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Abstract: A concept of the vector space of imperceptible observation errors in
linear Gauss-Markov models with uncorrelated observations, initially proposed in
the earlier work of the author, is presented together with some improvements and
new developments. The gross errors falling into that vector space pass absolutely
undetected through all possible statistical tests set in the least squares estimation and
unnoticeably distort the resulting values of one or more of the model parameters.
The relationship is established between the concept of imperceptible gross errors
and the concept, proposed by other authors, of the gross errors which can be
detected but not identified due to specific properties of a network's structure. The
theory is illustrated with a simple numerical example.
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1. Introduction

The conventional theory of reliability (Baarda, 1968), its further developments
(e.g. Cross and Price, 1985; Teunissen, I 985, 1998; Ding and Coleman, I 996;
Prószyński, I 997) and a new approach, being a merger of reliability and strain
analysis (Vanicek et al., 2001 ), are all focused on the observation errors that
can be detected at a certain "signal to noise" level. ln other words, the error of
certain magnitude and location in a particular geodetic network can be either
detectable or undetectable, depending on the accuracy of observations, network
configuration and the probability levels assumed in a test on outliers. In (Cen
et al., 2003), the models are considered where the gross errors, while being de­
tectable, cannot be identified due to specific properties of the model's structure.
Those errors will further on be termed shortly unidentifiable errors.

Still more dangerous type of gross errors can be those that pass absolutely
undetected through all the possible statistical tests, finally distorting the results
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of parameter estimation. The reasoning presented in (Caspary, 1988) encouraged the
author to investigate more thoroughly that type of errors. This resulted in the concept
of the vector space of imperceptible observational disturbances (Prószyński, 2000)
with disturbances meaning essentially the gross errors, but also covering the random
errors.

In the present paper, the theory is given on a more rigorous and complete basis.
The principal part of the paper contains the results of further studies on the space of
imperceptible observation errors. To link this concept to other types of observation
gross errors, the models, which in their fragments, may be a seat for unidentifiable
gross errors (Cen et al., 2003), are subjected to complementary analysis, based on
a linear parametric model. In the analysis, the use is made of the projection operator
well known both in the theory of network reliability (redundancy or reliability matrix)
and the sensitivity analysis in linear regression (hat matrix - a complementary opera­
tor, see Chatterjee and Hadi, I 988). Some new resulting properties of such models are
presented, expressed in terms of internal reliability indices being the diagonal elements
of the redundancy matrix. On that basis the relationship is established between the
concept of imperceptible gross errors and the concept of unidentifiable gross errors.

Also, the classification of observation gross errors with respect to their percepti­
bility, detectability and identifiability in a system is proposed.

2. Basic notations and auxiliary formulae 

Let us consider a class of linear parametric models, written both in the original and the
standardised form

Ax+e=y; e~(O,C) ➔ A.x+e,=y,; e,~(0,1) (la)

Bx = O Bx = O (I b)
where
y - the 11 x I vector of observations;
A - the 11 x u matrix of coefficients; rank A= u - d (d - network defect, d 2'. O);
x - the unknown u x I vector of parameters;
e - the unknown n x I vector of random errors;
C - the n x n covariance matrix (diagonal); rank C = n; 
B - the d x u matrix of coefficients, rank B = d, rank [AT BT]= u; 

A.= GA, y, = Gy, e, = Ge, where G is the n x n standardisation matrix (diagonal),
such that GG= C-1. 

Equation ( 1) covers the models with a full rank matrix A ( 1 a) and the models with
minimum constraints (la, b), the latter being frequently used in engineering surveys.

The following types of the vector spaces associated with those models, and being
the subspaces of the n-dimensional observation space, will be of our interest:
• M(A) - the observation space generated by the original model;
• M(A,), M(A;) - the observation space generated by the standardised model and

its orthogonal complement being the residual vector space;
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where A; [11 x (11 - u + d)], rank A; = 11 - u + d (d 2'. O). For a given A., the matrix
A; is not defined uniquely (e.g. Perelmuter et al., 1994). The operators of orthogonal
projection onto the spaces M(A.) and M(A;) denoted by P<A.?nd P<,,;'-l' respectively,

are linked by the relation P<A.l + P(A;'-I = I. For the model ( 1 a, b ), i.e. with d > O one has

(2)

where ( A; A.); is a reflexive g-inverse of A,TA, satisfying ( A; A.); B; = O, and A.+ 
is the pseudo-inverse of A, (Rao and Mitra, 1971 ). For the model (I a), i.e. with d = O,
the regular inverse is used.

