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Abstract: The present paper consists of two parts. The first part presents theoretical founda­
tions of M,pii, estimation with reference to the previous author's paper (Wiśniewski, 2009).
This time, some probabilistic assumptions are described in detail. A new quantity called
!-information is also introduced to formulate the split potential in more general way. The
main aim of this part of the paper is to generalize the target function of Msplit estimation
that is the basis for a new formulation of the optimization problem. Such problem itself as
well as its solution are presented in this part of the paper.

The second part of the paper presents some special case of Mspli, estimation called
squared Mspli, estimation (also with reference to the mentioned above paper of the author).
That part presents a new solution and development in the theory of this version of M,plit esti­
mation and some numerical examples that show properties of the method and its application
scope.
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1. Introduction

The maximum likelihood method (ML-estimation) is one of the important estimation
methods and it is also applied in geodetic computations (e.g. Grodecki, 1999; Koch,
1986; Wiśniewski, 1987; Yu, 1996). Let vi = Yi - 0 be a functional model of geodetic
observations Yi, i = 1, ... , 11, where 0 is an unknown parameter and vi is a standardized
measurement error (without loosing generality and to simplify notation the variable vi 
is assumed to be standardized also in the next parts of the paper). A quantity (j is the
ML-estimate of a parameter 0 of a random variable y =[y1, ••• ,y11]T with the density
function f(y; 0) when

min ({)(y; 0) = ({)(y; e) 
0 

(I) 

where

Il

({)(y; 0) = - I Inf (yi; 0) 
i=I 

(2) 
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(the random variables are assumed to be mutually independent).
However, it is M-estimation that has played a major role in geodetic elaborations

for some years. Foundations of this estimation method were formulated and presented
by Huber ( 1964, 1981) under the assumption that the term -In J (y; 0) inside the target
function Eq. (2) can be replaced with another arbitrary function p(y; 0). Thus, 0 is an
M -estimate of the parameter when

n n

mjn[cp(y; 0) = ŁP(Yi; 0)] = Łp(y;;/3)
i=I i=I 

(3)

For that reason, M-estimation class contains for example the least squares method
(LS-method) with the function p(y; 0) = v2 and the principle of the alternative choice
(Kadaj, 1984) with the function p(y; 0) ex J (y; 0) (ex is a proportionality sign). The
last of these methods is robust against gross errors. The estimates of the parameter 0
obtained by applying this method or other robust estimates (in a sense of this paper
interest) will be denoted as 0R. Such option in choosing functions p(y; 0) results in a
broad class of robust M-estimates. Usually, such estimates are based on the following
probabilistic model of a gross error (s-contarninated) 

Pe = ( I - t:)Pe,, + t:Peµ (O :s: C :s: I) (4) 

where Pe,, is a probability distribution that belongs to the family 'Pa= {Pe,, 0a E 0a) 
of all acceptable probability distributions (for random variables y) and Pp is a "strange"
distribution that belongs to another family 'Pp = {Pe" : 0p E 0p) (e.g. Serfling, 1980).
The 'Per and 'Pp families are indexed with parameters 0a E 0a and 0p E 0p, respectively.
Huber's function is a good example of p(y; 0) function that refers to the model Eq. (4)
(Huber, 1981; Hampel et al., 1986)

{ 

Pa(y;0) = v2
p(y; 0) = I 7 

Pp(y; 0) = t lvl - 2r
Jor lvl :S: t ¢=> y ~ P0

0 

Jor lvl > t ¢=> Y ~ P0µ 
(5)

where t > O (e.g. t = 2.0, 2.5, 3.0). There are also other methods where pp(y; 0) function
is two-segmented (e.g. Hampel et al., 1986; Yang, 199 I, 1994, I 999).

