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Abstract: The present paper consists of two parts. The first part presents theoretical founda-
tions of My estimation with reference to the previous author’s paper (Wisniewski, 2009).
This time, some probabilistic assumptions are described in detail. A new quantity called
f-information is also introduced to formulate the split potential in more general way. The
main aim of this part of the paper is to generalize the target function of My estimation
that is the basis for a new formulation of the optimization problem. Such problem itself as
well as its solution are presented in this part of the paper.

The second part of the paper presents some special case of My estimation called
squared M, estimation (also with reference to the mentioned above paper of the author).
That part presents a new solution and development in the theory of this version of M esti-
mation and some numerical examples that show properties of the method and its application
scope.

Keywords: Geodetic adjustment, M-estimation, split potencial of an observation set

1. Introduction

The maximum likelihood method (M L-estimation) is one of the important estimation
methods and it is also applied in geodetic computations (e.g. Grodecki, 1999:; Koch,
1986; Wisniewski, 1987; Yu, 1996). Let v; = y; — 6 be a functional model of geodetic
observations y;, [ = 1, ..., n, where 6 is an unknown parameter and v; is a standardized
measurement error (without loosing generality and to simplify notation the variable v;
is assumed to be standardized also in the next parts of the paper). A quantity  is the
M L-estimate of a parameter 6 of a random variable y =[y, ... ._\',,]T with the density
function f(y; 6) when

min g(y; 0) = o(y: 0) (1)

where

@(y:0) == > In f(yi36) 2)

i=1
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(the random variables are assumed to be mutually independent).

However, it is M-estimation that has played a major role in geodetic elaborations
for some years. Foundations of this estimation method were formulated and presented
by Huber (1964, 1981) under the assumption that the term —In f(y; 6) inside the target
function Eq. (2) can be replaced with another arbitrary function p(y; 6). Thus, 8 is an
M -estimate of the parameter when

p(yi:0) 3)

minle(v:0) = ) p(yi:0)] =
i=1 1

n

1

For that reason, M-estimation class contains for example the least squares method
(LS-method) with the function p(y; 6) = v* and the principle of the alternative choice
(Kadaj, 1984) with the function p(y; 6) o f (y; 6) (o< is a proportionality sign). The
last of these methods is robust against gross errors. The estimates of the parameter ¢
obtained by applying this method or other robust estimates (in a sense of this paper
interest) will be denoted as éR. Such option in choosing functions p(y; ) results in a
broad class of robust M-estimates. Usually, such estimates are based on the following
probabilistic model of a gross error (¢-contaminated)

f’(;:(l—8)})(/”4‘8[)5//i (OS(‘:SI) (4)

where Py, is a probability distribution that belongs to the family P, = {Py, : 6, € O}
of all acceptable probability distributions (for random variables y) and Pg is a “strange”
distribution that belongs to another family P = {Py, : 03 € O} (e.g. Serfling, 1980).
The P, and Py families are indexed with parameters 6, € ©, and 3 € Op, respectively.
Huber’s function is a good example of p(y; 8) function that refers to the model Eq. (4)
(Huber, 1981; Hampel et al., 1986)

Pa(y;6) = v forlv| <t ey~ Py

p(y:6) = )

|
pp(v:0) = tv] — Erz forlv|>1 ey~ Py

where 1 > 0 (e.g. t = 2.0, 2.5, 3.0). There are also other methods where pg(y: #) function
is two-segmented (e.g. Hampel et al., 1986; Yang, 1991, 1994, 1999).

Geodetic applications of robust M-estimation are presented in many papers for
example Krarup and Kubik (1983), Huang and Mertikas (1995), Koch (1996), Gui and
Zhang (1998), Yang (1999), Gotzelmann et al. (2006). Generalization of M-estimation
to the case of dependent observations can be found in Xu (1989), Yang (1994) and
Yang et al. (2002). The principles of M-estimation were also applied to develop robust
Kalman filter (e.g. Koch and Yang, 1998; Yang et al., 2001), robust collocation (Yang,
1992), robust estimation of variance coeflicient (Wisniewski, 1999) or robust estimation
of variance-covariance matrices (Yang, 1997). Theoretical properties of M-estimation
can be analyzed by using the influence function (e.g. Hampel, 1974; Serfling, 1980;
Hampel et al., 1986) or the breakdown point (e.g. Rousseeuw, 1984; Hampel et al.,
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1986; Xu, 2005). It is well known that robust M-estimation results in decreasing of
influence of outliers on the final estimate f (except for some critical case presented
in (Xu, 2005) or, from the other point of view, in (Prészynski, 1997, 2000)). Let
éR be the most robust estimate, 1.e. the estimate that is free of the influence of all
outliers of unacceptable distribution Pg, (outliers are rejected during the estimation