In the theory of reliability the operator P<A;'-l corresponds to the redundancy ma­
trix and is denoted by R. Hence, the following relationships for the least squares (LS)
estimation, important in the theory of reliability, can be written using R or P<A;'-l inter­
changeably

v,Ls=-R·y, (3)

the latter being a disturbance/response relationship for the standardised model, where
L'. v -ts is the 11 x 1 vector of increments in LS residuals for the standardised model, Ay, 
is the n x 1 vector of standardised observation errors.

The projections of the vector Ay, onto M(A.) and M( A;) will be denoted by
L'..y:A.J and L'.y:A~l, respectively.

3. The vector space of imperceptible observation errors and its main properties 

Seeking such Ay, that Ay, * O ⇒ L'.v, = O, which may take place in either of the
cases: R = O (holds only if rank A= n), R · L'.y. =O, one arrives at the following defini­
tion of the vector space of imperceptible observation errors for the standardised model
(Prószyński, 2000)

u.= {L'.y.: L'.y, E M(A.)} (4)

where dim U,= dim M(A.) = dim M(A) = u - d. The definition in (4) differs only in
form from that given in (Caspary, 1988).

The elements of this space can be generated by

L'.y,=A.·k (5)

where k is the u x I vector, such that k rt:. N(A.), N(A.) being the null space ofA,. 
Rewriting (5) as G · L'.y = G · Ak, one gets L'.y = Ak and may form a corresponding

definition for the original model, i.e.

U= {óy : L'.y E M(A)}

where dim U= dim M(A) = dim U,. 

(6)
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On the basis of ( 4) and ( 6) one can prove that with C as in (I) ( and even for C be­ 
ing any positive definite matrix) 

6y E U <=:> 6y, E U. (7) 

which means that it is only the algebraic structure of the functional model (I) that de­ 
termines its space of imperceptible observation errors. 

As a complement to (6), we shall define the vector space of perceptible observa­ 
tion errors for the original model 

W= {6y :6y\lM(A)} 

where, due to U and W being virtually disjoint (Rao and Mitra, 1971) 

dim W= 11 - dim U= 11 - u + d

(8) 

On the basis of definitions in (4), (6) and (8) and the property in (7) one may give 
the following definitions of imperceptible and perceptible errors, i.e. 
• an imperceptible observation error is each element of such a vector t,,.y (and 

6y. = G · Ay), that t,,.y belongs to the space M(A); 
• a perceptible observation error is each element of such a vector L'.Y (and 

6y, = G · 6y), that t,,.y does not belong to the space M(A). 

The following properties can be proved: 
• neither reordering of the parameters in ( 1) nor rescaling of each of them affects the 

space of imperceptible observation errors; 
• in the models with redundancies such that {R} ii > O (i = I, 2, ... , 11 ), the space of 

imperceptible observation errors does not contain any vector with one non-zero ele­ 
ment. This means that a single gross e1TOr, being the only non-zero element in the 
vector of gross errors, cannot be an imperceptible error and hence, is perceptible. 
Since the LS estimation is carried out for the standardised model, we shall con- 

centrate now on the (unique) decomposition of the vector of standardised observation 
errors by orthogonal projection onto the spaces M(A.) and M(A;) (Kolman and Hill, 
2004), as shown in Figure la, i.e. 

a) 

~ 
M(A.) 

b) 

;_;,/:f 
e.f/t:.y_

Fig. l. Decomposition of the vector of standardised observation errors /':.y, (a) 
and its effect on the LS estimation results (b) 
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(9) 

With Ay, = e. + g,, where e. is the vector of random errors and g, is the vector of 
gross errors, one gets on the basis of (9) a detailed decomposition of L',y. 

L',y =e(A.) +g(A.) +e(A;-) +g(A;-) 
* • • • • (10) 

The imperceptible and the perceptible component of L',y. can be determined from 

L',y(A.) = p . L',y 
• (A.) • (11) 

where P(A,J' P(A:: J as in (2). 

4. Other properties of the vector space of imperceptible observation errors 

Property 1. 

