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Abstract: This part of the paper presents particular case of M,pli, estimation called a squared 
M,pli, estimation whose target function is based on convex squared functions. One can find 
here theoretical foundations and algorithm of the squared M,pi;, estimation as well as some 
numerical examples. 
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1. Introduction

The first part of the paper presented the theory of Msplit estimation. Let 
0()' = [01a,02c,,··· ,0m,]T and 0,r = [01rr,02a,··· ,0nrr]T be parameters of the random 
variable y = [y1, Y2, ... , Yn]T, which probability distributions belong to either of two 
competitive families 

It was shown that estimates 0c, and 0/3 are Msplit estimators of these parameters when 

(I) 

(f (y; 0) - density function). The term ka.f3(y; 0a, 0/3) is the logarithmic split potential 
and can be written as follows 

Il n 

ka.f3(y; 0", 0/3) = Ł ft (_y;; 0;rr )!£ (y;; 0;/3) = - Ł In J;,(y;; 0;a) In fp(y;; 0;/3) (2) 
~I ~I 

If !-information I!x(y;0,,) = -1nfa(y;0rr) and also Ij(y;0f3) = -lnfp(y;0f3) are replaced 
with at least double differentiable and positive convex functions Pc,(y; 0a) and Pf3(y;0f3),
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respectively, then the general target function of Msplit estimation can be written in the
following form

Il 

cp(y;9a,9,B) = ŁPa(y;;0;a)P,B(y;;0,,B)
i=I 

(3)

Thus 8a and O.s are Msplit estimates of the parameters 9a, 9.s when

(4) 

If y is the vector of geodetic observations described by the functional model
v = y - AX that is split into the models Va = y - AXa and v.s = y - AX.s, then the
target function is written as follows

Il 

cp(y;Xa,X,B) = ŁPa(y;;Xa)P,B(y;;X,B) = [Pa(y;Xa)]Tp.s(y;X,B) (5)
i=I 

and Msplit estimates of the parameters X, and X.s are such quantities x, and X.s that
fulfill the condition

(6) 

The functions Pa O and P.sO can be assumed arbitrarily as long as they have earlier
mentioned theoretical properties and as long as they can guarantee assumed properties
of the estimators proposed. In the paper (Wiśniewski, 2009) it was considered some
case of Msplic estimation where functions Pa O and P.sO are squared ones. The following
papers (Wiśniewski, 2008, 2009) presented some numerical analyses of such estimation
method called the squared Msplic estimation. It was proved that the squared Msplit

estimation is not only a good efficient alternative for robust against outliers methods
of estimation.

This part presents extended theory of the squared Msplit estimation, some new
numerical examples illustrating its properties and pointing at some possible practical
applications.

2. Theoretical foundations of the squared Msplit estimation 

2.1. Split potential 

Let the functions Pa(y1; 01cr) and P.s(y1; 01.s) from the target function Eq. (3) be as
follows: PaÓ';; 0,a)

(7)
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(8) 

where cri is the standard deviation of the variable Yi, and via, v,f3 are two variants of 
standardized random errors of measurements. Thus one can write 

11 

cp(y; 0a, 8,13) = I IJ(yi; 0ia, 0,f3) = 
i=I 

11 11 

= ŁPa(Yi;0ia)p,13(yi;0i,13) = Ł v7av}
i=I i=I 

By taking 

11 

Ł v7av} = (vc, * Va)T(Va * v,13) 
i=I 

the target function presented above can be rewritten as 

li 

cp(y; 0a, 8,13) = I v;av} = (v,, * Va)T(v,13 * v,13) 
i=I 

(9) 

(10) 

where v = [v1, v2, ... , v11]T is a vector of random errors and « is the Hadamard product 
(e.g. Rao, 1973). Such created function Eq. (IO) is the target function of the squared 
Msplit estimation. 

By taking into consideration the theory of the split potential presented earlier and 
the assumed functions Eqs. (7)-(8), the following elementary split potential can be 
assigned to the observation Yi (in the logarithmic form) 

(11) 

According to this theory, the quantities that were applied in the above formula, i.e. 

If( . 0 ) - v2 a Yi, icr - ur ( 12) 

(13) 

are /-informations that the observation Yi can provide under assumption of either of 
two competitive models Via = Yi - 0ia and v,,13 = Yi - 0,/J· Therefore, the following global 
logarithmic split potential 

11 Il

ka.,13(y;8a,8,13) = Ika.,13(yi;0ia,0,f3) = - I!{(yi;0ia)l£(yi;0,f3) = 
~I ~I 

=-(Ver* Va? (V,13 * V,13) 

can be assigned to the observation vector y. 

(14) 
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Heretofore, no probabilistic assumption was made, however, one can assign some 
families of probability distributions to the target function Eq. (IO) and the global split 
potential Eq. ( 14). 

It is assumed in the general theory of Msplit estimation (Part I of the paper) that an 
observation y1 can be a realization of either of two random variables Ya or Y,e with the 
probability distributions belonging to the following families rp a = {Pe

0 
>- j~(y; 0cr) : 

0a E 0crl and P,e = {P0fl >- f.e(y;0,e) : 0,e E 0,e}, respectively. Let these families be 
families of normal distributions with two variants of the expected value 0a = E(y) and 
0,e = E(y), respectively, and with the same standard deviation er, i.e. let: 

P,e =U'«> f(y;0,e): 0,e E 0,e} = IN[0,e,cr]) 

I 
where J(y;0) = (er Ybr)-1 exp{-2cr-

2(y- 0)2 ). Thus if 

y, ~ Pe
0
.0fl E {Pa, P,e) = {N[01cr, er,], N[0,13, er,]) 

then the following quantities: 

I . _ . _ I -2 2 _ I 2 l"(y,, 01a) - - In cif(y,, 01a) - 2cr, (y, - 0,a) - 2v,a 

I . . 1 -2 2 1 2 Ia(y1, 0113) = - In c2f(y,, 0113) = 2cr, (y, - 0,13) = 2v,13 

( 15) 

( 16) 

(17) 

( 18) 

are two competitive !-informations assigned to the observation y1 (c1 = c2 = er "Y'hr). 
Therefore, the logarithmic elementary split potential can be written as follows 

ka-13(y,;01a,0,13) = -J{(y,;0,a)IJ(y,;0,13) = 
I -4 2 2 I 2 2 

= -4(Ti (y, - 0,rr) (y, - 0,13) = -4v,av,13 

The forms of !-informations as well as the logarithmic elementary split potential 
presented above differ from those in Eqs. (11 )-(13) only in coefficients. Values of 
these coefficients do not influence the solution of the optimization problem and final 
values of Msplit estimates. 