process). In such theoretical and idealistic case, the estimate fz of the parameter 6
is the estimate of the parameter 6, at the same time. It is obvious that observations
rejected during the estimation process are not interesting from the M-estimation point
of view. Furthermore, the parameter 6 of unacceptable distribution Py, is not estimated
at all. It is reasonable if outliers results from gross errors. However, even then it would
be interesting to compute the estimate é,; to help understand or analyze properties or
sources of gross errors. On the other hand, outliers are not always effects of faults,
slips etc. Observation sets can sometimes contain some observations with determini-
stic errors or systematic ones that are hard to identify. Also, if observation sets that
were measured at two different epochs are elaborated together, some observations for
example concerning some displaced points can be regarded as outliers. In such cases or
other similar ones (like a disturbed laser scanning) an estimation of the parameter 63,
not only 6,, seems reasonable. Such estimation process can be carried out by applying
M pji estimation.

Theoretical foundation of the method proposed in (Wisniewski, 2009) and cal-
led M, estimation is a general assumption that each observation described by the
functional model v = y — 6 can have either of two distributions P, € Py, or Pg € Py,.
Consequently, the model v = y—6 is naturally split into two competitive ones v, = y—6,
and vg = y — 6. In the cited paper, it is assumed that every observation y has got some
potential describing the chance to identify the observation with either of two possible
distributions Py, or Py,. Such potential, called the elementary split potential, was refer-
red to the probability p, (y; 6,) © y ~ Py, and information Ig(y; 6g) = — In pg(y; 6p)
(e.g. Jones and Jones, 2000), that every observation y can provide under competitive
assumption that y ~ Py,. Generally, one can say that, according to the presented theory,
quantities 0, and éﬁ are M), estimates of competitive parameters ¢, and 6z if only
they maximize the split potential.

The next section of the paper presents assumptions and further theoretical de-
velopment of M, estimation in detail. Theory is referred to the functional model
of geodetic observations. The general target function of Mgp; estimation as well as
conditions for respective optimization problem solution are also presented.

2. Fundamental assumptions

2.1. Idea of Mgy estimation

Let the following
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{1.1,1.3,1.4,1.5,1.7,3.4,3.5,3.6}

be a set that contains realizations of a random variable Y. Such realizations regarded
as observations can be referred to the following functional model

One can estimate the parameter 6 by applying the LS-method and obtain ;5 = 2.19.
However, the set elaborated contains some outliers. Thus an & — contaminated distri-
bution Py = (1 — €)Py, + &Py, can be assumed as a probabilistic model of the variable
Y. Taking such assumption the parameter # can now be estimated by using a method
that belongs to the robust M-estimation class. Thus if the weight function defined as
follows (e.g. Kadaj 1988; Yang, 1991; Huang and Mertikas, 1995; Gui and Zhang,
1998)

op(y; 6
w(v) = gxz)) (6)