Geodetic applications of robust M-estimation are presented in many papers for
example Krarup and Kubik ( 1983), Huang and Mertikas ( 1995), Koch ( 1996), Gui and
Zhang (1998), Yang ( 1999), Gotzelrnann et al. (2006). Generalization of M-estimation
to the case of dependent observations can be found in Xu ( 1989), Yang ( 1994) and
Yang et al. (2002). The principles of M-estimation were also applied to develop robust
Kalman filter (e.g. Koch and Yang, 1998; Yang et al., 200 I), robust collocation (Yang,
1992), robust estimation of variance coefficient (Wiśniewski, 1999) or robust estimation
of variance-covariance matrices (Yang, 1997). Theoretical properties of M -estimation
can be analyzed by using the influence function (e.g. Hampel, 1974; Serfling, 1980;
Hampel et al., 1986) or the breakdown point (e.g. Rousseeuw, 1984; Hampel et al.,
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1986; Xu, 2005). It is well known that robust M-estimation results in decreasing of
influence of outliers on the final estimate f¼ (except for some critical case presented
in (Xu, 2005) or, from the other point of view, in (Prószyński, 1997, 2000)). Let
0R be the most robust estimate, i.e. the estimate that is free of the influence of all
outliers of unacceptable distribution Pe/3 (outliers are rejected during the estimation
process). In such theoretical and idealistic case, the estimate BR of the parameter 0 
is the estimate of the parameter 0a at the same time. It is obvious that observations
rejected during the estimation process are not interesting from the M-estimation point
of view. Furthermore, the parameter 0/3 of unacceptable distribution Pe/3 is not estimated
at all. It is reasonable if outliers results from gross errors. However, even then it would
be interesting to compute the estimate 0/3 to help understand or analyze properties or
sources of gross errors. On the other hand, outliers are not always effects of faults,
slips etc. Observation sets can sometimes contain some observations with determini­
stic errors or systematic ones that are hard to identify. Also, if observation sets that
were measured at two different epochs are elaborated together, some observations for
example concerning some displaced points can be regarded as outliers. In such cases or
other similar ones (like a disturbed laser scanning) an estimation of the parameter 0/J, 
not only 0a, seems reasonable. Such estimation process can be carried out by applying
Msplit estimation.

Theoretical foundation of the method proposed in (Wiśniewski, 2009) and cal­
led Msplit estimation is a general assumption that each observation described by the
functional model v = y - 0 can have either of two distributions Pa E Pe,, or P/3 E Pe/3. 
Consequently, the model v = y-0 is naturally split into two competitive ones v0 = y-0a 
and v/3 = y - 0/3. In the cited paper, it is assumed that every observation y has got some
potential describing the chance to identify the observation with either of two possible
distributions Pea or Pe/3• Such potential, called the elementary split potential, was refer­
red to the probability Pa (y; 0a) <=> y ~ Pea and information If3(y; 0/3) = - In Pf3(y; 0/3) 
(e.g. Jones and Jones, 2000), that every observation y can provide under competitive
assumption that y ~ P0/3. Generally, one can say that, according to the presented theory,
quantities 0a and 0/3 are Msplit estimates of competitive parameters 0a and 0/3 if only
they maximize the split potential.

The next section of the paper presents assumptions and further theoretical de­
velopment of Msplit estimation in detail. Theory is referred to the functional model
of geodetic observations. The general target function of Msplit estimation as well as
conditions for respective optimization problem solution are also presented.

2. Fundamental assumptions 

2.1. Idea of Msplit estimation 

Let the following
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{ 1.1, 1.3, I .4, 1.5, 1.7, 3.4, 3.5, 3.6l

be a set that contains realizations of a random variable Y. Such realizations regarded
as observations can be referred to the following functional model

v, = y, - 0, i= I, ... , 8

One can estimate the parameter e by applying the LS-method and obtain 0Ls = 2.19.
However, the set elaborated contains some outliers. Thus an E:: - contaminated distri­
bution P0 = (l - E::)P00 + E::P0f3 can be assumed as a probabilistic model of the variable
Y. Taking such assumption the parameter e can now be estimated by using a method
that belongs to the robust M-estimation class. Thus if the weight function defined as
follows (e.g. Kadaj 1988; Yang, 1991; Huang and Mertikas, 1995; Gui and Zhang,
1998)

w(v) = op(y; 0) 
o(v2)

and the Danish method (e.g. Krarup and Kubik, 1983; Zhong, 1997), where

(6) 