To verify such equivalence also for an observation vector y = [y1, y2, ... , y11]T, let 
it be a realization of either of two random variables Y" ~ Po0 or Y,e ~ Poµ- The 
probability distributions P6,, and P0/l belong to the following respective families of 
normal distributions: 

( I 9) 

Pa = {Po0 >- f(y, 0a)l = {N[0a, CJ) 
P,e = {Po/l >- f(y, 0,e)l = {N[0,e, CJl 
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n n 

with density functions: f(y; 0a) = n f(y,; 0,c, ), f(y; 0,s) = n f(y1; e,,a). These families 
i=I i=I 

share the covariance matrix C = diag (CTT, CTi, ... , CT~) and differ from each other in the 
expected values: 

£(Ya) = [E(Y1a ), E(Y2a ), · · · , E(Y,,cr )]T = [01cr, 02a, · · · , 0na ]T = 0" 
E(Y,s) = [E(Y1,s),E(Y2,s),··· ,E(Y,,,a)]T = [01,s,02,s,··· ,011,s]T = 0,s 

Thus if 

then for c11 = c21 = CT1 --{i; one can write 

Il n 

ka.fJ(y; 0a, 0,s) = - I kr,j3(yi; e,a, e,13) = - I In c11f(y,; eia) In c2,I(yi; ei,B) = 
i=I i=I 
1 r" 2 2 1 T = -- v. V·,s = --(v,,. * Va) (v,s * v,a) 4 IO' I 4 

i=I 

(20) 

2.2. Weight functions 

Weight functions (e.g. Kadaj, 1988; Yang, 1991) and also the influence curve /C (e.g. 
Hampel et al., 1986) play a significant role in designing of estimators and afterwards 
in their theoretical analyses. Let us remind that for the following target function 

n n n 

<p(y;0) = LP(Yi;ei) = LP(Yi-ei) = LP(Vi) (21) 
i=I i=I i=I 

where vi= Yi - ei and the weight function is defined as w(v) = op(v)/o(v2). The target 
function of Msplit estimation is written in the form 

n Il 

cp(y;0a,0,s) = LT/(yi;ei,,.,0,13) = LPa(Yi;eia)P,B(yi;ei,B) = 
i=I i=I 

11 ,, 

= L 17(via, v,13) = LPa(Via)P,a(v,13) 

(22) 

i=I i=I 
where via = Yi - 01a, v,13 = Yi - e,13. Therefore, two weight functions can be derived, the 
first one in relation to va 
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a Bpa(Va) 
Wa(Va, v13) = -?-77(va, v,s) = P,s(v,s) ? = P,s(v,s)wa(Va) (23) 

J(v;;,) J(v;;,) 

and the second one in relation to ve 

where 

Weight functions Eqs. (23)-(24) play a special role in Msplit estimation. Their 
forms point out that the competitive target functions Pa(va) and P,s(v,s) are mutually 
cross-weighted, i.e. the weight function in relation to Va is actually equal to the com­ 
petitive target function p13( v,s) that is strengthened or weakened by the "classic" weight 
function . The similar situation applies to the second weight function, in relation to v,s. 
This very important property of Msplit estimators is especially distinct in case of the 
squared Msplit estimation where 

and futhermore 

Since 

Bpa(Va) av2 Bp,s(v,s) avj 
w (v ) - --- = _a_ = I and w (v ) - --- - - I 
a a - J(v;) J(v;) ,B ,B - J(vj) - J(vj) - 

therefore the weight functions of the squared Msplit estimation can be written as follows: 

w,s(Va, 1113) = Pa(va)w,s(v,s) = Pa(va) = v; 
The functions Eq. (25) and Eq. (26) will be denoted, respectively, as 

(25) 

(26) 

(27) 

(28) 
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Thus if two competitive functional models va = y - 0a and ve = y - 0p result from the 
split( v = y - 0), then the two following relations: 

min(pp(vfi) = vJl 
0p 

become very important for searching competitive estimates 0a and 0.B (see, also Fig. I) 

y 

v 

y 

Fig. I. Weight functions and target functions of the squared M,pH, estimation 

2.3. Optimization problem and its solution 

Let the squared Msplit estimation is applied to estimate parameters X, and X.B from 
split functional model of geodetic observations: v" = y - AXn, vµ = y - AXµ. Then 
the target function can be written in the following form 
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n

cp(y; x., X13) = Ł v;av~ =(va* Va)T (v13 * v13)
i=I 

(29) 

In the part I of the present paper it was shown that if the functions Pa(y;; Xa) and
p13(y;; X13) are convex and twice differentiable, then to solve the optimization problem

one can apply the Newton method. Therefore, the following iterative process can be
used (Teunissen, 1990; Wiśniewski, 2008, 2009) 

X~=X~-1 +dX~-1 =Xt1-{Ha(X~-1,Xt1)r1gcr(X~-1,Xt1) }
x1 = x1-1 + dx1-1 = x1-1 - {H (X1 x1-1)1-1 (X1 x1-1) <30)/3 /3 /3 /3 /3 a, /3 g13 a, /3

