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Dynamic States Equations of Transport Pipeline in Deep-Sea Mining

The transport pipeline of lifting the underwater minerals to the surface of the water onto the ship 
during the movement of the vessel takes in the water a curved deformed shape. Analysis of the state of 
stability of the pipeline showed that if the flow velocity of fluid in the pipeline exceeds a certain critical 
value Vkr, then its small random deviations from the equilibrium position may develop into deviations of 
large amplitude. The cause of instability is the presence of the centrifugal force of the moving fluid mass, 
which occurs in places of curvature of the axis of the pipeline and seeks to increase this curvature when 
the ends of the pipeline are fixed. When the critical flow velocity is reached, the internal force factors 
become unable to compensate for the action of centrifugal force, as a result of that a loss of stability occurs. 
Equations describing this dynamic state of the pipeline are presented in the article.
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1.	I ntroduction

In the literature one can find works devoted to solving the problem of vibrations of elastic 
pipelines with a flowing fluid. Niordson [8] and Heidelman [5] showed that with the flow of 
a fluid, a loss of stability of the pipeline in the form of buckling is possible, similarly to a loss of 
stability of a column under the action of a static load. Long [7] first drew attention to the problem 
of pipeline stability with one free end. Benjamin [1] established the laws that determine the phe-
nomenon of instability of pipeline oscillations with a flowing fluid with one loose end. Gregory 
and Paidussis [4] considered the question of the instability of oscillations of a cantilever pipeline 
with liquid flowing through it under the assumption that the pipeline is in a horizontal plane and 
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not subject to longitudinal tension. Three-dimensional (3-D), nonlinear, coupled, axial, bending 
and torsional responses of an 18, OOO-fptipe system are studied with the new nonlinear finite 
element method (FEM) code presented in Part 1 with an example of the recovery of manganese 
nodules in the Pacific Ocean. For this Part IIthe, the pipe top is pinned to ship, and it is free and 
independent of the self-propelled seafloor nodule miner. The pipe system is a vertically varying, 
current flow when creating the static equilibrium configuration. For dynamic analysis, the pipe 
is excited by periodic large-amplitude horizontal, as well as vertical, motions, the internal slurry 
flow, and the external hydrodynamic forces. For torsional coupling, a consistent mass-matrix 
formulation is used. The external torsional moments induce biaxial bending deflection and vi-
bration in response to a large pipe twist. The axial-to-torsion and axial-to-bending couplings are 
found to be strong. Response periods to large-amplitude. The upward internal slurry flow reduces 
the axial stress and increases the horizontal displacements. Numerical stability of the solution 
is sensitive to the specific sequence of the steps, large passive torque, excitation frequencies, 
and excessive axial excitation amplitudes. The present response is a part of the pipe restrained.

Chung published a very interesting work with co-authors [2]. The paper presents extensive 
analyzes of various pipeline systems transporting ocean floor spoil to the ship together with 
charts illustrating the shape of the pipeline permanently fixed on the ship during its operation. 
Szelangiewicz et al. [9] presented computer simulation results of vertical deflection and tensions 
within single and double vertical pipelines with fixed force from the ship’s movement (linear 
movement at constant speed) and regular force from the waves. Yu and Liu [11] analyzed the 
dynamic characteristics of a vertical pipe under the influence of constant movement, current di-
rection and wave. The simulation results showed that the axial stress is dominant on the vertical 
pipe, its maximum is located at the pipe top and also all stresses are much less than the allowable 
value of the vertical pipe. The Yao et al. [10] in recent years has studied the flow characteristics 
of the mixture in a flexible pipe in an experimental installation.

2.	P roblem discussion

In previous works, the main focus was usually on determining the impact of mass flow on 
the natural frequencies of the pipeline and determining the critical frequency of oscillations based 
on some dimensionless parameters characterizing the inertial properties of the piping system. 
However, issues related to the establishment of a lower limit of the critical velocity of the mixture 
at which the pipeline loses its stability have not been studied. The purpose of this work is to obtain 
the equation of oscillation, which is the starting point to solve the problem of ensuring a stability 
of underwater pipeline transporting a mixture from the bottom to the surface of the ocean. Fig. 1 
shows the diagram of forces applied to the pipeline elements and the mixture flowing in the pipe.