The following relationship holds true 

dirn, U= 1-r 

where dim; U is a fractional dimension of the space of imperceptible errors 

(12) 

dim U 
dim, U= --- - --· 

dim <l> n ' 

u-d 
<P - observation space, 

r is a global index of the model internal reliability; r = n - u + d 
n 

Proof. Modifying slightly the expression for dim; U one gets immediately 

d. U l I u - d I 11 - u+ d _ 1m = - +--= ----= 1-r ■
fr 11 11 

Hence, by increasing the level of the model internal reliability, one reduces the 
space of imperceptible observation errors, thus extending the space of perceptible 
observation errors. For the models without redundancies ( r = O), the space of imper­ 
ceptible observation errors spreads over the whole observation space. 

Property 2. 

The vector of LS residuals (see Fig. I b) can be represented as 

V = - f'..y(A;:) 
•LS * (I 3) 

where L',y~A:: 1 is the perceptible component of the vector of observation errors. 
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Proof. The following can be shown: 

V =-P .,, =-P ( 1rue+t,,.y)=-P ( 1rue+t,,.vCA.l+t,,.yCA~)) 
*LS (A'f-) J * (Af) Y * * (A:) Y • J • • 

From the consistency of the functional model it follows that y~"e E M(A,), so 
P , -y~"e = O and hence, we obtain the relationship as in (I 3). ■
(A.) 

Equation (13) can be considered as an algebraic interpretation of the well-known 
definition 

A 

-V.LS= ~Y-L.'i 

and so, one gets 
A (\-) Av. = !-,.v '· 

J I.S • • 

From this property, it follows that for a particular model one can generate different 
observation vectors resulting in identical LS residuals, i.e. 

{y ·y =y +e(A.)+g(A.)} 
"id . *id * • • (14) 

where y. is the vector of standardised observation values; Y-;d is the observation vector 
yielding identical LS residuals as y.; e'.A·J, g:A.J are here the arbitrary non-zero vectors of 
random and gross errors belonging to the space of imperceptible observation errors. 

Property 3.

The imperceptible component t,,.y(A- J of the vector Ay., where t,,.y(A- J = e'.A.J or 
t,,.y(A· J = e;A· l + g;A· >, does not affect the level of the system's inconsistency. 

Proof. Applying an algebraic index of the system's inconsistency q = ff P(A;J -y,ff; one 

obtains on the basis of property 2, q = flt,,.y:A; >If,, which does not contain t,,.i.\J ■

Let us denote by qcr;, a critical value for q, determined on a stochastic basis. The 
case q S: qcr;, could be termed insignificant inconsistency, whereas q > ąc,;, could be 
termed significant inconsistency. The former usually happens with t,,.y, = e. and the 
latter with Ay, = e. + g •. 

Property 4. 

It is only the imperceptible component of the vector of observation errors that causes 
bias of the LS solution. For the models with d > O the solution is defined by 

X = x'me + (ATA )-ATt,,.y(A,) 
LS * • B • • ( 15) 

or equivalently 
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(I 6)

where B- = B: (BB:t1, Bis the matrix as in (1 ), B0 is the specific matrix B such that
AB:= O, and k is the vector such that 6y~A. 1 =A,· k (see (5)).

Proof. With the decomposition of the vector y., i.e. y. = y~"e + 6y;A· l + 6 y_<A,;'J the LS 
solution vector will take the form

X = (AT A ) ·- A Tytrue + (AT A )- AT 6y(A,) + (AT A )- AT 6y (A;-)
LS ,.r,..B*• ••s·. ••s•.

Since (A;A.);A;y~"e = x1
"'' and A;6y;A;J = O, one obtains

' 1111e (ATA )- AT A (A.)
xLs =X + • • s ,DY, (see(15))

which, according to (5), can further be transformed to

A = xrrue +(ATA )- ATA k 
X LS • • B • •

For the models with d = O, Eqs. (15) and (16) will get reduced to

X =X1111e+(ATA )-IAT6y(A,) d' = trne+k
LS * • * * ' an X LS X (17)

respectively.

A discussion on the effects of using specific numerical options of k can be found
in (Prószyński, 2000). In a hypothetical case, i.e. 6y. = 6y;A; l, despite the system's
inconsistency be it either insignificant or significant, one gets xLs = xrn,e_

Properties 3 and 4 are presented in a simplified form in Figure 2, showing the
situation in a parameter space. 6x Ls denotes bias of the LS solution (see ( 16) or ( 17)),
caused by 6y;A.J_ The intersection area of positional hyper-planes h1, h2, ••• , h,, (each
representing an individual standardised observation equation), termed as the incon­
sistency zone Iz, is due to 6y;A: l_ Each hyper-~lane runs at a distance of lt.y;~: l I· Id,{' 
(i= 1, 2, ... , n) from the point PLS, where 6y;A~J is the i-th element of the vector 6y;A· l
and di a vector normal to the i-th hyper-plane.