and the Danish method (e.g. Krarup and Kubik, 1983; Zhong, 1997), where

for|v| <t

wiv _{ expl—lv =%}  forlvl>1 @)
is applied, then one can compute the Danish M-estimator as 6z = 1.49 (under as-
sumptions / = 0.5, t = 0). Very similar results can be obtained by using other robust
methods or the Danish method but under different assumptions concerning the control
parameters [ and ¢. Regardless to the method choice, the influence of the outliers 3.4,
3.5, 3.6 on the robust estimate of the parameter 6 is decreased or even eliminated. This
common property results from the assumption that the parameter 6, should lie near to
the densest observation concentration. Thus, in robust M-estimation, p(y; 8) functions
are designed in such way to fulfill this postulate. For example, Wisniewski (1993)
proposed that p(y; ) = — In fR’)(y; 0) where fX’(y; ) is the density function of an
asymmetric distribution Py that belongs to the family of the Pearson distributions (e.g.
Elderton, 1953). For the method called the principle of the alternative choice, Kadaj
(1984) assumed that p(y; 8) o —fND(y; 6) where fND(y; 6) is the density function
of a distribution Py that belongs to the family of normal distributions. In this two
cases, the weight function Eq. (6) is a continuous and concave function with the
maximum at the point v = 0 (for example for the second presented method
w(v) o exp(—v?), e.g. Kadaj, 1984). Thus, such weight functions assign the biggest
values of equivalent weights to observations, which values, are close to the parameter
6,. For some methods that belong to the M-estimation class and that are based on the
model Eq. (4) such requested properties of the weight function Eq. (6) are obtained
by combining the function p,(y; 8) = v? with pp(y: 6) where:
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Wa(y:6) = 9p, (v 0)/0(v?) = 1
w33 6) = Bps(y: O002), Y |vi| > vl = wsyj:6) < ws(vi: )

(see Eq. (5), Eq. (7) and, e.g. Hampel et al., 1986). In all these cases, the main
task of the weight function w(v) (or its part wg(v)) is to assign small values of
equivalent weights to the observations that are supposed to be distributed according to
the “strange” distribution Pp,.

Let us consider the observation set presented above one more time. One can
suppose that since dx = 1.49 then the influence of observations 3.4, 3.5, 3.6 on this
value was rather small actually. Let us pay attention to the fact that these observations
are concentrated around another parameter, for example 6. As it was assumed earlier
the observation set contains realizations of two different random variables Y, and Yj
with different parameters 6, and 6. However, we were only interested in the parameter
6, estimated by . Such approach to estimation of parameters seems doubtful if we
know that an observation set contains realizations of two random variables. Since two
parameters 6, and 6 can be assigned to the observation set it is natural to estimate
them both. In some cases knowledge of the estimate 6}; value can be insignificant
or inutile but it does not mean that estimation of both parameters together does not
influence the value of the parameter 6,. One should expect that during such integrated
process of estimation, estimates 6}(, and H}; will “attract” observations that suit them best,
respectively. Thus the estimate d, can be a function of realizations of the variable Y,
only (that is not always possible for robust estimates 9:,). In other practical cases, that
were presented in the section 1, both values 6, and é,g seem interesting. The graphical
interpretation of the present observation set as well as the values of the estimates 6, ¢
and 6 is presented in Figure la. The same figure presents also the desired places for
the estimates 8, and (95. The similar interpretation but for the observation set with only
one outlier is presented in Figure 1b.

Traditional approach to calculation of the estimates 6, and 9[,: assumes some ar-
bitrary principal of assigning realizations of the random variable Y to either of these
two estimators. Myj; estimation makes two competitive, objective assumptions (the
observation set is not divided into parts):

— observations are realizations of the random variable Y, ~ Py,

— observations are realizations of the random variable Yg ~ P,

Such assumptions result in split of the probabilistic model of observations (every
observation can be described by two competitive distributions) but also lead to two
competitive functional models (this fact is discussed in the next parts of the paper).
During the estimation process either of models becomes more realistic, probable for
each observation, i.e. it suits respective observation better (one can say it “wins” the
competition). One can suppose that a single observation can provide some potential that
can give opportunity to identify it with either of two competitive models (identifying
on the whole or only in part, i.e. an observation can be identified with the both models).
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Fig. 1. Graphical interpretation of My estimation idea

2.2. Elementary split potential

Let us consider a single observation y that is a realization of a random variable Y with
the following e-contaminated distribution

PQZ(I—E)P;)”*'(SP%

Let there be a number that can describe the chance to identify the observation with
either of two distributions Py, or Py,. Let these distributions be discrete ones with the
probability functions p,(y; 6,) and pg(y; ). It means that for each observation there
are two probabilities p,(y; 6,) = p, and pg(y: 6g) = pg. Then the number mentioned
above (and obtaining values from the interval < 0, 1 >) can be written as the following
quantity (Wisniewski, 2009)