{
l

w(v) = 7 exp{-/(v - o-i 
forlvl:::; t

Jorlvl > t
(7)

is applied, then one can compute the Danish M-estimator as 0R = 1.49 (under as­
sumptions l = 0.5, t = O). Very similar results can be obtained by using other robust
methods or the Danish method but under different assumptions concerning the control
parameters l and t. Regardless to the method choice, the influence of the outliers 3.4,
3.5, 3.6 on the robust estimate of the parameter e is decreased or even eliminated. This
common property results from the assumption that the parameter 0a should lie near to
the densest observation concentration. Thus, in robust M-estimation, p(y; 0) functions
are designed in such way to fulfill this postulate. For example, Wiśniewski (1993)
proposed that p(y; 0) = - In JRP (y; 0) where JRP (y; 0) is the density function of an
asymmetric distribution P0 that belongs to the family of the Pearson distributions (e.g.
Elderton, 1953). For the method called the principle of the alternative choice, Kadaj
(1984) assumed that p(y; 0) cc -JN ° (y; 0) where JN ° (y; 0) is the density function
of a distribution P0 that belongs to the family of normal distributions. In this two
cases, the weight function Eq. (6) is a continuous and concave function with the
maximum at the point v = O (for example for the second presented method
w(v) cc expt--v"), e.g. Kadaj, 1984). Thus, such weight functions assign the biggest
values of equivalent weights to observations, which values, are close to the parameter
0a. For some methods that belong to the M-estimation class and that are based on the
model Eq. (4) such requested properties of the weight function Eq. (6) are obtained
by combining the function Pa(y; 0) = v2 with Pf3(y; 0) where:
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Wa(y;0) = 8pa(y;0)/8(v2) = 1 
Wj3(y; 0) = apf3(y; 0)/8(v2), V lv1I > lv;I : Wj3(Jj; 0) < Wj3(y;; 0) 

(see Eq. (5), Eq. (7) and, e.g. Hampel et al., 1986). In all these cases, the main 
task of the weight function w(v) (or its part wf3(v)) is to assign small values of 
equivalent weights to the observations that are supposed to be distributed according to 
the "strange" distribution Pe1r 

Let us consider the observation set presented above one more time. One can 
suppose that since eR = 1.49 then the influence of observations 3.4, 3.5, 3.6 on this 
value was rather small actually. Let us pay attention to the fact that these observations 
are concentrated around another parameter, for example 0/3· As it was assumed earlier 
the observation set contains realizations of two different random variables Ya and Y/3 
with different parameters 0a and 0/3. However, we were only interested in the parameter 
0a estimated by 0R. Such approach to estimation of parameters seems doubtful if we 
know that an observation set contains realizations of two random variables. Since two 
parameters 0a and 0/3 can be assigned to the observation set it is natural to estimate 
them both. In some cases knowledge of the estimate 0/3 value can be insignificant 
or inutile but it does not mean that estimation of both parameters together does not 
influence the value of the parameter 0a. One should expect that during such integrated 
process of estimation, estimates 0,, and 0/3 will "attract" observations that suit them best, 
respectively. Thus the estimate 0a can be a function of realizations of the variable Ya 
only (that is not always possible for robust estimates 0a). In other practical cases, that 
were presented in the section 1, both values 0a and 0p seem interesting. The graphical 
interpretation of the present observation set as well as the values of the estimates 0Ls 
and 0R is presented in Figure I a. The same figure presents also the desired places for 
the estimates 0a and 0/3. The similar interpretation but for the observation set with only 
one outlier is presented in Figure I b. 

Traditional approach to calculation of the estimates 0a and 0/3 assumes some ar­ 
bitrary principal of assigning realizations of the random variable Y to either of these 
two estimators. Msplii estimation makes two competitive, objective assumptions (the 
observation set is not divided into parts): 
- observations are realizations of the random variable Ya ~ Pe,, 
- observations are realizations of the random variable Y/3 ~ Poµ 
Such assumptions result in split of the probabilistic model of observations (every 
observation can be described by two competitive distributions) but also lead to two 
competitive functional models (this fact is discussed in the next parts of the paper). 
During the estimation process either of models becomes more realistic, probable for 
each observation, i.e. it suits respective observation better (one can say it "wins" the 
competition). One can suppose that a single observation can provide some potential that 
can give opportunity to identify it with either of two competitive models (identifying 
on the whole or only in part, i.e. an observation can be identified with the both models). 
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Fig. I. Graphical interpretation of M,pii, estimation idea