Let us remind that the necessary gradients ga(Xa, X), and g13(Xcr, X13) has the
following general forms (in case of Msplit estimation, see Part I, Eqs. (38) and (39)):

ga(Xa, X13) = a!a cp(y; x.. X13) =-AT diag{piv13)lgMcr(Va)

g13(Xa, X13) = ~cp(y; x., X13) =-AT diaglprr(va)lgM13(v13)ox,
where

diag{pa(v)l = diag{pa(V1a),Pa(V2a), · · · ,Pa(v,",)ł

diag{p13(v)l = diag{p13(v113),p13(v213), · · · ,p13(v1113)ł

and

( ) _ [8pa(V1a) 8pa(V2a) . . . 8pa(V11a)]TgMa Va - a ' a , ' aV1a V2rr Vna
8p13(v113) 8p13(v213) 8p13(v1113) T

gM13(V13) = [ a ' a ' ... ' a ]
V 1/3 V213 \/1113

Since, in the squared Msplit estimation

? Pa(y;; x.: = Pa(V;r,) = Via

p13(y;;X13) = p13(v,fJ) = v~

then

diaglprr(v)l = diag{vTo,, Via'··· , v~ał

diag!p13(v)l = diag{vf13, vi13, · · · , v~13ł
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and

gM,B( V ,B) = 2[ V 1,8, V2,s, · · · , V11,s]T 

It can also be written that (on the basis of Eqs. (27)-(28))

and

diaglp"(vcr)l = diag{vfa, v~a' · · · , v~"ł = W,s(Vcr)

For the squared functions Pa(va) and p13(v,s), one can write

(31)

(32)

gMa(~)=2~, g~(~)=2~

In such case, i.e. the squared Msplit estimation, gradients gcr(Xa, X,s) and g13(Xa, X,s) 
can be presented in the forms (see, also Wiśniewski, 2009):

(34) 

Hessians of the general target function have the following forms (see Part I, Eqs.
(41) and (42)):

(33)

where

If considering the squared Msplit estimation and the gradient forms gMa(vcr) = 2va and
gM,s(v,s) = 2v,s, then HMa(va) and HM13(v13) are as follows:

H ( ) _ agMa(Va) _ 8(2va) _ ?I
Mer Ver - T - T - -av(l' av" 
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where I is the identity matrix. Furthermore, considering relations Eq. (29) and Eq (30),
Hessians have got the forms (see, also Wiśniewski, 2009):

n.rx.; X13) =AT diaglpiv13))HMa(Va)A = 
= 2A T Wa(V13)A = Ha(X13) 

H13(Xa, X13) = AT diaglPc,(Va)lHM13(v13)A = 
= 2ATw13(va)A = H13(Xa) 

(35) 

(36)

By assuming the forms of the gradients and Hessians presented above, i.e. the squared
Msplit estimation case, the iterative formula Eq. (30) can be now written as follows
(j=l, ... ,k) 

x1 = x1-1 - iu (X1-1 x1-1)1-1 (X1.-1 x1-1) =a a \a a,13 ga a,13 
= x~- 1 + l ATwa ( vr 1 )A 1-1 ATwa ( vr 1 ) vr 1

(37)

where

1-1 = - AXJ-1 } Ve, Y er
1-1 - AXJ-1 

v/3 -Y- /3 

The squared Msplit estimates of the parameters X; and X13 are such quantities x, and
X-13, respectively, that fulfill equations:

(38)

and

Initialization of the iterative process Eq. (30) may be a significant problem of Msplit

estimation. However, as for the squared Msplit estimation with the iterative formula
Eq. (37), the estimation process can be started with application of the LS-method
estimates, i.e.

XLs = (ATA)-1ATy } 
vLS = y - AXLs 

(39)

Then
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and 

where 

Thus the next iterative step should result in 

x:, =X.Ls+ (ATwa(vj)Ar1ATw()'(vj)vLS, 

X1 = x0 + {AT w (v1)A}-1ATw (v1)v0 f3 f3 /3 a /3 a /3' 

where 

v;, = y - AX:, 

O • 02 02 02 Wa(v13) = d1ag((v()') , (v") , · · · , (vc,) } 

I · I 2 I 2 I 2 w13(v a) = d1ag((v()') , (vc,) , · · · , (v()') l 

3. Examples 

Example I 

In the part I of this paper, the idea of Msplit estimation was illustrated with application 
of the following observation set 

(I.I, 1.3, 1.4 1.5, 1.7, 3.4, 3.5, 3.6l 

and with the functional model vi = Yi - e, i = I, ... , 8. It was also computed that 
0Ls = 2.19 (the estimate of the LS-method) and eR = 1.49 (the robust estimate of the 
Danish method). Now, let the estimates of two competitive variants e" and 013 of the 
parameter e be computed by applying the squared Msplit estimation: 

Step O 

y = [I.I, 1.3, 1.4 1.5, 1.7, 3.4, 3.5, 3.6]T 
A T -1 T els = (A A) A y = 2.19 
VLs = y-A0Ls = [-1.09, -0.89, -.079, -0.69, -0.49, 1.21, 1.31, l.4l]T 
o A en= eLs 
o 

Va= VLS 
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(
A ) di ( A2 A2 A2 ) 

WfJ V Ls = rag VILS' v2LS' ... 'v8LS = 
= diag( 1.l 8, 0.79, 0.62, 0.47, 0.24, 1.47, 1.72, 2.00) 

AT WfJ(vLS)A = 8.49, ATwfJ(VLS)VLs = 3.95 

ej= 0Ls + {ATwa(VLs)Ar1ATwfJ(VLs)VLs = 2.19 + 0.47 = 2.65 
vg = y - Aej = [-1.55, -1.35, -1.25, - 1.15, -0.95, 0.75, 0.85, 0.95]T 