Ko p(y3:00.6p) = pa(y:60) T Ig(yi ) = pp(y:08) T Lo (y:60) (8)

where a T b = a”. The term I(y; 6) = —In p(y; 8) is an amount of information that
every single observation can provide if the probability of the observation appearance
is p(y; 8) = p (e.g. Jones and Jones, 2000). The quantity K, g(y; 6,,6p) is called the
elementary split potential (Wisniewski, 2009). Let pg = pg(y; 63) = 1, then the amount
of information that the observation can provide is equal to zero

Ig(y;6g) = —Inpg(y; 65) = 0

Because pg = 1 thus such observation was expected, exactly. Its appearance did
not provide any new information. In such case, regardless of the probability value
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Pe = Po(y,6,), the split potential obtains its biggest value K,s(y: 6,, 6g) = 1 (it
results from the first part of Eq. (8)). The split potential value equals to 1 also when
Pa(y; 0,), regardless of the value of pg(y: 63). The split potential approaches zero
when p,(y; 6,) <1 and pg(y; ) — 0O at the same time. Of course, one can consider
the second part of Eq. (8) and discuss the situation equivalently on the base of the
information /,(y; 6,). The split potential proposed in the mentioned paper for discrete
distributions has the following general properties

Kop(yi6y.,03) =1 when :
Ig(y;03) = 0 © pp(y:6g) = 1 (regardless of p.(y:6,))
or
1,(y:0,) =0 & p,(y:6,) =1 (regardless of ps(y:6s))

and

Ko p(y:04,63) = 0 when :
pp(yibs) = 0 & Ig(y;6p) — 0 and p,(y:6,) <1
or
Pa(y36:) = 0 & 1,(y:6,) = o0 and  pp(yi6p) < 1

The elementary split potential idea can be generalized to the case of random
variable with continuous distributions Py that belong to the family P = {Py > f(v: 6)
: 6 € O} where f(y; 0) is a density function (the sign > means that this function is
assigned to the distribution Py). For such purpose, the f-information defined as follows

[f(y; f)ox —Incf(y;0), ¢>0 9)

is now introduced. For example, if y is normally distributed and its distribution belongs
to the normal distribution family P = {N[6, 0] : 6 € 6} then
F(y:0)=(-0)°%=V* for c=2+r (10)
Let us pay attention to the fact that the amount of the f-information provided
by the observation Y = y grows larger with the increase of the absolute value of the
random error v = y — 6 (Fig. 2a). The maximum probability of appearance is assigned
to errors close to zero. Thus if 8, is a parameter of the variable Y distribution and if
an observation y with a big and less probable error appears then the information that y
can provide is rather big (Fig. 2a). Such information can even point at the fact that the
parameter 6, is not a parameter of the y distribution and should be replaced with for
example 6 (it is very important fact in M estimation theory). On the other hand,
the amount of f-information about the parameter 3 can be close or even equal to zero
(Fig. 2b).
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Fig. 2. Density function and f-information

The elementary split potential Eq. (8) can be rewritten in a new following form

by using the density function and f-information

Ko p (500 0p) = €1 fal3302) T 153 8p) = €2fp(v30p) T £5(y:6) (11)
Taking I/ (y; 8) = — In cf(y; ), the elementary split potential for the observation y can

be written as follows (for ¢, ¢y > 0)

K(Y,B(,V; 8(!7 gﬁ) = Cl./;i(.y; 9{!) T [_ In CZf,B(.V; 8,3)] =
=2 fp(y;6p) T [—Incifo(y:6a)]

(12)

The potential Eq. (12) is based on the assumption that the observation y can be a reali-
zation of either of two competitive random variables Y, ~ Py or Y3 ~ Py, where Py,
and Py, are probability distributions that belong to the following families, respectively:

P{r = {PH‘, > u(_v;ga) : Bl B B ) P[} = {Pé'lg > ﬁi(_‘-gﬁ) : 9/3 € Gﬁ}



M i estimation. Part I: Theoretical foundation 11

The natural logarithm of the split potential plays a very special role in Mgy
estimation. Thus taking

k(r./i(y;gm H,B) =In K(y.,(;(.)’QHmHﬁ) (13)

one can write

k()’.ﬁ(.y; H(Y’ 8/3) =In Knﬂ(,\': Hu’ Hﬁ)

In{c) fo(y:6) T [=Incafp(y;Op)]} =

) (14)
= Infco fp(yi6p) T [—Incifo(y;0:)]} =
= —Incy fo(v; 62) In e fp(y; 6p)
Since
~Ine1fo(yi6,) = IL(vi6a)
—Incafp(y;6p) = l;j (v:6p)
then
ko (v 60, 6p) = —IL (3 615 (3 6p) (15)

