagation algorithm based on supervised learning. 
It can achieve nonlinear mapping of “input-output” arbitrarily and has a stronger ability in adap-
tive learning [12,13]. BP is the multilayer feed-forward network composed of nonlinear elements, 
as shown in Fig. 1.

The signals propagation in the BP network can be divided into working signals forward 
propagation and error signals backpropagation. In working signals forward propagation, signals 
are transmitted from the input layer to the output layer via a hidden layer. When the signal 
value of the output layer can not meet the requirement of output expectation, the error signals 
backpropagation will be carried out. The backpropagation starts from the output layer. The error 
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signal is the difference between the output value and the expected value. By adjusting network 
weights, the output signal value will meet the requirements in the error signals backpropagation. 
According to FMMTP decision making for a thin seam, BP neural network with double hidden 
layers [14,15] can meet the expected requirements, as shown in Fig. 2.

 

Note: p is the value of the input layer, w is the weight, Σ is the accumulator and b is the bias of the network.

Fig. 2. BP network with two hidden layers

Every layer in the network is composed of weight vector W, bias value vector b, input value 
vector n and output value vector a.

In the weight matrix, the first subscript is the number of the target neuron and the second 
is the source neuron number. The superscript represents the target layer number. Taking w2

1,3 as 

Fig. 1. Signal propagation in BP network
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an example, it represents the weight value connecting the third neuron in the second layer to the 
first neuron in the first layer.

For bias values, the subscript is the number of neurons. The superscript represents the layer 
number of the bias vector. For example, b2

1 represents the bias value implanted into the second 
neuron in the first layer.

Neural network input subscript is the neuron number and superscript is the source layer 
number of the input vector. For example, n2

1 represents the net input value implanted into activa-
tion function from the second neuron in the first layer.

The output subscript represents the neuron number of the output layer, and superscript is 
the number of output layers. For example, a2

1 represents the output value of the second neuron 
in the first layer.

Supposing a BP neural network with n input neurons, where the input layer is 
x = (x0,x1,...,xn –1)T, x ∈ Rn, the first hidden layer x' = (x'0,x'1,...,x'n1–1)T, x' ∈ Rn1, the second 
hidden layer x'' = (x''0, x''1,..., x''n2 –1)T, x'' ∈ Rn2, and the output layer y = (y0,y1,...,ym–1)T, y ∈ Rm. 
The weight and threshold between the input layer and the first hidden layer are wij and θj, re-
spectively. The weight and threshold between the first layer and the second layer are w'ij and θ'k, 
respectively. The weight and threshold between the second hidden layer and the output layer 
are w''kl, and θ''l, respectively.

BP neural network is a model with supervised learning. Supposing P learning samples 
(x1, t1), (x2, t2), ... ,(x p, t p ). Using the error between actual output y1, y2, ... , y p and ideal output  
t1, t 2, ... , t p, network connection weights and thresholds are modified by the BP algorithm. 
In this way, the output of the network will approximate the ideal value. Training will stop in the 
BP network when the total error reaches 10–5. The training flow in the BP network is illustra- 
ted in Fig. 3.

 

Fig. 3. Training flow in BP network
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For the whole sample space, the total network error can be expressed as:
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Note: ET is the total network error; P is the number of the learning samples; m is the dimension 
of output vector; yl

Pl is the l-th dimension actual value of output vector for the Pl-th sample; 
tl

Pl is the l-th dimension ideal value of the output vector for the Pl-th sample.

3.2.	 BP network construction

1)	 Input layer 
The input layer should cover FMMTP evaluation indexes, can be expressed as 
x = (x0,x1, ... , xg)T. According to the actual conditions of FMMTP and technical experience, 
these indexes can be divided into 2 process parameters, 6 geological factors and 1 equipment 
level. Process parameters are composed of mining height and length of the working face. 
Geological factors consist of coal seam dip, coal thickness variation coefficient, fault, gas, 
hydrology and exploration precision.
The input layer contains quantitative and qualitative indexes. Quantitative indexes such as 
mining height, length and coal seam dip angle are basic parameters of working face, which 
can be obtained by investigation and statistical analysis. The other four quantitative indexes 
including fault, gas, hydrogeology and coal seam thickness variation coefficient can be 
determined by membership function [16].
(1)	Q uantitative indexes 