The component g;A. J only shifts the inconsistency zone Iz, maintaining the orien­
tations and mutual positions of the hyper-planes (see Fig. 2). One can suppose that for
any method of linear estimation (be it either orthogonal or quasi-orthogonal projec­
tion) the location of the solution point within the inconsistency zone is in both cases,
i.e. g:A· l = O, g:A· l =1- O, identical. Hence, the corresponding bias of the solution wi Il be
equal to that in the LS estimation.
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Iz ............... (A.1) 
due to t-,y, • 

Fig. 2. The effects of the imperceptible (t-,y;A.)) and perceptible (t,,y;A:)) component of the error vector 
6y. upon the results of the LS estimation; h ,, h2, ... , h. symbolize positional hyper-planes 

and Iz - their intersection area 

Since in zeneral x [g(A.l = O] # x [g(A.) = OJ where (o) denotes an arbitrary 
' b (o) * " LS • ',.. 

linear estimation, the vector 6\oJ will be parallel to b.x LS' 
The above reasoning can be an argumentation for the following proposition: 
Proposition. The imperceptible component g:A.l of the error vector g., resulting in 

a bias of the solution as in Property 4, i.e. 

Ax =x [g(A.)toJ-x [g(A.)=oJ=CATA )-ATg(A.) cis) 
LS LS • LS • • * B "' • 

will cause an identical bias of the solution vector in any other method of linear estima­ 
tion, i.e. 

Ax = x [g(A.) t oJ - x [g(A.) = oJ = t.x 
~ ~ • ~ • Ll 

(19) 

with t.x(o) being parallel to Ax LS' 
5. Complementary analysis of the concept of unidentifiable gross errors 

In (Cen et al., 2003) a method is presented of finding at a pre-adjustment stage, the 
observations in which the detectable gross errors are unidentifiable due to a specific 
network's structure. Here, there will be added some more properties of such a struc­ 
ture, the properties being the results of the analysis based on a parametric model as in 
(I) and the use of redundancy matrix R. 

Property A. 

The unidentifiable gross errors belong to the class of perceptible errors for a particular 
model. 

Explanation. The existence of an unidentifiable gross error ( or errors) in a network 
is signalled by equal values of standardised LS residuals for several observations, ex­ 
ceeding the critical values. To cause non-zero increments in the values of LS residu­ 
als, this error ( or errors), although of unidentified location, must be perceptible in the 
system. 
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Property B. 

The necessary structural condition for the existence in a network with uncorrelated 
observations, of the i-th and the j-th observable such, that a gross error occurring in the 
i-th or in the j-th observation cannot be identified, is as follows: 

~ . lR}ff lR}J, 
R,- - ciJ · R.; with ciJ = {R} or ciJ = - ~ 

li Il 

(20) 

or equivalently 

(21) 

where R , R , {R} , {R} , {R} .. are respectively, the columns and the elements of the 
'I '} li }} I) 

reliability matrix R, corresponding to the i-th and the j-th observable. 
Proof. The identification of gross error g being either in the i-th or in the j-th ob­ 

servation, i.e. g(i) or g(j), will not be possible if 

(22) 

where wi.g(i), wJ,g(i), wi,g(J), wJ,g(J) are the elements of the vectors w g(iJ, w g(JJ of the 
standardised LS residuals, for the i-th and the j-th observation. 

Premultiplying both sides of (3), first by G·1 (where G as in (I)) and then by the 

diagonal matrix H = diag, (o.', cr;-1, ... , o;'), where 0, = 0" ✓{R};,, one shall get the 
v1 v2 Vn V; . t 

following formula for the vector of standardised LS residuals 

w= -HG·1RG. y = Q. y (23) 

This formula will be used with the decomposition of the observation vector, ap­ 
plied earlier in this paper, i.e. 

y = y"'" + e + g 

where e = [e
1
, e2, ••• , e,J; g =[O ... O g(i) O ... OF or g =[O ... O g(j) O ... O]T. 