2.3. Split potential of observation vector (global split potential)

Let Y, = [YiasYou, - .Y,“,]T and Yg = [Yi, Yo, - .Y”/g]T be random vectors and
let Py, and Py, be their distributions, respectively. The distributions belong to the
following respective families:

Pn = (PO(, = f;r()ﬂﬁu) . 911 € G()' Pﬁ = {Pﬁ/; 7 fﬁ(y’ob’) : 0/3 € 9[3} (]6)

(0 € R" — parameter vector). Additionally, let random variables Y;,, Yz, i = 1, ..., n,
be mutually independent. Then

fn(ys 0, = l—[ fa(.\'i: Oi) (17)
=1

Joy:0p) = [ | Sz ) (18)
=]

Lety = [vi,V2, s _\',,]T be a vector of observations and let it be a realization
of either of two competitive random variables Y, ~ Py, and Y, ~ Py, . According
to the earlier assumptions, every observation y; has its own assigned elementary split
potential K, g (y;: 6,,63) so a proper split potential should also be assigned to the whole
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vector y. In the paper (Wisniewski, 2009), such potential was called as the global split
potential and defined as follows

K(iﬂ(y;ﬂth QB) = l_] Ka.ﬁ(yi;gi(n 91/3) (19)
i=1
Considering Eqgs. (11) and (12) and also Eqs. (16)-(19), the potential K, 3(y; 0, 03)
can be written in the form

n

Kop(¥:00.05) = [ [1c1fa0i00) T 5 (i 0p)) =

b (20)
= [ [teafotvis 0ip) 1 1 (vi: 610}

i=1
or

n

Ko p(y:0,.05) = l_[ {c1fa(isbia) T [ Incafp(yisOip)]} =

it 1)
= [ [te2fs0i6) T =10 c1fuvis 61}
i=1

The logarithmic global split potential can be written in the form

k(iﬁ(y» 917# Bﬁ) =In K(rﬂ(y» O(h 9/}) =

: , (22)
= Z In Cl,/(r(,,\’i; 9[0) In CZ‘/,B(,\‘[; 91/5)
i=1
or
kap(¥;80,8p) = = > 11(vi: 6:)I] (vi3 O1p) (23)
=3

3. Optimization problem and its solution

3.1. General optimization problem

The main principle of M,j; estimation (Wisniewski, 2009) assumes that the quantities
0, and @ﬁ are Mp); estimates of the parameters 6, and 0, respectively, if only they
maximize the global split potential K,z (y: 0., 03). If the potential is referred to the
probability families

Pn = {PGu > f;r(y;err) : Bn € G)n} and Pﬁ = {Pﬂﬁ > fﬁ(y’eﬂ : Bﬁ € @/3)}
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then the mentioned principle can be formulated as follows

max Kop(y:0,.05) = K, 5(y:8,.08;) (24)
s /f
Since
max K, g(y; 0,,0p) = mm[ K, p5(y:0,.05)]
0,.05 205
and

mien[—Ka,g(y; 0,.05)] = glien[—kaﬁ(y; 0,.05)]
oY

0‘,. B
then the optimization problem Eq. (24) can be replaced with an equivalent one
g]ln[ k(rﬁ(y Ba Oﬁ)] _ko.ﬁ(y; éa’ 6,8) (25)
- /3

Such formulated Mgp);; estimation can be regarded as a split M L-estimation. Let the
global split potential have more general form

kop(y:0,,05) = — Z P (Vi Oia)pp(yis 6ig) (26)
i=1

that is not necessarily referred to any probabilistic assumptions. Functions p,(v;: ;)
and pg(y;; i) should be at least positive convex and twice differentiable. Introducing
the following notations:

Sﬁ(ys 90,0,8) = _kuﬂ(y; 0<n 0[1’)
Nisbias Oi) = pa(Vis Gia)pp(yis 6ig)

the problem Eq. (25) can be replaced with the following general optimization problem

mm @(y:0,.05) = ¢(y: 0, 0;) (27)
- /)
where
@(y: 04, 05) = Z n(vi: Oias Oig) = ZPU(_V{; Oia)pp(yiz Oip) (28)