•	 Fault
Taking fault density q1, length coefficient q2 and drop coefficient q3 into consideration, 
comprehensive analysis of the fault impact on mining is conducted. The membership 
function of fault can be expressed as: 
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Where q1 is the number of faults per unit area in working face, which is calculated 
by q1 = n/s. n is the number of faults in the statistical scope, and s is the area of the 
statistical scope, km2. Length coefficient q2 is the sum of length per unit area in 

working face, which is obtained from 2
1

/
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i
i

q l s


 
 
. Where li is the extended length 

of the i-th fault, m. Drop coefficient q3 is the ratio of drop to mining height, which is 

calculated by 3
1

1 1
ln( 1)

n
i

i

h
q

n m m



 
. Where hi is the drop of ith fault in the working 

face and m is the mining height.
•	 Gas

According to “Coal Mine Safety Regulations” [17], mines can be divided into three 
categories according to the risk level: I, II and III, which represent low gas mine, 
high gas mine, coal and gas outburst mine, respectively. Combined with the neural 



339

network model established in this paper, the gas condition is quantified from 0 to 1. 
According to the opinions and scores of industry experts, 1, 0.5 and 0.2 are assigned 
to these mines respectively in the network.

•	 Hydrogeology
According to “Regulations on Water Prevention and Control in Coal Mines” [18], 
hydrogeology in the coal mine is divided into simple, medium, complex and ex-
tremely complex according to the risk level, which is expressed as I, II, III and IV 
respectively. Combined with the neural network model established in the paper, the 
hydrologic condition is quantified from 0 to 1. According to the opinions and scores 
of industry experts, 0.8, 0.6, 0.4 and 0.2 are assigned to the four kinds of hydrogeol-
ogy respectively in the network. 

•	 Coal seam thickness variation coefficient 
Coal seam thickness variation coefficient γ is a comprehensive index to measure the 

coal thickness variation degree, which can be calculated by 2

1
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1

n
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i

X X X
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

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 
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Where n is the number of effective boreholes in the working face. Xi is coal thickness 
in the ith borehole. X is the average thickness.

(2)	Q ualitative indexes
Qualitative indexes such as exploration precision and equipment level are quantified 
by fuzzy mathematics [19]. Supposing f (x) is the membership function about fuzzy 
number x, where x is expressed as a triangular fuzzy number x = (m, a,b)LR. That is to 
say m – a < x < m + b and f (x) ∈ [0,1]. Within the scope of (m – a,m) and (m, m + b), 
f (x) is linear monotone increasing and monotone decreasing function respectively [20], 
as shown in Fig. 4.

Fig. 4. Triangular fuzzy numbers

Qualitative indexes are expressed by profit indexes, of which priority increases with its 
value. The decision makers have 6 choices [21], namely VB = (0,0,0.2)LR, B = (0.2,0.2,0.2)LR, 
W = (0.4,0.2,0.2)LR, M = (0.6,0.2,0.2)LR, G = (0.8,0.2,0.2)LR, VG = (1,0.2,0)LR, as shown in Fig. 5.
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Fig. 5. Fuzzy expressions

Using Yager index [22], the fuzzy numbers are defuzzified in this paper, which can be 
calculated by f (x) = F(m,a, b) = (3m – a + b) /3. As a result, the corresponding Yager index and 
fuzzy value of these qualitative indexes are obtained, as shown in Table 2.

Table 2

Fuzzy value of qualitative indexes

No. Attribute value Exploration precision Equipment level Yager index
VB (0,0,0.2)LR Very low Very low 0.067
B (0.2,0.2,0.2)LR Low Low 0.2
W (0.4,0.2,0.2)LR General General 0.4
M (0.6,0.2,0.2)LR Medium Medium 0.6
G (0.8,0.2,0.2)LR High High 0.8

VG (1,0.2,0)LR Very high Very high 0.933

2)	O utput layer
FMMTP and production capacity of the working face are selected as the output layer. 

Production capacity is characteris ed by daily output. Thus, output layer can be expressed as 
y = (y0, y1)T, where y0 is FMMTP and y1 is daily output. According to the input and output of 
daily output, the network for FMMTP decision-making can be further validated. Table 3 is the 
FMMTP output value defined in the network.