Since Q · y"'" = O, Q · e # O (it is assumed that eis a vector of perceptible errors) 
and Q · g # O (having one non-zero element, g is a vector of perceptible errors), one 
obtains from (23) 

w=Q(e+g) 

and hence 

w;= Q,.(e + g), w1 = Q1.(e + g) 

where Q,., Q1. are the i-th and the )-th row of the matrix Q. 
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To satisfy (22) one needs

(24)

Since the elements ofQ and Q can be written as,. ;-

k= I, 2, ... , n 

one obtains after simple operations the condition as in (20), which holds also for rows
due to the symmetry of R. Equating the elements {Q;Jk, {Q)k fork= i and k = j, 
one gets the condition as in (21 ). The equivalency of (20) and (21) can be proved by
showing that the relationship in (21) implies the one in (20). ■

The above proof holds for any vector g, except forg EM(A), which yields Qg = O. 
Therefore, with the condition as in (20) or (21) being satisfied, one gets
forg= [O ... O g(i) O ... O g(j) O ... OJ\ such that g ~ M(A), the equality

i.e. the gross errors in the i-th and the )-th observation, such that they do not fonn a
vector of imperceptible errors, are unidentifiable.

Property B extended upon a greater number of observables in a network, e.g.
y1, y2, ... , ys would be expressed by the conditions as in (20) or (21), with the range for
indices i and) being i= I, 2, ... , s - l; j = 2, 3, ... , s; j > i.

Hence, one may introduce the concept ofa Region ofUnidentifiable Errors (RUE), 
defined by

RUE= {Yi,Y2, ... ,y5 :l{R},Jl=-J{R}u·{R}11; i=l,2, ... ,s-1;)=2,3, ... ,s;j>i (25)

or equivalently, with the use of (20).
A single levelling loop, which as a whole constitutes one RUE, is a specific case.

In such a structure the gross errors in any combination, that do not forrn a vector of
imperceptible errors, are unidentifiable.

Property C. 

In a network with the observables y, y such that {R} .. · {R} .. > 0.25, the region
I J li Jl 

{y1, y2} cannot be a RUE. 

Proof. Since I{ R }1.1 = 0.5 (Prószyński, 1997), it follows that with {RL {R} , such that
max II JJ 

{R} · {R} .. > 0.25, Eq. (21) cannot be satisfied, which contradicts the existence of
li }} 

RUE= {y, y}. This applies to any pair of indices i,j. ■
I j 
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Property D. 

In a network with internal reliability such that {R}. > 0.5 (i= 1, 2, ... , n) there cannot 
li 

exist any RUE. This results immediately from Property C. 

From Properties C and D it follows that the existence of RUE in a network de­ 
pends entirely on the level of its internal reliability. So, such regions are practically 
unavoidable in levelling networks, which are the structures of low internal reliability. 

It should be noted that the definition of RUE introduced in this paper does not 
cover the network structures (Cen et al., 2003) where only some of the detectable gross 
errors are unidentifiable. This may happen in a network without a RUE, when after 
removing an outlier with gross error being detectable and identifiable, the resulting 
structure discloses the RUE, containing the detectable but unidentifiable gross errors. 

6. The proposed reliability-oriented classification of gross errors 

Figure 3 shows the proposed classification of observation gross errors, formed on the 
basis of the original (i.e. not standardised) model. 

Observation gross errors 

perceptible 
gEg: gf'!M(A) 

imperceptible 
QE g gE M(A) 

detectable 
______ Ig I;,_ MOB _ 
identifiable or unidentifiable 

undetectable 
Igi< MOB 

Fig. 3. The reliability-oriented classification of gross en-ors; g - vector of observation gross errors; 
g - gross error in the individual observation, being the element of the vector g; 

MDB - minimal detectable bias for this observation 

The minimal detectable bias (MDB) developed by (Baarda, 1968) for the case of 
single gross error, was later extended by (Teunissen, 1985, 1998) to cover the case of 
multiple gross errors. 

The classification has two hierarchic levels, with the following criteria: 
• orientation of the vector of observation gross errors in relation to the observation 

space generated by the model; 
• relation between the magnitude of the error and the minimal detectable bias (MDB). 