Step 1

O · 02 02 02 wa(v/3) = d1ag{(v1/3) , (v2/3) , · · · , (v8f3) ) = 

= diag(2.4 I, 1.83, 1.57, 1.33, 0.91, 0.56, 0.72, 0.90) 

ATwa(vZ)A = 10.22, ATwa(vZ)vLS = -3.95 

e:, = 0Ls + {ATwa(vZ)Ar1ATwa(vg)vLS = 2.19-0.39 = 1.80 
v:, = y - Ae:, = [ -0.70, -O.SO, -0.40, -0.30, -O. I O, 1.60, l. 70, l .80]T 

I · I 2 I 2 I 2 wfJ(va) = d1ag{(v1a) , (v2a) , · · · , (vsa) } = 
= diag(0.49, 0.25, O. 16, 0.09, O.Ol, 2.56, 2.89, 3.24) 

AT wfJ(v;,)A = 9.68, AT wfJ(v/,)vZ = 6.00 

e; =ej+ {AT Wf3(v;,)Ar1 AT WfJ(v:,)vZ = 2.65 + 0.62 = 3.27 
v; = y-Aej = [-2.17,-l.97,-l.87,-l.77,-l.57,0.13,0.23,0.33]T 

Step 2

Wa(v/4) = diagl(v!/3)2,(vi/3)2,··· ,(v~/3)2) = 
= diag(4.72, 3.89, 3.51, 3.14, 2.47, 0.02, O.OS, O. I I) 

ATwa(v/4)A = 17.91, ATwa(v/4)v;, = -7.56 

e;, = e:, + {AT Wa(v/4)Ar1 AT w"(v/4)v:, = 1.80 - 0.42 = 1.38 
v; = y - Ae;, = [-0.28, -0.08, 0.02, 0.12, 0.32, 2.02, 2.12, 2.22]T 
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? . ?? ?? ?? w.a(v;;,) = d1ag{(v,a)-,(v2at,··· ,(v8atł = 
= diag(0.08, O.O 1, 0.00, O.O I, O. I O, 4.08, 4.50, 4. 93) 

AT w.a(v;,)A = 13.72, ATw.a(v;,)v/4 = 2.79 

eJ = ej + (AT w.a(v;,)A r I AT w.a(v;,)v/4 = 3.27 + 021 = 3.48 
vJ = y - AeJ = [-2.38, -2.18, -2.08, -1.98, -1.78, -0.08, 0.02, O. l 2]T 

Step 3

2 · 22 22 22 wa(v/3) = diag{(v1/3) , (v2/3) , · · · , (vs.a) l = 
= diag(S.64, 4.73, 4.31, 3.90, 3.15, O.O I, 0.00, 0.02) 

ATwa(vJ)A = 21.77, ATwrr(vJ)v;, = -0.33 
e/, = e; +{AT Wr,(vJ)Ar I AT Wr,(vJ)v; = 1.38 - 0.02 = 1.36 

3 3 T V er = Y - Aerr = [ -0.26, -0.06, 0.04, 0.14, 0.34, 2.04, 2.14, 2.24] 

w.a(v;) = diag{(vfc/,cvt)2, ... ,(vL/l = 
= diag(0.07, 0.00, 0.00, 0.02, 0.11, 4.15, 4.56, 5.00) 

ATw.a(v;)A = 13.91, ATw.a(v;)vJ = 0.00 
eJ = eJ +(AT w.a(v;)Ar1 AT w.a(v;)vJ = 3.48 + 0.00 = 3.48 
vJ = y - AeJ = [-2.38, -2.18, -2.08, -1.98, -1.78, -0.08, 0.02, 0. I 2]T 

Step 4

3 · 32 32 32Wa(v/3) = d1ag((v1.a) , (v2.a) , · · · , (vs.a) l = 
= diag(S.65, 4.74, 4.31, 3.90, 3.15, O.O I, 0.00, 0.02) 

ei = e/, +IAT Wa(vJ)Ar1 AT Wrr(vJ)v/, = 1.36 + 0.00 = 1.36 
vi= y - Ae/, = [-0.26, -0.06, 0.04, 0.14, 0.34, 2.04, 2.14, 2.24f 

w.a(vi) = w.a(v;) = diag(0.07, 0.00, 0.00, 0.02, 0.11, 4.15, 4.56, 5.00) 

ATw.a(v~)A = 13.91, ATw.a(v!)v~ = 0.00 
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0j = 0J +{AT W13(v!)Ar1 AT Wp(v!)vJ = 3.48 + 0.00 = 3.48
vZ = y - A0j = [-2.28, -2.18, -2.08, -1.98, -1.78, -0.08, 0.02, 0. l 2]T

Since e! = 0;_, = 1.36 and ej = eJ = 3.48 and additionally

ga(0;_,, 0J) = -AT Wa(vJ)v;_, = 0 

g13(0;, eJ) = -AT wp(v!)vJ = O 

then Ba = 1.36 and 013 = 3.48 are the squared Msplit estimates of the parameters 0a and
0p, respectively. The following residual vectors are assigned to the respective parameter
estimates:

Va = [-0.26, -0.06, 0.04, O. 14, 0.34, 2.04, 2.14, 2.24]T

Vt3 = [-2.38, -2.18, -2.08, -1.98, -1.78, -0.08, 0.02, O. l 2]T

The positions of the parameter estimates among all observations is presented in Figure 2

I • I 

fJ R = 1.49

I I l I • 

f 

0 LS = 2.19

I I I, I • • • I 
2 3 

fJ,, = 1.36
A f 
0p = 3.48

4

Fig. 2. Positions of the estimates rt and 0µ among the observations

(in comparison with the robust estimate 0n and the LS-estimate)