Table 3

User-defined FMMTP output value in the network

FMMTP Output value FMMTP Output value
Machinery-tracked 1 Automatic 3

Subdivision controlled 2 Intelligent 4

3)	H idden layer
According to the relevant research, the prediction effect of a BP neural network with double 

hidden layers is better than that with only one when the number of neurons in the input layer is 
more than 3 [23]. The number of neurons in the hidden layer can not be determined by an ideal 
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formula. Generally speaking, the more neurons there are, the more accurate the calculation will 
be. However, it will increase the time of learning. Meanwhile, fault tolerance will be reduced 
when the number of neurons is too small. Considering the convergence speed and the output er-
ror [24], the number of neurons in each hidden layer is set to 9 using repeated training. Based on 
the above, a „9-9-9-2“ BP neural network for FMMTP decision-making is established, which is 
composed of double hidden layers with 9 neurons, an input layer with 9 neurons and an output 
layer with 2 neurons. 

4)	 Training samples
The precision and reliability of the network are closely related to training samples. 158 sam-

ples about FMMTP are collected from fully-mechanised mining working faces in China. Among 
them, samples 1 to 146 are training samples, and 147 to 156 are validating samples. The other 
two, 157 and 158, are predicting samples, as shown in Table 4.

Table 4

Samples of neural network

No. Panel Coal 
mine

Mining 
height 

[m]

Length
[m]

Dip 
[°]

Thickness 
variation 
coefficient

Fault Gas Hydro-
geology

Explora-
tion pre-

cision

Equip-
ment
 level

FMMTP Output
[t/d]

1 112±89 Huang-
sha 0.90 50 23 0.101 0.78 0.5 0.6 0.6 0.8 3 720

2 8102 Gan-
zhuang 1.30 240 4 0.041 1 1 0.8 0.933 0.933 3 3300

3 11604 Geting 1.22 34 9 0.051 0.15 1 0.8 0.8 0.4 2 626
4 14459 Xiaotun 1.10 120 4.5 0.268 0.55 1 0.6 0.4 0.2 1 1600
… … … … … … … … … … … … … …
145 3602 Nantun 1.00 165 4 0.113 0.20 1 0.8 0.2 0.2 1 990

146 8812 Tangsh-
angou 1.60 99 2 0.086 0.95 1 0.6 0.8 0.933 3 3030

147 94702 Xuecun 1.30 150 16 0.150 0.68 1 0.8 0.8 0.933 3 4400
148 8-22110 Liumao 2.10 180 4.5 0.165 0.54 0.5 0.8 0.8 0.8 3 3000
… … … … … … … … … … … … … …

156 3303 Daiz
huang 1.30 113 4 0.430 0.80 1 0.6 0.6 0.4 1 2266

157 43101 Liang
shuijing 1.20 160 1 0.211 1 1 0.6 0.8 0.933

158 22204 Guoer-
zhuang 1.30 158 24 0.512 0.43 1 0.8 0.933 0.933

5)	 Algorithm selection
Several BP neural network algorithms are provided in the MATLAB toolbox, which can 

meet the demand of FMMTP decision making. BP neural network constructed using MATLAB 
has strong operability and high practicability. Taking iteration efficiency, convergence success 
rate and variance into consideration, the network trained by BP algorithm with momentum 
term and variable step size is optimally selected for FMMTP decision-making and daily output 
prediction [25].
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4.	F MMTP decision-making for thin seam

4.1. Network training

Network training ends until the mean square deviation reaches 10-5. The deviation and the 
linear regression curve between output and the target value are described in Fig. 6. As illustrated 
in Fig. 6(b), it concludes that the training effect can meet the demand while the linear regression 
index is 0.99995. Fig. 6 shows the change of mean squared error during network training.

(a) Deviation curve	 (b) Regression curve between output and target value

Fig. 6. Training results

4.2.	N etwork validating

To validate the effect of the trained network above, the validating samples used in the net-
work. The corresponding FMMTP and daily output can be obtained. By fitting it with the target 
value, a group of optimal neural networks are selected, which can be applied for FMMTP deci-
sion making in predicting samples.

(1)	 FMMTP
Based on the validated samples, the corresponding ideal output of FMMTP can be described 

and shown in Fig. 7. The FMMTP output value range in the network is [0.5, 4.5]. 
The validating accuracy e is used for evaluating and selecting the network. It is determined 

by the probability of the output value falling into the ideal interval. When output values of all 
validating samples are in the ideal interval, the validating accuracy e is 100%. To ensure the 
network prediction accuracy, about 200 network training are carried out. Among them, 100 are 
validated with an accuracy e of 70% or more are preliminarily screened. 