=1 =1

Introducing vectors:

P‘,(y; e(y) = [Pu ()’1 s le)» ,0(_\)2; H’l:r)’ e -/)(_Vn; Hmr)]T
Ps(Y: 05) = [ps(y1561p), p(y2: 62p), - - - OV Oup)]T

the function Eq. (28) is written in the formula
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(Y300, 05) = D pais 6ia)op (33 O1p) = [0, (33 01" Py 0p) (29)

=1

Let us remind that the target function of classic M-estimation is written in the similar

form ¢(y; 0) = Zp(yi; 8;). Thus the estimation based on optimization problem
i=1

Eq. (27) can be regarded as a split M-estimation (the notation Mg,; is just based on

such fact). The function Eq. (29) will be regarded as the general target function of

Mp);, estimation.

3.2. Optimization problem and its solution for geodetic observation case

Let

v=y-AX (30)

be a functional model of an observation vector y € R" and let E(v) =0, E(y) = AX, (v
— vector of random errors, A € R"" — known matrix of coefficients, X € R’ — vector
of unknown parameters). Taking the earlier introduced model v; = y; — 6; the model
Eq. (30) can also be written in the following form

Vi =Yi— 0; = Yi— a(i,O)X (31)

where a(.) is i-th row of the matrix A. Let us notice that 6; = a;. X and also
0 = AX. Referring to the earlier presented assumptions, two competitive parameters
O = 2G4 X, and O = a;.) Xp, therefore, two competitive functional models
Vie = Yi— a¢) X, and vig = y;— a; )X respond to each observation y;. Such natural,
as for Mp; estimation, split of the functional model can be written as follows

i = Yi — Qe X(
split(v; = y; — a(,‘_.)X) _ Via = Yi (i,0) X (32)
vig = i — 2.0 Xp

or referring to the model v =y — AX (WisSniewski, 2008)

split(v = y — AX) = { Y =T ak, (33)
Vg =Y — AX/}
The split of the functional model of geodetic observations results in the fact that the
optimization problem of My; estimation has two competitive solutions: two estimates
of parameters X, and Xﬂ and two competitive residual vectors ¥, and V5 that respond
to the same observation vector y.
Considering the above presented functional model of observations, the general
optimization problem Eq. (27) can be replaced with the following one
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mln SO(Ya X(Y XB) ¢(y7 Xth X[f) (34)

where

‘P(Y~ X«n Xﬁ) = Z pn(_\'i; Xu ),05(_\'/? Xﬁ) =
i=1
= [P (¥s Xo)1" 05(¥: Xp)
As it was assumed earlier, the functions p,(-) and pg(-) are at least convex and twice
differentiable. Thus X, and Xﬁ estimates are a solution of the optimization problem
Eq. (34) if only the following gradients of the target function Eq. (35):

(33)

0
Y X(Yv X b X(y X RI‘

(9
g Xu XB) Sﬁ(y X(nxﬁ) € Rr

are zero vectors. It means that

ga(X(n X/j)| X,=X, = 0 (36)
X=X

25(Xo, Xp)|x, %, =0 (37)
X/,:)k/;

at the same time.
By computing the derivative

v,
X0, Xg) = Xo X
()x 8) = 3%, ov (,*”(y o
one can obtain
9 _ (()V“ apn(lln) ap(‘ 2() ) 6,011("1111) T
PR R = g )= g, =R g, = gl

where (to simplify the notation)

Po(¥: Xe) = (0013 X))y o (02: X))y o0 Xo)]T =
. [/)(r(vla)v/)(vlr)v e 7/)(Y(VII(Y)JT = P(,(Vu)

and ; -
Ps(Y: Xo) = [ps(r1: Xp) pp(32: Xp) -+ p(ns Xp)]™ =

= [ps(vig), p(vag), - - - .pﬁ(\',,,j)]T = Pg(vﬁ)
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By introducing a diagonal matrix

diag{ps(vp)} = diaglps(vip), ps(vap)s - -+ s pp(Vup))