Example 2

The part I of this paper presented also the other observation set { 1.1, 1.3, 1.4, 1.5, I. 7, 3. 7)
with only one quantity "3.7" that does not "suit" the others. Thus the following
LS-estimates can be computed:

eLS = (AT A)-1ATy = 1.78
Ą Ą T
VLS = y - A0LS = [-0.68, -0.48, -0.38, -0.28, -0.08, 1.92]

where

A= [11, · · ·, 16]T, y = [1.1, 1.3, 1.4, 1.5, l.7,3.7]T

Table l presents the iterative process of the squared Msplit estimation resulting in the
estimates e<r and Bp. 
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Table I. The course of the iterative process (Example 2) 

Steps 

o I 2 3 

H"(0;,-1) 16.65 24.79 24.82 

(01-1 01-1) 6.53 0.65 0.00 ga a , /3 

d0tl -0.39 -003 0.00 

0;, Fhs = 1.78 1.39 1.36 1.36 - 
H(0]-I) 4.61 5.53 5.66 5.66 /3 

g13(0:,-1, 0t) -6.53 -2.31 -O.Ol 0.00 

d0]-I 1.42 0.42 0.00 0.00 /3 

01 3.2 3.62 3.62 3.62 /3 - 

Since 

e!, = e; = 1.36, eJ =ej= 3.62 
gc,(0;,,ej) = O, g;3(0;,0j) = O 

then 0a = 1.36 and 0/3 = 3.62 (Fig. 3). 

I •

(lR = 1.40 

I • 1 • If 
0" = 1.36 

f)LS = I. 78

. " I I I I I I I I ł I I I I I I I
2 3 It • I 1 I 

4

Fig. 3. Positions of the estimates 0,., and 013 among the observations 
(in comparison with the robust estimate {JR and the LS-estimate) 

Here, the residual vectors va and v/3 are as follows, respectively: 

Ver = [-0.26, -0.06, 0.04, 0.14, 0.34, 2.34]T 
v/3 = [-2.52, -2.32, -2.22, -2.12, -1.92, 0.0S]T 

Example 3 

Msplit estimation can also be applied to split a set of points that is known to be generated 
by two functions belonging to the same family (it is not necessary to know detailed 
properties of such family on this stage of the method development). 
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To illustrate the idea presented above, let us assume the following set of points 
(x,y) 

{ ( 4, 4 ), (5, 5), (6, 6), (8, 8), (I O, l O), (5, 2), (8, 4 ), (11, 6), ( 14, 8), (17, I O) l 

Let the set be a random realization of the following function 

y =ax+ b (40) 

To compute the LS-estimates of the parameters a and b, the regression equation is 
written 

v, = Yt - (ax, + b)
i=I, .IO - V= y-AX (41) 

where y = [4,5,6,8, 10,2,4,6,8, !Of, and 

A=[4 5 6 8 
I I I I 

IO 5 8 11 
I I 

14 \7r X=l:1 
Obviously, the LS-estimates can be computed as XLS = (AT A)-1 AT y and 
"LS = y - AXLs• Thus one can obtain (Fig. 4a): 

A A ~ T T 
XLs = [aLs, bLs] = [0.48, 2.13] 
"LS = [-0.02, O.SO, 1.03, 2.08, 3.13, -2.50, -1.92, - 1.34, -0.76, -0. I 9]T 

Actually, the point set is a realization of two functions that belong to the family 
described by Eq. (40) (to simplify the result interpretation, the realization is assumed to 
be free of random disturbances).Therefore, one can assume two competitive parameter 
vectors: 

According to the Msplit estimation principles, the set is split into two subsets that are 
assigned to the two following competitive regression equations: 

i=I, ... ,10 
Vta = Yi - (aaX/ + ber) - Ver = y - AXa 

l=I, ... ,IO 
- V13 = y - AX13 

By applying the iterative process (37), the following Msplit estimates are obtained: 

and, respectively 
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va-= [2.67, 3.oo, 3.33, 4.oo, 4.67, o.oo, o.oo, o.oo. o.oo, o.ooi'
V13 = [0.00, 0.00, 0.00, 0.00, 0.00, -3.00, -4.00, -5.00, -6.00, -7.00]T

The proper iterative process is shown in Table 2 and is illustrated in Figure 4.

Table 2. The course of the iterative process (Example 3)

Steps g,,.(xi-1 xi- Il dX;, Xi (xi-I xi-Il c!Xi x1
(Y ' {J a g,,i rr , /3 /3 /3

XLS= 
0.474 -218.323 0.654 1.128o -15.334 -4.851 -2.722
2.129

I 553.362 -0.020 0.454 -138.158 0.124 1.252

39.503 2.013 -14.851 -0.507 -3.230

2 168.645 0.053 0.507 -149.315 -0.128 1.124

20.754 -0.870 1.144 -20.160 1.674 -1.556

3 209.435 0.114 0.621 -206.214 -0.122 1.002

29.445 -1.777 -0.634 -30.602 1.514 -0.042

4 80.342 0.046 0.667 -12.136 -0.002 I.OOO

12.523 -0.699 -1.333 -1.708 0.042 O.OOO

5 0.086 O.OOO 0.667 O.OOO O.OOO O.OOO

0.014 -0.001 -1.333 O.OOO O.OOO O.OOO

6 O.OOO O.OOO Ćłrr = 0.667 O.OOO O.OOO ćip = I.OOO 

O.OOO O.OOO G,, = -1.333 O.OOO O.OOO bp= O.OOO 

Example 4

The method proposed in the present paper can also be applied to geodetic networks that
are measured two times, e.g. to find out point displacements. However, the example
presented here should be regarded just as an illustration of Msplit estimation properties.
The practical application of Msplit estimation to such problems needs more careful
theoretical as well as empirical analyses. It would also be necessary to compare the
method to other well known methods of displacement estimation.