2.2. Elementary split potential 

Let us consider a single observation y that is a realization of a random variable Y with
the following s-contarninated distribution

P0 = (I - t:)P00 + t:P0p 

Let there be a number that can describe the chance to identify the observation with
either of two distributions P00 or P013. Let these distributions be discrete ones with the
probability functions Pcr(y; 0cr) and p13(y; 013). It means that for each observation there
are two probabilities Prr(y; 0a) = Pa and p13(y; 013) = p13. Then the number mentioned
above (and obtaining values from the interval < O, I >) can be written as the following
quantity (Wiśniewski, 2009)

(8) 

where a j b = ab. The term l(y; 0) = -In p(y; 0) is an amount of information that
every single observation can provide if the probability of the observation appearance
is p(y; 0) = p (e.g. Jones and Jones, 2000). The quantity Ka.fJ(y; 0a, 013) is called the
elementary split potential (Wiśniewski, 2009). Let p13 = p13(y; 013) = I, then the amount
of information that the observation can provide is equal to zero

!13(y; 013) = -lnp13(y; 013) = O 

Because P/3 = I thus such observation was expected, exactly. Its appearance did
not provide any new information. In such case, regardless of the probability value
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Pa = Pa(Y, 0a), the split potential obtains its biggest value Ka.f3(y; 0a, 013) = I (it 
results from the first part of Eq. (8)). The split potential value equals to I also when 
Pa(y; 0a ), regardless of the value of p13(y; 013). The split potential approaches zero 
when fJa(y; 0a) < I and p13(y; 013) - O at the same time. Of course, one can consider 
the second part of Eq. (8) and discuss the situation equivalently on the base of the 
information lc,(y; e(Y ). The split potential proposed in the mentioned paper for discrete 
distributions has the following general properties 

Ka.f3(y; e(Y, 013) = I when : 
l13(y; 013) =O~ p13(y; 013) = I (regardless of fJa(y; 0(Y)) 

or 
la(y; 0a) =O~ fJa(y; 0(Y) = 1 (regardless of p13(y; 013)) 

and 

K"_13(y; 0a, 013) - O when : 
p13(y; 013) - O~ l13(y; 013) - co and Prr(y; 0a) < 1 
or 
Pc,(y; 0c,) - O~ la(y; 0a) - oo and p13(y; 013) < 1 

The elementary split potential idea can be generalized to the case of random 
variable with continuous distributions Po that belong to the family 'P = (?0 >- it». 0) 
: 0 E 0l where f(y; 0) is a density function (the sign >- means that this function is 
assigned to the distribution P0). For such purpose, the /-information defined as follows 

fl (y; 0) <X - In cf(y; 0), c > O 

/I (y; 0) = (y- 0)2 = v2 f Or C = 2 yii 

(9) 

is now introduced. For example, if y is normally distributed and its distribution belongs 
to the normal distribution family 'P = {N[e, CT] : e E 0l then 

( 1 O) 

Let us pay attention to the fact that the amount of the /-information provided 
by the observation Y = y grows larger with the increase of the absolute value of the 
random error v = y - e (Fig. 2a). The maximum probability of appearance is assigned 
to errors close to zero. Thus if 0a is a parameter of the variable Y distribution and if 
an observation y with a big and less probable error appears then the information that y 
can provide is rather big (Fig. 2a). Such information can even point at the fact that the 
parameter 0a is not a parameter of the y distribution and should be replaced with for 
example e13 (it is very important fact in Msplit estimation theory). On the other hand, 
the amount of /-information about the parameter e13 can be close or even equal to zero 
(Fig. 2b). 
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a) 
1,: (y;U,,) 

I (_i,;0,,) 

.Y 
fl,, 

b) 

V 

Fig. 2. Density function and /-information 

The elementary split potential Eq. (8) can be rewritten in a new following form 
by using the density function and !-information 

Taking t1(y; 0) = - In cf(y; 0), the elementary split potential for the observation y can 
be written as follows (for c1, c2 > O) 