furthermore, the terms

0pa(Via) 0pa(Vaa) 0pa(Vna) ;1 _ P, (Vo) _

[ aVl(r ' av2a ’ ’ 8‘};1(! 6Var B gM”(V”)
and
ov 0
— -AX, )= -AT
X, X, (y )
the gradient g(,(f(m Xﬂ) can be written as
0 T..
g.(Xo.Xp) = X o(y: Xo, Xp) = —A " diag{pg(vp)igma(Ve) (38)
Analogously, one can write
0
T 5 X(Y! X =
X, w(y 5)
O ) ) Bpa) r
aX’B @ 04 (9\)]/3 LD i 0 2 Y 6V2ﬂ b RN a0 d nw (9\7”'6
av[f . ap (V(r)
= _d . @
3%, iag{p, (Vo)) ov.
And since, also in the analogous way,
8V[3 0
—2 = —(y-AX;p) = -AT
X, ~ ox, 0 A%
therefore
0 T,
g25( Xy, Xp) = BYSO(Y;X(“X[;) = —A diag{p,(va)}gmp(vp) (39)
B
where
gmp(vg) = Bes

To solve the optimization problem, i.e. to find such estimates X, and Xﬂ that make

gu(Xna X,/3) =0

. < min o(y; X,, Xg) = (;X”)‘()
gﬁ(XmXﬁ)zo} x[,,xﬁ‘f’y 5) = @(y; Xo, Xp
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Newton’s method can be applied (e.g. Teunissen, 1990). The iterative process of this
method in a case of a particular class of functions ¢(y; X, Xﬁ) was presented in
the papers (Wisniewski, 2008, 2009). The similar form of this process can also be
proposed for the general theory of My estimation that is presented in the present
paper. For such purpose, the following Hessians are computed

5

- 0
Hn X(hX = R —— ;inX = ToT 8 Xu»X
( 3) aX(,BXIS&(y 3) 6X(T,g ( 3)
and
Hy(X X)—i— (v: X X)—i (X,,Xz)
PR BT XX O e T Gy B
If
0 T, agMn (V:r) avxr
a—ngu(Xu.Xﬁ) =-A dlag{Pﬁ(Vﬁ)}a—‘,IaxI
and
ov 0
—2 = _(y—AX,)) =-A
oXT ~ aXT (y a)
then Hessian H(,()A((,. Xﬁ) can be written as
= (9 (Y(V(Y)
H, (X, Xp) = ATdiag(py(vp)) o oA (40)

The following derivative OgM(,(v(,)/(?VI is a diagonal matrix with elements Gzpl,(v,-(,)/ﬁvfa

(i)zp‘,(\*,},)/(')v,-‘,(')vj,, = 0 for every 7 # j). Let this matrix be denoted as Hy, (v, ), then
the Hessian searched is written in the form

Ha(xu-xﬁ) = ATdiag{p/j(vﬁ)}HMn(vn )A ('“)

The other Hessian HB(X,. )A(,B) can be computed in the analogous way. Thus taking

d _ Ogmp(vg) OV
gﬂ(X‘,,Xﬁ) = ‘Aleag{p”(V”)}M——/j —

axT T  5xT
()Xﬂ (7V/3 ()X/j
. 0 \
= ~Ardiag{p”(v‘,)}mA

6v;

and introducing
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one can finally obtain

Hy(X,, Xp) = ATdiaglp, (vo) Has(v5)A(42)

Let us notify that if the functions p,(yi; Xo) = po(Vie) and pg(yi; Xg) = pa(vip),
i=1,..,n are positive and convex then the following multiplications
diag{p,(v,)}Hpp(vg) and diag{pﬁ(vﬂ)}HM"(v(,) are positive definite matrices. Therefo-
re, Hessians H,(X,, X;) and Hg(X,,, X;) are also positive definite ones (the sufficient
condition is fulfilled).

The iterative process that solves the optimization problem ){mxnﬂ o(y; Xo, Xp) =

¢(y;ﬁly,5(5) by applying Newton’s method is two-staged (Wisniewski, 2008, 2009).
When assuming the form of the target function introduced in the present paper, i.e.