Here there are some explanatory comments to the scheme in Figure 3: 
• each element g of the vector g, where g belongs to the observation space gener­ 

ated by the model, is an imperceptible gross error. Conversely, each element g of 
the vector g, where g does not belong to this space (i.e. it has non-zero component 
orthogonal to this space) is a perceptible gross error; 
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• 

• 

by definition, the concept of perceptibility of errors is not connected with parame­ 
ter estimation in a model, as is the case with the concept of detectability. However, 
both the concepts depend on algebraic properties of the model and hence, in this 
respect they are interrelated. This relation is reflected in the values of reliability 
indices {R} and the MDB values computed on their basis. And so, for a single 

li 

gross error being an imperceptible error only when it resides in the observation 
(outlier) with {R} = O, the MDB becomes infinite, which means that such an error 

li 

is absolutely undetectable. Similarly, in the multiple outlier case the MDB for the 
candidate outlier carrying an imperceptible error becomes infinite, thus indicating 
that the error is absolutely undetectable. For a single gross error being a percep­ 
tible error, i.e. the one which resides in the observation with{R} > O, the 

li 

MDB assumes finite value and the error can be either detectable or undetectable, 
depending on its magnitude; 
the detectable errors can be either identifiable or unidentifiable. The gross errors 
that lie in RUE, and do not form a vector belonging to the space of imperceptible 
errors, are unidentifiable. The unidentifiability of this type, as independent of the 
magnitude of gross errors, can be attributed to undetectable errors as well. This 
was not shown in the classification table, since in the outlier-detection strategies 
the undetectable gross errors are beyond our reach. 

7. Numerical example 

To demonstrate the properties of imperceptible gross errors and show their relation 
to unidentifiable gross errors discussed in (Cen et al., 2003), we shall use the same 
levelling network, shown in Figure 4. Its option with one observation being added to 
improve the network's internal reliability shall also be used. 

Table 1 shows the observation values with random errors only (h), their a priori 
standard deviations ( o-J, the indices of internal reliability ( {R};) and the LS standardised 
residuals (w). 

The inspection of the matrix R ( 19 x 19) shows that the columns R.13 and R.14 are 
parallel vectors with c = 0.80 and {R}13_13= 0.47, {R}14_14= 0.30, {R}13_14= 0.38. One 
can check that both the equivalent conditions as in (20) and (21 ), are satisfied. One 
may then conclude that in the original levelling scheme there is RUE= {h13, h14}. 

The following examples of the vectors of gross errors to be introduced into the 
scheme shall be considered: 

g,=A·k=[l-6810-74-3-517-l 9-53-l 6 l-23F 

withk=[l 2-3 0-1 5 4-6-23-4]r 
(A) (B) (C) (D) (£) (n (G) (łf) (I) (./) (K) 

g11 = g · A.c = [O ... O g -g O ... OF or represented like g1 

(13) (14) 
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g11 = A · k with k = [O ... O g O ... 0]1 
(C) 

gm = [O ... O g O ... O]T; 
(I 3) 

g,v = [O ... O g g O ... O]T 
(13) (14) 

where g is a gross error; A.c is the column of A corresponding to the node C of the 
network; ( · ) is the observation or node number. 

B 13 C 

A 

5 15 

G 17 
Fig. 4. The levelling network for testing the properties of gross errors (Cen et al., 2003); 

additional observation C-K is marked with a dashed line 

The vectors g" g1" being the combinations of the columns of matrix A, belong to 
the space of imperceptible errors. Added to the vector of observation values h, they do 
not change the vector of LS standardised residuals w, but cause respective biases ~H1 
and ~H11 in the solution, obtained with a reference condition HA= O, i.e. 

~H,= [O 1 --4 -1 -2 4 3 -7 -3 2 -SJT; 
(A) (B) (C) (D) (£') (F) (G) (H) ([) (J) (K) 

~H// = [O ... o go ... O]T 
(C) 

One can see that the vector g1 affects all the parameters ( except for the fixed H), 
whereas g11 distorts He only. 

The vector g111 containing a single gross error, located in the observation h 13 with 
{R} 13_13 > O, does not belong to the space of imperceptible errors, and hence is percep­ 
tible. Its standardised forrn g111• can be decomposed into an imperceptible component 
and a perceptible component. Both the components computed forg= 2.8 mm and thus, 
g, = 2.8 mm/0.91 mm= 3.08, are shown in Table I under the symbols g111, (A*) and 
g111.(A~), respectively. The decomposition shows that the single error g.= 3.08 in the 
observation h13 is split into its imperceptible part (1.63) and the perceptible part ( I .45). 
The latter is a result of the operation {R}13_13 · g., i.e. 0.47 · 3.08 = 1.45. One can no­ 
tice that the perceptibility of this error is proportional to the value of reliability index 
for the observation h 13• In other words, the greater the reliability index for a particular 
observation, the better the perceptibility of a gross error residing in this observation. 
With {R} iw > 0.5 the perceptible part of the error would exceed the imperceptible 
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part. This should be taken into consideration in the design of networks. As shown in 
Table I, the corresponding elements of the components g 111, (A.) and g111.(A~ ), except 
for the elements discussed above, have opposite signs and cancel each other. 