Among 100 groups of networks, the number of networks with an accuracy of 100% is 49, 
which are selected for FMMTP evaluation and prediction. The networks with an accuracy of less 
than 100% are deleted. The result of rejecting a given sample is based on the ideal process mode 
output of the validating sample. Taking sample 147 as an example, the actual process mode value 
is 3, as shown in Table 4. The ideal value interval of the network output is [2.5,3.5]. As a result, 
the output not in this range will be deleted.
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Table 5

FMMTP output and accuracy using validating samples

Network
Sample 1 2 3 4 5 6 7 … 99 100 Ideal 

Output
147 2.9 3.2 3.4 3.6 3.2 2.8 3.0 … 2.6 2.9 [2.5,3.5]
148 2.6 2.7 3.1 3.1 2.6 2.5 2.6 … 3.2 2.6 [2.5,3.5]
149 2.4 3.1 3.2 3.3 2.8 2.4 2.6 … 3.3 2.6 [2.5,3.5]
150 3.9 3.7 3.5 3.6 3.6 2.9 3.0 … 3.6 3.8 [3.5,4.5]
151 2.6 3.3 2.9 2.3 2.8 3.3 2.9 … 3.3 2.1 [2.5,3.5]
152 0.5 1.2 1.3 0.9 1.2 0.8 1.2 … 0.3 1.1 [0.5,1.5]
153 1.0 1.1 1.3 0.9 1.0 0.9 0.8 … 0.8 0.8 [0.5,1.5]
154 0.7 1.0 0.9 0.6 0.7 1.8 0.9 … 1.7 0.7 [0.5,1.5]
155 0.7 0.8 1.3 0.8 0.9 0.6 0.6 … 2.2 1.1 [0.5,1.5]
156 1.3 1.2 0.8 1.3 1.1 1.0 1.3 … 0.8 0.8 [0.5,1.5]

Accuracy e [%] 90 100 100 80 100 90 100 … 70 90

Taking the first four networks as examples, the validating results of FMMTP output are 
obtained, as shown in Fig. 8. 

(2)	 Daily output of working face
Corresponding to above 49 networks, daily output and the average of working faces were 

also obtained, as shown in Table 6. 
Using the mean square error (MSE), the relationship between output and the target value 

is fitted. To analyse the validating results of daily output, three networks are randomly selected, 
as shown in Fig. 9(a), (b), (c). MSEs are 3.25×106 [t/d], 1.92×106 [t/d], 3.15×106 [t/d] respec-
tively. Nevertheless, the MSE is only 0.49×106 [t/d] using the average output value, as shown in 
Fig. 9(d). Compared with a single network, the prediction accuracy is improved, and the result 
has more credibility. Therefore, the average daily output from a multi-group neural network is 
used for daily output prediction.

Fig. 7. Ideal FMMTP output of validating samples
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(a) e = 90%	 (b) e = 100%

(c) e = 100%	 (d) e = 80%

Fig. 8. Testing results of FMMTP in the first four networks

Table 6

Daily output of validation samples in 49 networks with accuracy 100%

Network
Sample 1 2 3 4 5 6 … 48 49

Minimum 
value  
[t/d]

Maximum 
value  
[t/d]

Average 
[t/d]

Ideal 
output 

[t/d]
147 2594 3842 2544 3448 3538 3415 … 3017 2185 2180 5605 3500 4400
148 3331 2693 4087 3445 5264 4740 … 4123 3475 1869 5264 3589 3000
149 1669 1324 1476 2003 1845 2435 … 1596 1286 782 2751 1765 1538
150 1386 1778 1647 1665 1581 1900 … 1689 859 548 4100 1489 1000
151 863 605 338 301 541 839 … 480 621 251 999 584 312
152 1564 419 495 1061 1011 168 … 304 376 126 1564 645 556
153 1989 2002 2005 1990 1997 1996 … 2009 1995 1989 2009 1995 2000
154 2288 1929 1736 2376 1466 3345 … 3356 3511 920 3994 2478 2600
155 4741 2192 4305 4022 3000 2386 … 4486 3589 1413 6666 3781 3684
156 1618 2314 1916 2167 2966 2273 … 3288 3114 1564 4555 2600 2266

MSE/106 
[t/d] 3.25 1.92 3.15 1.10 2.78 4.14 … 1.93 3.45 1.02 8.6 0.49
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From the comparison between the predicted result and the actual output, it can be concluded 
that the error range of the output is about ±300 [t/d], which can meet the engineering require-
ments of production prediction. The feasibility and accuracy of the FMMTP evaluation model 
are verified from another side.