0(¥: Xar Xp) = [P, (¥ Xa)1Tps(¥s Xp) = [P, (va)] ()

such process can be written as

X4 = X4 +dX], } -
J _ xi-l J
XB —Xﬁ +a’Xﬁ el
where
X} = —(H (X, X ) (X X)) =
= {ATdiag(p, (v, )Hya (v, HAI ™ AT diaglp,(vh lgue (Vi)
(44)

dX;, = —(Hy(X}. X)) ge(X0. X)) = | |
= {ATdiag(p,, (v1)Hys(v; HA) ™ ATdiagp,, (vi)lgus(v) )

J=1 .k

The iterative process ends when X, = X£ = X,fl and Xg = X/é = Xé_l. The estimates
Vo=Yy— AX, and Vs=y- A)A([,y that are the competitive vectors of residuals assigned
to the same observation vector y can be computed on the base of the Mgy estimators
X, and X, respectively.

4. Conclusions

The theory presented in the present paper supplements the theory of My estimation.
It is especially because the assumptions concerning local and global split potentials are
extended. It is possible by applying the f-information introduced here. The assumption
extension is possible since the f-information is based on probability density functions.

M1 estimates are such quantities that maximize the global split potential. The-
refore, two competitive probability density functions concerning the same observa-
tion vector should be assumed to formulate and to solve the optimization problem
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Eq. (24) (or equivalently Eq. (25)). Some statistical methods can be applied to choose
such suitable competitive functions (e.g. Romanowski, 1979; Wisniewski, 1985, 1987,
1996). It is also possible to base such choice on some general arbitrary and theoretical
assumptions. For example, Wisniewski (2009) assumed that P, and Py are the families
of normal probability distributions (the same assumption will be also applied in the
second part of the present paper).

The general form of the My target function Eq. (29) can be proposed when
f-information is replaced with at least convex and twice differentiable functions. Such
functions can be chosen arbitrarily thus one can suppose that the class of M; estimator
is broad and contains estimates of different properties.

The optimization problem of Mgy estimation (27) is a general one. It can be
changed to the Eq. (34) when it is applied to geodetic problems. Then two competitive
M i estimates )A((y and )A((, are its solutions. This two estimates refer to the same
observation vector y (if only the original functional model v =y — AX is split into the
two new ones v, =y — AX, and vz = y — AXjy). For that reason, also two competitive
residual vectors V¥, and V¥ refer to the same observation vector.

Functions p, (y;; X,) and pg(y;; X3) proposed in the present paper have such general
properties that the optimization problem can be solved applying the Newton method.
The iterative process is described and the necessary forms for gradients and Hessians
are derived (see, Egs. (37)-(41)). The procedure proposed here is two-staged and the
second stage is party based on the results of the first one.

The present part of the paper is a theoretical one and can be regarded as a ge-
neralization of the earlier published theory of Mgy estimation (Wisniewski, 2009).
The next part, which is also strictly referred to the above mentioned paper, presents
and develops theory of a squared Mp; estimation, i.e. such My,; estimation where
functions p,(-) and pg(-) are squared ones. This kind of estimation seems to be very
useful from practical point of view (as for the present stage of My estimation deve-
lopment). Thus the next part presents some numerical examples that illustrate the main
properties of this kind of Mp; estimation. Those examples together with the earlier
published ones (Wisniewski, 2008, 2009) point at the future application of the newly
elaborated method of estimation.
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Streszczenie

Niniejsza praca skiada si¢ z dwéch czegsci. W pierwszej z nich, w nawiazaniu do wczesniejszej pracy autora
(Wisniewski, 2009) przedstawiono teoretyczne podstawy My estymacji. W stosunku do cytowanej pracy,
tutaj bardziej szczegélowo omoéwiono zalozenia o charakterze probabilistycznym. Wprowadzono takze
pojecie f-informacji co pozwolilo na zaproponowanie bardziej ogdlnej formy potencjatu rozszczepienia.
Podstawowg trescia tej czgsci pracy jest uogélnienie funkcji celu M estymacji. Dla tej funkcji oraz w
odniesieniu do modelu obserwacji geodezyjnych, ustalono problem optymalizacyjny oraz przedstawiono
sposéb jego rozwigzania.

W drugiej czgsel pracy, takze w nawigzaniu do cytowanej pracy autora, przedstawiono pewien
szczegllny przypadek M estymacji nazwany kwadratowa M estymacja. Rozwinigto teorig tej wersji
M estymacji oraz przedstawiono kilka przyktadéw numerycznych wskazujacych na jej podstawowe
wiasnosci oraz mozliwe obszary zastosowania.