Table I. The results of testing the original levelling scheme 

No h (J" {R};; g11,.(A.) g,ll'(A~) g,v.(A.) gtv_(A~) obs. [mm] (mm] w WIii w,v 

I 171303.4 1.15 0.62 -1.25 -0.09 0.09 -1.36 -0.17 0.17 -1.47 
2 7514.2 0.90 0.65 -0.92 0.23 -0.23 -0.63 0.46 -0.46 -0.34 
3 38636.2 0.83 0.62 0.38 -0.04 0.04 0.33 -0.08 0.08 0.28 
4 117336.0 0.96 0.50 0.37 0.06 -0.06 0.45 0.12 -0.12 0.54 
5 100116.5 0.63 0.39 -1.26 0.03 -0.03 -1.21 0.06 -0.06 -1.17 
6 309270.0 0.66 0.45 -1.50 -O Ol O.Ol -1.52 -O 02 0.02 -1.53 
7 409384.6 0.59 0.37 2.05 0.02 -0.02 2.08 0.03 -0.03 2.11 
8 81197.9 0.78 0.39 -0.72 -O Ol O.Ol -0.73 -0.02 0.02 -0.75 
9 156885.3 0.67 0.43 0.52 0.17 -0.17 0.78 0.35 -0.35 1.05 
IO 149373.1 0.75 0.57 -1.95 -0.12 0.12 -2.11 -0.24 0.24 -2.27 
Il 110735.1 0.71 0.50 0.87 -0.08 0.08 0.76 -0.16 0.16 0.65 
12 134363.2 0.54 0.35 0.91 O.IO -O.IO 1.08 0.21 -0.21 1.26 
13 56263.7 0.91 0.47 -0.56 1.63 1.45 -2.68 0.18 2.91 -4.79 
14 42425.2 0.73 0.30 -0.56 -1.16 1.16 -2.68 1.52 2.32 -4.79 
15 25345.1 0.58 0.22 -0.66 -0.34 0.34 -1.38 -0.68 0.68 -2.11 
16 17844.2 0.74 0.44 -0.85 -0.24 0.24 -1.20 -0.47 0.47 -1.55 
17 95727.2 0.84 0.56 -0.25 O.I I -O.I I -O.I I 0.21 -0.21 0.03 
18 98688.4 0.79 0.51 -0.13 0.80 -0.80 0.99 1.60 -1.60 2.11 
19 116519.9 0.92 0.64 -0.26 0.25 -0.25 0.05 0.50 -0.50 0.37 

The observation h13 carrying this error belongs to RUE= {h13,h14} and hence the 
error is unidentifiable. This is reflected in identical values of LS standardised residuals 
for h13 and hw as shown in the column w11r 

The vector gtv does not belong to the space of imperceptible errors (gtv f. g · A.J, and 
hence is the vector of perceptible errors. The imperceptible and perceptible compo­ 
nents of its standardised form gw forg= 2.8 mm, i.e. 

g!V' = [O ... O 3.08 3.84 O ... 0)1 
( 13) ( 14) 

where g '(l3) as in g111 and g 'Cl4l = 2.8 mm/0.73 mm = 3.84, are shown in the columns 
g,v,(A.) and glV,(A~), respectively. Here again, each of the errors g,c,3l and g,c14) is 
split into the imperceptible part and the perceptible part. The perceptible parts of these 
errors are the results of the following operations: 

for g ·c13J: 
for g.(14): 

{R}l313. g,(13) + {R}l413 ·g.(14)= 0.47. 3.08 + 0.38. 3.84 = 2.91 
{R} 13_14 · g ·c13l + {R} 14_14 · g ·c14l = 0.38 · 3.08 + 0.30 · 3.84 = 2.32 
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One can see that the error g '(131 residing in the observation with greater reliability
index has better perceptibility. As in the case of the vector g111• other corresponding
elements of the components glV,(A,) and gn,,(A~) have opposite signs and cancel each
other.