Ka.f3(y; 0rr, 0/3) = cifrr(y; 0a) i [- In c2fp(y; 0f3)] = 
= c2fp(y; 0/3) i [- In c1frr(y; 0a )] 

(12) 

The potential Eq. ( 12) is based on the assumption that the observation y can be a reali­ 
zation of either of two competitive random variables Ya ~ Pe

0 
or Y/3 ~ Pe/J where Pe

0 

and Pe/J are probability distributions that belong to the following families, respectively: 
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The natural logarithm of the split potential plays a very special role m Msplit 

estimation. Thus taking 

(13) 

one can write 

ka.fJ(y; 0a, 0/3) = In Ka.fJ(y; 0cr, 0/3) = 

= ln{c1fc,(y; 0a) i [- In c2ff3(y; 0f3)]) = 
= lnk2Ji,(y;0f3) i [-lncifa(y;0rr)]} = 
= -lncifcr(y;0cr)lnc2Ji,(y;0f3) 

Since 

- lncifa(y;0a) = I{,(y;0cr) 

- In cdf3(y; 0/3) = Ii(y; 0/3) 
then 

(14) 

(I 5) 

2.3. Split potential of observation vector (global split potential) 

Let Ya = [Y1cr, Y2a, · · ·, Y,,a]T and Y/3 = [Y1f3, Y2f3, · · · , Y,,f3]T be random vectors and 
let P0a and Poµ be their distributions, respectively. The distributions belong to the 
following respective families: 

Per = !Poa > fc,(y; 0a) : 0a E 0rr rp/3 = (Po/J > /p(y; 0/3): 0/3 E 0/3) (16) 

(0 E 'R11 
- parameter vector). Additionally, let random variables Y1a, Y,f3, i = I, ... , n, 

be mutually independent. Then 

Il 

t.ss. 0a) = n fc,(y,; e,cr) 
i=I 

( I 7) 

Il 

fi,(y; 0/3) = n ff3(y,; e,f3) 
i=I 

( 18) 

Let y = [y1, y2, ... , y,,]T be a vector of observations and let it be a realization 
of either of two competitive random variables Ya ~ Paa and Ya ~ Po,,- According 
to the earlier assumptions, every observation y1 has its own assigned elementary split 
potential Ka.fJ (y,; 0a, 0/3) so a proper split potential should also be assigned to the whole 
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vector y. In the paper (Wiśniewski, 2009), such potential was called as the global split
potential and defined as follows

li

Kc,.f3(y; Oa, 0f3) = n Ka.f3(Yi; 0ia, 0,f3) 
i=I 

Considering Eqs. ( 11) and ( 12) and also Eqs. ( 16)-( 19), the potential Kc,.f3(y; Oa, 0f3)
can be written in the form

Il 

Ka.f3(y;Oa,0f3) = n lcda(Y,;0,a) i I£(y;;0,f3)) = 
i=I 
Il 

= n lc2ft;(y,; e,f3) i ft(y,; e,a)I 
i=I 

or

n 

Kc,.f3(y;Oa,0f3) = n {cif<,(y,;0,a) i [-lnc2ft;(y,;0,f3)]} =
i=I 
n 

= n lc2ft;(y,;0,f3) i [-lncifa(Y;;0,a)]) 
i=I 

The logarithmic global split potential can be written in the form

ka.f3(y; a., 0f3) = In Ka.f3(y; Ocr, 0f3) = 
n 

= -I In c1J,,(y,; e,a) In c2ft;(y;; e,J3) 
i=I 

or

Il 

ka.f3(y;Oa,0f3) = -I!{(y,;0;a)I£(y,;0,j3) 
i=I 

( 19) 

(20) 

(21) 

(22) 

(23) 

3. Optimization problem and its solution 

3.1. General optimization problem 

The main principle of Msplit estimation (Wiśniewski, 2009) assumes that the quantities
6a and 6f3 are Msplit estimates of the parameters Oa and 0f3, respectively, if only they
maximize the global split potential Ka.f3 (y; Oa, 0f3)- If the potential is referred to the
probability families
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then the mentioned principle can be formulated as follows 

Since 

and 

(24) 

then the optimization problem Eq. (24) can be replaced with an equivalent one 

(25) 