The example presented here refers to Example 4, section 4 in paper (Wiśniewski,
2009). This time, new variants of observation sets and all iterative processes that result
in solutions of the Msplit estimation optimization problem is presented.
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y a) 

10 * 
9 1,,,, = 3. 13 
8 * * 
7 

6 * * 
5 * 
4 * * 
3 

2 * 

(,iLs=0.47, hLs=2.13) 

y=a1.sx+hu

X 
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

y

10 

9 

8 

5 

4 

3 

2 

-1 

-2 

b) 

ca /J = 1.00, t;/i = 0.001 

y = G11X+h/!
(a0 =0.67, £,, =-1.331 

y=a0x+6"

X 
5 6 7 8 9 10 11 12 13 14 15 16 17 

Fig. 4. Graphical interpretation of a set split 
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The levelling network that we are interested in is presented in Figure 5. Two
network points Pl and P2 are the fixed ones with heights Hr1 = 0.00 and Hr2 = 0.00,
respectively. There are also three unknown points A, B and C. Figure 5 presents also
vectors y and X, and the matrix A that are assigned to the functional model v = y - 
AX. 

P1 

h, h, hl hl +HPI l o o
h2 +Hr1 o I o

h; h, h3 + HPI o o I 
A C h4 + n-. l o oB y= A= 

h, + Hr2 o l o
h6 + Hr2 o o I

h4 h, h" h1 -l I o
h8 o -l 

P2 

Fig. 5. Tested levelling network

Let the height differences h1, i = 1, ... , 8 , be measured two times at two different
epochs a and J3 and let the following observation vector contains all the observation
results (for Hr1 = 0.00 and HP2 = 0.00)

The two competitive functional models are assigned to such observation vector:

Va- = y - AXa-, V /3 = y - AXp 

where

V1 .I .a- VJ,1,/J

VJ .2.a- HAa- l VJ,2.,B HA/3 

I v" = XIY = Hsa Vp = Xp = Hsp 
vs.i., n-; VS.l.,B Hep 
VS,2,a- VS.2.,B 

The matrix A is shared by both models and has the following form (Wiśniewski, 2009)
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h,., h,., h,., h,.2 h;_, h;_, h,_, h,.2 h,_, h,_, h"' /, 6.2 h,, h,' h,., h,.2
.J,. .J,. .J,. .J,. .J,. .J,. .J,. .J,. .J,. .J,. .J,. .J,. .J,. .J,. .J,. .J,. 

A' c [~ 

o o o o I I o o o o -] -] o 

-:] 
+- HAu' H,,r,

o l o o o o I I o o I I -] +-Hs,,, HB/:
o o o o o o o o o 1 +-He,,, HCJ;

The observation vector y is now simulated under assumption of theoretical heights of 
the points A, B and C at the epochs a and /3. Let HAa = I.O, Hsa = I.O, Hca = I.O 
at the epoch a, i.e. let X, = [1.0, I.O, 1.0]T. The points considered here are assumed 
to move downwards at the epoch f3 and let two following theoretical variants of such 
displacements be considered 

Variant 1: X13 = [HA13,Hs13,Hc13]T = [I.O, 1.0,0.0]T 
8~ = X13 - X, = [O.O, O.O, - .LQ]T 

Variant 2: X13 = [HA13,Hs13,Hc13]T = [1.0,0.0,0.0]T 
o~ = X13 - X, = [O.O, -.LQ, -.LQt 

where ox is a vector of the theoretical displacements. The results of the squared Msplit 

estimation for both proposed variants are presented below. 

Variant 1 

Let the observation vector y, in relation to the theoretical displacement vector 
o~ = x13 - X; = [O.O, O.O, -1.0]T, be as follows (the observations at the epoch f3 that 
differ significantly from those at the epoch are underlined) 

y = [ I.O 1, 0.98: 1.00, 1.02:0.98, 0.01 :0.97, 0.99: 
. . . T 

1.00, I.Ol :0.99, -0.01 :0.02, -O.Ol: - O.Ol, - 1.01] 

The natural course of the iterative process (without any possible acceleration procedure) 
is shown in Table 3. 
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Table 3. The course or the iterative process (Example 4, Variant I) 

Steps cxi-1 xi-I) dX~ X~ (Xi-1 xi-1) dXi xi g,, o ' '/3 gp o ' '/3 '/3 '/3 

0.991 O.OOO 0.003 0.994 
o X.1.s = 1.004 0.001 -0.003 I.OOO 

0.493 O.OOO -0.001 0.492 

O.OOO -0.003 0.988 O.OOO 0.004 0.998 
I -0.001 0.003 1.007 0.002 -0.006 0.994 

-O.OOO 0.001 0.494 O.OOO -0.002 0.489 
O.OOO -0.003 0.985 O.OOO -0.016 0.982 

2 -0.004 0.013 1.020 0.008 -0.026 0.968 
-0.001 0.005 0.499 0.002 -0.001 0.479 
O.OOO 0.043 1.028 O.OOO -0.032 0.950 

3 -0.016 O.OSO 1.070 0.030 -0.093 0.876 
-0.003 0.019 0.518 0.006 -0.036 0.444 
O.OOO 0.103 1.131 -0.002 0.007 0.957 

4 -0.052 0.138 1.208 0.060 -0.135 0.741 
-0.013 0.056 0.574 0.028 -0.065 0.379 
-0.006 0.124 1.255 -0.008 0.028 0.985 