As both the errors reside in RUE= {h13, \
4
}, they are unidentifiable (see the col­

umn w/V). 

For the scheme with the added observation h20 (01, = 0.80 mm) the columns
R.13, R.14 of the matrix R (20 x 20) are not parallel vectors, which means that the
condition as in (20) is not satisfied, and therefore the RUE = {h13, h14} we had in
the original scheme, does not exist in the new scheme. This is confirmed by
{R} 13 14 * .J {R} 13_ 13 • {R} 14_ 14, where {R} iw =0.61, {R} 1414 =0.43, {R} 13_14 =0.24(see(2 l )).

Also, using two options of robust estimation - the Danish method (Krarup et al.,
1980) and the method of growing rigour (Kamiński and Wiśniewski, 1992) - checks
were made on Proposition given in the section on the properties of the vector space of

/',

imperc;ptible errors. The results verified (19) and indicated also that the vectors 6 H(o) 
and 6 HLs are parallel.

8. Conclusions 

A recommended reliability level ( {R};, > 0.5, i= 1, 2, ... , n; see (Prószyński, 1994))
results in limiting the vector space of imperceptible gross errors (dim; U < 0.5) in
a model and hence, in reducing the consequences of these errors in the form of an
uncontrolled parameter shift. The greater the value {R};, for a particular observation,
the better the perceptibility of a single gross error residing in this observation. With
{R} ii> 0.5, the perceptible part of a single gross error surpasses the imperceptible part.
This reliability level also eliminates the existence of RUE in a network and hence, the
occurrence of unidentifiable gross errors.

Especially in traditional geodetic networks of small reliability level (i.e. levelling
networks), the space of imperceptible errors is a significant element of practical im­
portance. In such networks one frequently encounters levelling lines, that form RUE. It
should be noted that the unidentifiable gross errors are a smaller threat for the quality
of the network than the imperceptible gross errors. The latter, in contrary to uniden­
tifiable gross errors, do not yield any signal about their existence in the observations.
Since on basis of a pre-analysis we may locate RUE in a network, we can find the ac­
tual outlier by carrying out a limited number of additional measurements. The effects
of imperceptible gross errors, as the undetectable errors, will be hidden in the distorted
values of estimated parameters.

Both the concept of imperceptible errors and the concept of unidentifiable errors
are associated with the properties of the network's structure, and therefore they are
useful in the design of geodetic networks with respect to reliability. In specific situa­
tions, for instance, we may check whether the vector of systematic errors of presumed
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or hypothetical pattern falls into the space of imperceptible errors and if not, evaluate
its imperceptible component. This may give us some indications on how to reshape the
model and possibly, modify the measurement process, in order to minimise the effects
of these errors.

The analysis of the vector space of imperceptible errors can be also practically
employed in investigating the properties of the outlier detection methods using nu­
merically simulated observations, i.e. when the true errors are known. Prior to actual
computation one may then easily check whether the simulated vectors of true errors
are perceptible or not in a model under question. In such a pre-analysis we may also
search for RUE, that is a potential seat for unidentifiable gross errors.

The problem of the vector space of imperceptible observation errors in linearised
models was only touched in (Prószyński, 2000) and it deserves a separate and more
detailed treatment.
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Przestrzeń wektorowa niedostrzegalnych zaburzeń obserwacyjnych:
Uzupełnienie teorii niezawodności sieci
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Streszczenie

Pojęcie wektorowej przestrzeni niedostrzegalnych błędów obserwacyjnych w modelach liniowych
Gaussa-Markowa z obserwacjami nieskorelowanymi, zaproponowane we wcześniejszej pracy autora,
przedstawione jest z pewnymi udoskonaleniami i nowymi dokonaniami w tym obszarze. Błędy grube
trafiające do tej przestrzeni są zupełnie niewykrywalne w jakichkolwiek możliwych testach statystycznych
wykonywanych w procesie estymacji metodą najmniejszych kwadratów i niezauważenie zniekształcają
wynikowe wartości jednego bądż więcej parametrów modelu. Pokazana jest zależność między pojęciem
błędów grubych niedostrzegalnych a proponowanym przez innych autorów pojęciem błędów grubych
wykrywalnych ale nieidentyfikowalnych na skutek specyficznych własności struktury sieci. Teoria
ilustrowana jest prostym przykładem liczbowym.