Such formulated Msplit estimation can be regarded as a split ML-estimation. Let the 
global split potential have more general form 

li 

kap(y; 6a, 613) = - ŁPa(Yi; 0ia)P13(J'i; 0i13)
i=I 

(26) 

that is not necessarily referred to any probabilistic assumptions. Functions Pa(Yi; 0ia)
and p13(yi; 0i13) should be at least positive convex and twice differentiable. Introducing 
the following notations: 

c.p(y; 6a,613) = -ka_13(y; 6a, 613) 
17(yi; 0ia, 0i13) = Pa(yi; 0,c,)p13(yi; 0;13)

the problem Eq. (25) can be replaced with the following general optimization problem 

(27) 

where 

n 11

c.p(y; 6a, 613) = Ł ry(y;; 0;a, 0,13) = Ł Pa(y;; 0;a)p13(y;; 0,13) (28) 
i=I i=I 

Introducing vectors: 

Pa(y; 6a) = [p(Y(Y1; 01(Y),p(y2; 02a), ... ,p(y,,; 0,w)]T 
pp(y; 613) = [p13(Y1; 0113), p(y2; 0213), · · · , p(y11; 01113)]T

the function Eq. (28) is written in the formula 
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11

cp(y; 6a, 613) = LPa(Yi; 0icr)P13(yi; 0;13) = [p"(y; 0,,)]T P13(y; 613) (29)
i=I 

Let us remind that the target function of classic M-estimation is written in the similar
11

form cp(y; 0) = L p(y1; 01). Thus the estimation based on optimization problem
i=I 

Eq. (27) can be regarded as a split M-estimation (the notation Msplit is just based on
such fact). The function Eq. (29) will be regarded as the general target function of
Msplit estimation.

3.2. Optimization problem and its solution for geodetic observation case 

Let

V= y-AX (30)

be a functional model of an observation vector y E 'R." and let E(v) = O, E(y) = AX, (v 
- vector of random errors, A E 'F..11

,. - known matrix of coefficients, X E 'R,. - vector
of unknown parameters). Taking the earlier introduced model v1 = y1 - 0; the model
Eq. (30) can also be written in the following form

(31)

where au,•l is i-th row of the matrix A. Let us notice that 0; = au.•) X and also
0 = AX. Referring to the earlier presented assumptions, two competitive parameters
01a = au,•) X, and 0113 = ar,,.) X13, therefore, two competitive functional models
v;,, = y1- au,•lXa and v;13 = y;- au,•JX/3 respond to each observation y;. Such natural,
as for Msplit estimation, split of the functional model can be written as follows

or referring to the model v = y - AX (Wiśniewski, 2008)

{ 

Va= Y -AX,, 
split(v = y - AX)= 

V13 = y - AX13 

(32)

(33)

The split of the functional model of geodetic observations results in the fact that the
optimization problem of Msplit estimation has two competitive solutions: two estimates
of parameters X" and x:13 and two competitive residual vectors Va and v13 that respond
to the same observation vector y. 

Considering the above presented functional model of observations, the general
optimization problem Eq. (27) can be replaced with the following one
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where 

li 

cp(y; x., X,s) = I Pa(y,; x, )p,s(y,; X,s) = 
l=I 

= [prr(y;Xa)]Tp,s(y;X,s) 

(34) 

(35) 

As it was assumed earlier, the functions Pa(·) and P,s(·) are at least convex and twice 
differentiable. Thus X" and X,s estimates are a solution of the optimization problem 
Eq. (34) if only the following gradients of the target function Eq. (35): 

ga(Xa, X,s) = a! cp(y; x., X,s) E 'F..' 
a 

gs(Xcr, X,s) = a! cp(y; x.. X,s) E 'F..' 
,B 

are zero vectors. It means that 

gc,(X,,, X,s)I X
0
=Xa = O 

X/J=Xt3 
(36) 

g,s(Xr,, X,s)I X
0
=Xa = O 

Xµ=Xt3 

at the same time. 
By computing the derivative 

a iiv; a !lx cp(y; x., X,s) = !lx -:;-<,o(y; X,,, X,s) 
u rr u ,,uVcr 

one can obtain 

(37) 

where (to simplify the notation) 