5 -0.017 0.066 1.274 -0.024 -0.016 0.725 
-0.057 0.059 0.633 O. 102 -0.070 0.309 
-0.001 0.005 1.261 O.OOO O.OOO 0.986 

6 0.060 -0.005 1.269 -0.105 0.035 0.760 
-0.175 0.106 0.739 0.283 -0.155 0.154 
O.OOO -0.098 1.163 O.OOO -0.001 0.985 

7 0.171 -0.098 1.171 -0.228 0.182 0.941 
-0.411 0.185 0.924 0.458 -0.145 0.008 
O.OOO -0.173 0.990 O.OOO 0.014 0.999 

8 0.200 -0.169 1.002 -0.076 0.069 1.010 
-0.313 0.061 0.985 0.092 -0.008 O.OOO 
O.OOO -0.007 0.983 O.OOO 0.008 1.007 

9 0.007 -0.007 0.995 O.OOO O.OOO 1.010 
-0.007 O.OOO 0.985 O.OOO O.OOO O.OOO 
O.OOO -0006 0.977 O.OOO 0.004 I.Ol I 

IO O.OOO O.OOO 0.995 O.OOO O.OOO 1.010 
O.OOO O.OOO 0.985 O.OOO O.OOO O.OOO 
o.ooo -0.001 0.976 O.OOO O.OOO I.Ol I 

li O.OOO O.OOO 0.995 O.OOO O.OOO I.OIO 
O.OOO O.OOO 0.985 o.ooo O.OOO O.OOO 
O.OOO O.OOO 0.976 O.OOO O.OOO 1.011 

12 O.OOO O.OOO 0.995 O.OOO O.OOO 1.010 
O.OOO O.OOO 0.985 O.OOO O.OOO o.ooo 

The process presented above results in the vectors x/,2 = X;/ and X? = xy that 
makes: g"(X/,2, Xf) = O, gt/X/,2, X/42) = O. Therefore, the estimates x, and X.a of the 
parameters in the split functional model are as follows (with assigned residual vectors 
v" and v,a, respectively): 
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A T x, = [0.98, 1.00, 0.98] 
v(l = [0.03, 0.00:0.00, 0.02:0.00, -0.98: - o.o 1, o.o 1: 

. . . T 
0.00, 0.01:0.00, - 1.00:0.00, -0.03:0.00, -1.00] 

A T x/3 = [1.01, 1.01,0.oJ 
v/3 = [0.00, -0.03: - O.Ol, 0.01:0.99, O.Ol: - 0.04, -0.02: 

. . . T 
-O.Ol, 0.00:0.99, -O.Ol :0.02, -O.Ol: 1.00, 0.00] 

Let us pay attention to the fact that 

5v = v/3 - va= [-0.03, -0.03: - O.Ol, -0.01:0.99, 0.99: - 0.03, -0.03: 
. . . T 

-O.O 1, -O.Ol :0.99, 0.99:0.02, 0.02: 1.00, 1.00] 

and (Fig. 6) 

A A T 
óx = x/3 - X, = [0.03, O.O 1, -0.98] 

The theoretical values of the displacements (5~) as well as their estimates obtained by 
applying Msplit estimation (óx:) are additionally illustrated in Figure 6. (the bold lines 
indicate the height differences which values differ from themselves at the epochs a 
and f3 significantly) 

Epoch a. Epoch /J 

P1 P1 

hl.1 h., 

h., h'/1..1 
A a---------ó---------o C 

B 

h,, 

h,., 

s.. 

P2 P2 

Fig. 6. Assumed and obtained values of point displacements (Example 4, Variant I) 
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Variant 2 

This time the vector of the point displacements is as follows 

o~ = X13 - X, = [O.O, -lQ, - l.Q]T 
i.e. the height of the point C (like it is in the first variant) but also the height of the 
point B has been changed. Thus, one can assume the following observation vector 

y = [ I.O 1, 0.98: 1.00, 0.02:0.98, O.O I :0.97, 0.99: 
. . . T 

1.00, O.O 1:0. 99, -O.O 1:0.02, - I.O 1: - O.O 1, O.O 1] 
The course of the iterative process of the squared Msplit estimation resulting in the 
competitive estimates X()" and X:13 is shown in Table 4. 

Table 4. The course of the iterative process (Example 4, Varian/ 2) 

Steps g,,(X~-1, xt) dX~ x1 g,i(x~-1' xr) dX~ x1 a 'B 
0.991 I -0.012 0.034 1.025 

o XL\" = 1.004 O.OOO 0.012 0.515 
0.493 0.001 -0.001 0.492 

0.012 -0.033 0.958 -0.023 0.065 1.090 
I O.OOO -0.012 0.492 O.OOO 0.023 0.538 

-0.001 0.001 0.494 0.002 -0.002 0.489 
0.044 -0.112 0.846 -0.068 0.157 1.247 

2 O.OOO -0.040 0.452 O.OOO 0.056 0.595 
-0.005 0.005 0.499 0.009 -0.009 0.480 
0.070 -0.112 0.734 -0.021 0.040 1.287 

3 0.005 -0.043 0.409 -0013 0.022 0.617 
-0.016 0.015 0.514 0.027 -0026 0.454 
-0.005 -0.002 0.732 0.010 -0.005 1.283 

4 0.020 -0.012 0.397 -0.026 O.Ol I 0.628 
-0.048 0.047 0.561 0.085 -0.080 0.373 
-0.012 0.013 0.745 0.005 -0.030 1.253 