 

MSE=3.25×106 [t/d]	 (b) MSE =1.92×106 [t/d]
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(c) MSE =3.15×106 [t/d]	 (d) MSE =0.49×106 [t/d]

Fig. 9. Validating results of daily output

4.3.	N etwork prediction

Using the 49 networks for prediction, the FMMTP decision-making and daily output predic-
tion are carried out for panel 43101 in the Liangshuijing and 22204 in Guoerzhuang coal mine. 
The results of the FMMTP decision-making are shown in Table 7, and the average daily output 
prediction corresponding to the FMMTP is shown in Table 8.
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Table 7

Results of FMMTP decision-making

Predicted value
Panel

[0.5,1.5] [1.5,2.5] [2.5,3.5] [3.5,4.5]
Probability [%] Probability [%] Probability [%] Probability [%]

43101 1 25 66 8
22204 7 16 71 6

Table 8

Average daily output prediction

Predicted  value
Panel

[0.5,1.5] [1.5,2.5] [2.5,3.5] [3.5,4.5]
Output [t/d] Output [t/d] Output [t/d] Output [t/d]

43101 1492 2061 2486 1367
22204 987 2487 3156 1148

Based on the above , the results of FMMTP evaluation and average daily output prediction 
are drawn, as shown in Fig. 10 and Fig. 11.

Fig. 10. Results of the FMMTP evaluation 

In conclusion, the FMMTP prediction for thin seam using a multi-group neural network 
obeys the normal distribution. According to the normal distribution, the priorities of FMMTPs 
are determined. The FMMTP with maximum probability is optimally selected. Based on the 
above, automatic FMMTP is selected for panel 43101 and panel 22204, with a probability of 
66% and 71%, respectively.

The average daily output of the working face is related to the corresponding FMMTP. The 
average daily output predictions are quite different under different FMMTPs. Under automatic 
FMMTP, the average daily output of panel 43101 and panel 22204 are 2486 t/d and 3156 t/d, 
respectively.



347

5.	I ndustrial test

Automatic FMMTP is adopted in panel 22204 during normal mining in the Guoerzhuang 
coal mine. To ensure the stability of automatic mining, a step-by-step implementation scheme 
is proposed and applied. In the first step, machinery-tracked FMMTP works for about 15 days. 
Then, subdivision controlled FMMTP is adopted and takes 15 to 20 days. In the last step, auto-
matic FMMTP is applied during normal mining operations. In the above three stages, the number 
of workers in the panel per day is 39, 43 and 23 respectively. The number of workers and work 
efficiency of the three models are obtained, as shown in Fig. 12. 

Compared with the machinery-tracked FMMTP, the number of workers is reduced by 41% 
in automatic FMMTP. Shearer drivers, hydraulic support workers and scraper conveyor drivers 

Fig. 11. Results of average daily output prediction
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are liberated from the narrow working face. The working efficiency per worker has increased 
from 44.3 t to 58.8 t. There is an increase of 32.8 percent. The goal of reducing labour intensity 
and increasing efficiency for thin seam is achieved by automatic FMMTP. 

Automatic FMMTP is realised in panel 22204. The average daily output during automatic 
mining reached 2883t per day, which is consistent with the results of network prediction. It veri-
fies the accuracy of FMMTP evaluation and production prediction.

6.	 Conclusion

(1)	 The classification of FMMTPs for thin seam is put forward. According to the control 
mode of the shearer, FMMTPs can be divided into four patterns: Machinery-tracked 
FMMTP, Subdivision controlled FMMTP, Automatic FMMTP and Intelligent FMMTP. 
The above patterns belong to different development stages of fully mechanised mining 
technology. With the continuous development and improvement in China, the FMMTP 
is entering into the automatic pattern and stepping forward the intelligent pattern. 

(2)	 Corresponding BP neural network for thin seam FMMTP evaluation with double hidden 
layers is established. FMMTP decision-making for thin seam is realised. As a result, 
FMMTP prediction for thin seam obeys the normal distribution. FMMTP with maxi-
mum probability is optimally selected. Automatic FMMTP is selected for panel 43101 
in Liangshuijing and panel 22204 in the Guoerzhuang coal mine, with a probability of 
66% and 71% respectively.

(3)	 The implementation plan of automatic FMMTP for panel 22204 is designed and carried 
out in the Guoerzhuang coal mine. The ideal application effects have been achieved by 
industrial tests. The FMMTP evaluation for thin seam provides a good technical refer-
ence for FMMTP decision-making and implementation.
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