Prr(y;Xr,) = fpa(Y1;Xa),Prr(Y2;Xc,),··· ,p(y11;Xa)]T = 

= [pa(V1cr),p(V2a), · · · ,Prr(V,w)]T = Prr(Vr,) 
and 

P,s(y; Xrr) = [p,s(y1; X,s),p,s(.Y2; X,s), · · · ,p(y,,; X,s)]T = 

= [p,s(v1,s),p(v2,s), · · · ,P,s(v11,s)]T = p,s(v,s) 
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By introducing a diagonal matrix 

diag{p,e(v,e)l = diag{p,e(v1,e),p,e(v2,e), · · · ,P,e(v,,,e)) 

furthermore, the terms 

and 

a~ a T - = -(y - AXa) = -A 
axa axa 

the gradient gaCXa, X,e) can be written as 

ga(Xa, X,e) = a! <p(y; x., X,e) = -AT diag{p,e(v,e)lgMa(Va) (38) 
a 

Analogously, one can write 

_ 8v,e d. { ( )lapa(va) 
- ax,e rag Pa Va Bv ; 

And since, also in the analogous way, 

8V,e 8 T - = -(y - AX,e) = -A 
ax,e ax,e 

therefore 

where 

8p,e(v,e) 
gM,e(V,e) = ~ uV,e 

To solve the optimization problem, i.e. to find such estimates x, and X,e that make 

¢::> min rp(y; Xa, X,e) = rp(y; x., X,e) 
X0,Xµ 
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Newton's method can be applied (e.g. Teunissen, 1990). The iterative process of this
method in a case of a particular class of functions cp(y; x.; X,a) was presented in
the papers (Wiśniewski, 2008, 2009). The similar form of this process can also be
proposed for the general theory of Msplit estimation that is presented in the present
paper. For such purpose, the following Hessians are computed

and

If

and

OVa a - =-(y - AX ) = -A 
()XT ()XT " a a 

then Hessian HaCXa, X,a) can be written as

T . ()gMa(Va) 
Ha(Xa, X,a) = A dtag{pp(v,a)} T A (40)

ova 

The following derivative ogMa(va)/ovJ is a diagonal matrix with elements 82pa(v1a)/ov;" 
(82pa(v1a)/8v1a8v1" = O for every i -:f. j). Let this matrix be denoted as HMa(vcr), then
the Hessian searched is written in the form

(41) 

The other Hessian H,a(Xa, X,a) can be computed in the analogous way. Thus taking

and introducing
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one can finally obtain

H,a(Xa, X,a) = AT diag{pa(va)lHM,a(v,a)A(42) 

Let us notify that if the functions Pa(y;;Xa) = Prr(V;a) and P,a(y;;X,a) = Prr(v;,a), 
i = I, ... , n, are positrve and convex then the following multiplications
diag{p"(v,,)}HM,a(v,a) and diag{p,a(v,a)lHMcr(vcr) are positive definite matrices. Therefo­
re, Hessians Ha(Xa, X,a) and H,a(Xa, X,a) are also positive definite ones (the sufficient
condition is fulfilled).

The iterative process that solves the optimization problem min cp(y; X,; X,a) =
X0,Xp 

cp(y; Xa, X,a) by applying Newton's method is two-staged (Wiśniewski, 2008, 2009).
When assuming the form of the target function introduced in the present paper, i.e.

cp(y; x.. X,a) = [Pa(y; x, )]T P,a(y; X,a) = [Pa(v(r )]T P,a(v,a)

such process can be written as

Xi - xi-I dXi } a-,, +-a
xi = xi-I + dxi 

,a ,a ,a i= I. . k

where

(43) 

sx: = -!H (Xi-1 xi-1)1-1 rx;:' xi-1) =a a a,,a ga a,,a 
JATd· 1 ( i-l)lH ( i-l)Al-lATd· I ( i-l)l ( i-1)= \ 1ag1P,a V.a Ma Va iag1P,a V.a gMa Va

dxi _ 1u (Xi xi-1)1-1 xi xi-1) _,a - -\ ,a a, ,a &J( a, ,a - 
= !ATdiag!p"(v;,)lHM,a(vr1 )Ar1 ATdiag!p,/v;,)lgM,a(vr1)

(44) 

i=I, ... , k

Ą • • I Ą • • I 
The iterative process ends when X" = X;, = X;,- and X,a = x; = »: . The estimates
Va = y - AX" and v,a = y -AX.a that are the competitive vectors of residuals assigned
to the same observation vector y can be computed on the base of the Msplit estimators
x, and X,a, respectively.