5 0.022 O.OOO 0.397 0.023 -0.034 0.594 
-0.140 0.122 0.683 0.194 -0.155 0.218 
0.020 0.041 0.786 -0.070 -0047 1.205 

6 -0.109 0.094 0.491 0.257 -0.174 0.420 
-0.211 0.153 0.836 0.180 -0.132 0.087 
0.130 0.056 0.842 -0.160 -O.I 16 1.089 

7 -0.429 0.257 0.749 0.559 -0.315 O. 105 
-0.153 0.113 0.949 0.125 -0.081 0.006 
0.108 0.013 0.972 -0.027 -0.064 1.025 

8 -0.508 0.242 0.990 0.198 -0090 0.015 
0.066 0.036 0.985 O.Ol I -0006 O.OOO 
0.001 0.008 0.980 O.OOO O.OOO 1.025 

9 -0.020 0.009 I.OOO O.OOO O.OOO 0.015 
O.OOO O.OOO 0.985 O.OOO O.OOO O.OOO 
O.OOO O.OOO 0.980 O.OOO O.OOO 1.025 

JO O.OOO O.OOO I.OOO O.OOO O.OOO 0.015 
O.OOO O.OOO 0.985 O.OOO O.OOO o.ooo 
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The final results of the process presented above are the following estimates: 

x, = [0.98, 1.00, 0.98]T 
va = [0.03, 0.00:0.00, -0.98:0.00, -0.97: - O.Ol, O.O 1: 

. . . T 
0.00, -0.99:0.00, -1.00:0.00, - 1.03:0.00, 0.00] 

and 

A T X13 = [ 1.02, 0.02, 0.00] 
v13 = [-O.O I, -0.04:0.98, 0.00:0.98, O.O I: - 0.06, -0.04: 

0.99, 0.00:0.99, -O.Ol: 1.03, 0.00:0.00, O.OO]T 

Furthermore, the vectors Ov and Ox can be computed as: 

Ov = [-0.04, -0.04:0.98, 0.98:0.98, 0.98: - O.OS, -0.05: 
. . . T 

0.99, 0.99:0.99, 0.99: 1.03, 1.03:0.00, 0.00] 
A A T 

Ox = X, - X13 = [0.04, -0.98, -0.98] 

The displacement values assumed in the present variant o~ and those obtained by 
applying the squared Msplit estimation are shown in Figure 7 (the bold lines indicate 
the height differences which values differ from themselves at the epochs a and {J 
significantly). 

Epoch o. Epoch /J [,,;, l [ o 00 l P1 ,5~ = X/i - X" = ó;,,: = - I 00 P1 

r)11c - 1.00 
hu h,., h,., h,., 

A 
h,.1 h:<.I 

C A 
h,., 

C B 

h~.I i; h., h.u [',, l [ 004l P2 S;; = Xp - X,,= ''.,i" = -0.98 P2 

r) lic - 0.98 

Fig. 7. Assumed and obtained values of point displacements (Example 4, Varian! 2) 
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4. Conclusions 

Msplit estimation demands the functions Pa(·) and p13(-) to be symmetric, convex and at
least twice differentiable. Thus they can also be squared functions. Such special case of
Msplit estimation is called the squared Msplit estimation. On the other hand, such estima­
tion can also result from some probabilistic assumptions. In such case, !-information
and, consequently, the split potential is based on some normal distribution (see Eqs.
( 17)-( 19)). However, such assumption is not necessary to create the target function of
the squared Msplit estimation (see section 2 of the present paper).

The optimization problem of Msplit estimation can be solved by applying the New­
ton method. In such case, estimates of the LS-method can be a starting point of such
iterative process. Let us pay attention to the values of the gradients that are presented
in Table 3. and Table 4 (Example 4). Firstly, those values grow larger in most of
the iterative steps that may suggest that the optimization problem cannot be solved.
However, in some last steps the values grow smaller till they fulfill the necessary
condition for the function minimum.

Examples I and 2 point out that the squared Msplit estimation can be an alternative
for robust M-estimation. However, the method proposed in the present paper enables
to estimate some additional parameters related to outliers. Such opportunity would be
useful and important if sources and properties of this observation type are analyzed.

Estimation of two competitive parameters assigned to one observation set has
different significance when a set of observations contains realizations of two functions
(not necessarily random ones) that belong to the same function family (Example 3 ).
The natural property of Msplit estimation is that observations are assigned to either
of these two functions. It results from the split potential, see part I (let us remind
that Msplit estimates are such quantities that maximize such potential). It means that
the method "chooses" itself observations that belong (or suit better) to either of two
functions. Such property is especially significant when observation sets coincide partly
or when such sets are realizations of random functions.

Another possible application of the method presented in the paper is the elaboration
of a geodetic network that is measured at two different epochs (Example 4, Variants 1
and 2). The difference between the parameters X" and X13 can be regarded as displace­
ments of the network points. On this stage of development, it is hard to say that Msplit
estimation can be a good alternative for other well known methods for displacement
estimation. However, it is worth remembering that an assignment of observations to
either of the epochs is not necessary in case of M,plit estimation. Such assignment
results from maximization of the split potential. It is an important property when an
observation set is disturbed deterministically (or with outliers) or some observations
are assigned to either of the epochs wrongly. An example of such method application
was presented in (Wiśniewski, 2009, section 4.4, Example 4), where the observation
hs13 = -O.O I is disturbed with the gross error = - I .O.

Analysis of the presented examples points out that values of estimates o: and f3 are
generally consistent with their intuitive positions in observation sets. Example I, the
estimate values are close to the centres of the mutually outlying subsets. Example 2,
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one outlier, the first estimate a lies in the centre of the main subset and the second one
/3 is close to the outlier value. Example 3, the observation set is split into two subsets
that are uniquely assigned to the functions that generated the observations. Example 4,
the displacement obtained by applying the squared Msplit estimators are very consistent
with the theoretical values.

The examples presented in the paper are just illustrations of Msplit estimation
properties. Thus, they should not be regarded as technological suggestions concerning
solutions of presented practical problems. The practical applications of Msplit estimation
need more theoretical as well as empirical analyses.
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Streszczenie

W tej części pracy zaprezentowano szczególny przypadek M,111;1 estymacji, nazwany squared M,p1;1 es­
tymacją. Funkcja celu jest tutaj ustalana na podstawie wypukłych funkcji kwadratowych. Przedstawiono
teoretyczne podstawy squared M,plit estymacji, jej algorytm oraz kilka przykładów numerycznych.