Based on preliminary estimates of the main operational parameters of hydraulic lifting [6], 
a simplified system of longitudinal and transverse oscillations of the slurry pipeline was obtained:
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Along with the desired longitudinal u(s, t) and transverse v (s, t) displacements of pipeline 
elements, this system of equations contains unknown force factors: axial N and shear Q forces, 
and torque M, as well as projections of external qn and internal qw dynamic loads. In addition, 
in equations (1) and (2) the following notation is adopted: m0 – linear mass of the pipeline; g is 
the acceleration of gravity; t is time; s is the Lagrangian coordinate.

In [3], for the projections of external linear hydrodynamic loads, the expressions were 
obtained:
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where Sn – the area of the pipeline in outer diameter; pn and ρn – pressure and density of external 
flow; θ – the angle of deviation of the axis of the pipeline from the vertical; dRn and dRτ – normal 
and tangent to the axis of the element running dynamic components of the external total hydro-
dynamic force; qn

u – linear inertial unsteady reaction force of external fluid.

(a)	 (b)

Fig. 1. Diagram of forces and moments acting on pipe element (a) and fluid element in pipe (b)
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Internal hydrodynamic load is caused by friction qmp, hydrostatic pressure qgcm and inertial 
forces qun, i.e.

	 wx xmp xgcm xunq q q q    	 (5)

	 wy ymp ygcm yunq q q q    	 (6)

where (see Fig. 1):

	 cosxmp mpq q    
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Sw – live section of the pipeline; dw – inner diameter; pw and ρw – pressure and density of fluid 
(pulp) inside the pipeline; λ – Darcy-Weisbach coefficient; V is the flow velocity of the pulp.

According to [3], the expressions for the projections of the linear inertial nonstationary 
force are:
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where 21
4пр n nm d    – the running added mass; the subscripts below denote the corresponding 

partial derivatives.
In [3], relationships are also obtained:
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where: Cn and Cτ – hydrodynamic coefficients of normal and tangential forces; V∞ – flow velo
city; mw – linear mass of pulp.
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In order to reveal in a pure form the instability arising from the internal flow, let us assume 
that the incident flow is absent (V∞ = 0). Then, assuming that ut and νt are small, we obtain that 
the hydrodynamic forces (9) and (10) are of the second order of smallness. Under the same as-
sumption we have:
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	 ss
d v
ds

  

	 ssM EJv  

	 0nxq   

	  wy n n ss n s mp ttq S p v gv m v    
	 (12)

	 wx mpq q   

	  wy w n ss n s mp sq S p v gv q v P      

	  22w tt st ssP m v v V v V    

where E is Young’s modulus; J is the axial moment of inertia of the section. Moreover, in equa-

tion (1) it is possible to neglect the M
s s

 
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  term, as being of the second order volume. In the 

accepted approximation, it should be assumed that

	  n a n a np p g s u p gs       	 (13)

where pa is atmospheric pressure.

Even with the simplifications given, the system of equations (1) and (2) is connected through 

the axial force N included in both equations. If we neglect the N
s s
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  term in Eq. (2), then 

this equation will be independent of Eq. (1), however, the effect of the longitudinal tension 
force N is lost.

We assume that the longitudinal vibrations of the pipeline are so small that they can be 
neglected in comparison with the transverse ones. In this case (1), taking into account (12), 
reduces to the equation

	 0 mp
N m g q
s


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	 (14)

determining the static load of the pipeline from the action of gravity and friction of the flowing 
fluid. If the lower end of the pipeline is free, then the solution to equation (14) will be:

	     0 0 0mp s L mpN m g q L s p F N m g q S        	 (15)

where  0 0 mp s LN m g q L p F     is the weight of the entire pipeline (taking into account the 
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discharge due to the force of Archimedes and the force of internal friction); L is the length of 
the pipeline.

If there is a concentrated mass at the lower end of the production pipeline (for example, 
a platform fixing in place the feeding equipment), then its weight in water should be included 
in the magnitude of the N0 force.