4. Conclusions 

The theory presented in the present paper supplements the theory of Msplit estimation.
It is especially because the assumptions concerning local and global split potentials are
extended. It is possible by applying the !-information introduced here. The assumption
extension is possible since the !-information is based on probability density functions.

Msplit estimates are such quantities that maximize the global split potential. The­
refore, two competitive probability density functions concerning the same observa­
tion vector should be assumed to formulate and to solve the optimization problem
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Eq. (24) (or equivalently Eq. (25)). Some statistical methods can be applied to choose
such suitable competitive functions (e.g. Romanowski, 1979; Wiśniewski, 1985, 1987,
1996). It is also possible to base such choice on some general arbitrary and theoretical
assumptions. For example, Wiśniewski (2009) assumed that Per and Pp are the families
of normal probability distributions (the same assumption will be also applied in the
second part of the present paper).

The general form of the Msplit target function Eq. (29) can be proposed when
!-information is replaced with at least convex and twice differentiable functions. Such
functions can be chosen arbitrarily thus one can suppose that the class of Msplit estimator
is broad and contains estimates of different properties.

The optimization problem of Msplit estimation (27) is a general one. It can be
changed to the Eq. (34) when it is applied to geodetic problems. Then two competitive
Msplit estimates x, and x, are its solutions. This two estimates refer to the same
observation vector y (if only the original functional model v = y - AX is split into the
two new ones Va = y - AXer and Vp = y - AXp). For that reason, also two competitive
residual vectors Ver and Vp refer to the same observation vector.

Functions Pa(y,; Xa) and pp(y,; Xp) proposed in the present paper have such general
properties that the optimization problem can be solved applying the Newton method.
The iterative process is described and the necessary forms for gradients and Hessians
are derived (see, Eqs. (37)-(41 )). The procedure proposed here is two-staged and the
second stage is party based on the results of the first one.

The present part of the paper is a theoretical one and can be regarded as a ge­
neralization of the earlier published theory of Msplit estimation (Wiśniewski, 2009).
The next part, which is also strictly referred to the above mentioned paper, presents
and develops theory of a squared Msplit estimation, i.e. such Msplit estimation where
functions P,rO and pp(·) are squared ones. This kind of estimation seems to be very
useful from practical point of view (as for the present stage of Msplit estimation deve­
lopment). Thus the next part presents some numerical examples that illustrate the main
properties of this kind of Msplit estimation. Those examples together with the earlier
published ones (Wiśniewski, 2008, 2009) point at the future application of the newly
elaborated method of estimation.
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Streszczenie

Niniejsza praca składa się z dwóch części. W pierwszej z nich, w nawiązaniu do wcześniejszej pracy autora
(Wiśniewski, 2009) przedstawiono teoretyczne podstawy M,pli< estymacji. W stosunku do cytowanej pracy,
tutaj bardziej szczegółowo omówiono założenia o charakterze probabilistycznym. Wprowadzono także
pojęcie I-informacji co pozwoliło na zaproponowanie bardziej ogólnej formy potencjału rozszczepienia.
Podstawową treścią tej części pracy jest uogólnienie funkcji celu M,p1;, estymacji. Dla tej funkcji oraz w
odniesieniu do modelu obserwacji geodezyjnych, ustalono problem optymalizacyjny oraz przedstawiono
sposób jego rozwiązania.

W drugiej części pracy, także w nawiązaniu do cytowanej pracy autora, przedstawiono pewien
szczególny przypadek M,pli, estymacji nazwany kwadratową M,pli< estymacją. Rozwinięto teorię tej wersji
M,pli, estymacji oraz przedstawiono kilka przykładów numerycznych wskazujących na jej podstawowe
własności oraz możliwe obszary zastosowania.