In this case, equation (2) assumes the form:
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Equation (16) contains pressure pw(s), density ρw(s), and velocity of the mixture V inside the 
pipeline, which must be taken from the preliminary hydraulic calculation of the airlift or pump 
lifting variant. In order not to enter in advance into specific law of change in internal pressure, 
density and velocity and to obtain conditions for the loss of general stability, let us consider 
equation (16) under the assumption that ρw and V is constant along the height of the pipeline. 
Then for the pumping option
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Note that this pressure distribution inside the pipeline will be, when the pump is installed 
at the lower end of the pipeline and provides there a pressure equal to
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which creates a pressure drop 
2
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w
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     that provides for friction losses.

Using expression (17) for pressure pw, and assuming that also ρw ≡ ρn (this condition is fairly 

well satisfied if the concentration of solids in the stream is insignificant), the coefficient at 
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in equation (16) is converted to the form:
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where 0 0 nG m g gF   – the weight of the meter of the pipeline in the water; F is the area of 
the metal.

The coefficient at 
v
s




  in (16) under specified assumptions is equal to 0 0( )nG m g gF   .
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In view of the simplifications made, equation (16) takes the form:
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where
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Note that for fairly rough pipes, the second term in this expression can be two orders of 
magnitude greater than the first.

3.	C onclusion

1.	O n the basis of the calculation scheme developed and taking into account the accepted 
physically reasonable assumptions, the differential equation of oscillations of an under-
water pumping pipeline transporting a two-phase slurry has been obtained.

2.	T he velocity of the pulp V enters into (20) in an explicit form, therefore further solution 
of the problem of stability of the pipeline is reduced to determining the magnitude Vkr 
and ensuring the condition V <. Vkr.

References

[1]	 Benjamin T.B. Dynamic of a system of articulated pipes conveying fluid. I Theory. Proc. Royal Soc. 261, 457-486 
(1961), II Experiment, 487-99.

[2]	 Chung J.S., Bao-Rang Cheng, Huttelmaier H.P. Three-Dimensional Coupled Responses of a Vertical Deep-Ocean 
Pipe: Part II. Excitation at Pipe Top and External Torsion, International Journal of Offshore and Polar Engineering 
4, 4, December 1994 (ISSN 1053-5381).

[3]	G oman O.G., Kirichenko E.A., Vishnyak E.A. Calculation of hydrodynamic loads on the elements of submersible 
structures of deep-water slurry pipelines. System Technologies: A collection of scientific papers – Dnipropetrovsk: 
RVK IA Ukraine 8, 17-23 (1999) [in Russian]. 

[4]	 Gregory R.W., Paidoussis M.P. Unstable oscillation of turbular cantilevers, conveying fluid. I Theory. Proc. of the 
Royal Soc., London, Ser. A, 293, 528-542 (1966).

[5]	H andelman H.M. Quart. Appl. Math. 13, 326-334 (1955).
[6]	 Kirichenko E.A. Possible cases of simplification of the system of equations of oscillations of deep-water slurry 

pipelines in a flat formulation. Mining, electromechanics and automatics: A collection of scientific papers – Dnipro-
petrovsk: RVK NGA of Ukraine 4, 137-142 (1999) [in Russian].

[7]	 Long R.H. Jr. Experimental and theoretical study of transverse vibration of a tube containing flowing fluid. J. App. 
Mech. 22, 1, 65-68 (1955).

[8]	 Niordson F.I.N. Vibrations of cylindrical tube containing flowing fluid. Trans. of the Royal Inst. of Tech., Stock-
holm, Sweden, 1953, No.73.



392

[9]	 Szelangiewicz T., Żelazny K., Buczkowski R., Computer simulations of deformations and tensions in the pipe-
lines of hydraulic lifting systems, Scientific Journals of the Maritime University of Szczecin – Zeszyty Naukowe 
Akademii Morskiej w Szczecinie 52 (124), 37-44 (2017). DOI: https://doi.org/10.17402/243

[10]	Y ao Nijun, Cao Bin, Xia Jianxin, Pressure loss of flexible hose in deep-sea mining system. 18th International 
Conference on TRANSPORT AND SEDIMENTATION OF SOLID PARTICLES 11-15 September 2017, Prague, 
Czech Republic. ISBN 978-83-7717-269-8.

[11]	 Yu Hong-yun, Liu Shao-jun, Dynamics of vertical pipe in deep-ocean mining system, J. Cent. South Univ. Technol. 
(2007) 04-0552-05. DOI: https://doi.org/10.1007/s11771-007-0106-0


