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Abstract: The aim of the work is to develop and test an algorithm of adjustment of geodetic
observations, resistant to gross errors (method of robust estimations), with the use of the
damping function, proposed by the author. Detailed formulae of the damping function as a
component of the objective function in a modified classic least squares method were derived.
The selection criteria for the controlling parameters of the damping functions have also been
provided. The effectiveness of the algorithm has been verified with two numerical examples.
The results have been analysed with reference to the methods of resistant compensation,
which apply other damping functions, e.g. Hampel's function.
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1. Introduction

Deviating observations or gross errors are meant to denote a measurement result con­
taining an error rebounding from the Gaussian probabilistic model (Kadaj, 1995). The
theory of adjustment sometimes distinguishes the concept of gross error and outlying
error (Kadaj, 1978). However, this is a question of convention and is not so important
when the object of our consideration has already been defined: protecting "good"
observations, i.e. those which fall within the acceptable limits, from adverse effect
of "contaminated" observations, i.e. those from outside of the acceptable interval. It
is generally accepted that an outlying observation is such that contains a gross error
(Wiśniewski, 2005).

In the commonly applied least squares method (LSQ), gross errors are dispersed.
The method is classified as a neutral estimation (Wiśniewski, 2005). An assumption
of the methods of resistant adjustment is that an observation containing a gross error
should be "ignored" in the computation process. The idea of robust (resistant) esti­
mation was thought up by Huber (l 964). It was then developed by Hampel ( 197 I) 
and other researchers (e.g. Xu, 2005). A similar subject scope is dealt with by a
number of other papers (e.g. Baarda, 1968; Krarup et al., 1980; Kadaj, 1980, 1984,
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1988; Kamiński and Wiśniewski, 1992; Wiśniewski, 1987). A detailed description of
selected methods of resistant adjustment can also be found in the studies conducted by
Kwaśniak and Prószyński (2002) as well as Wiśniewski (2005).

The subject of this study is a modified least squares method, which is included
in the class of M-estimations. It is the component of the objective function that is
modified: original weights are replaced with a weight function, whose element is
the so called damping function (e.g. Wiśniewski, 2005). Figure I shows a graphical
illustration of some examples of damping functions.
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LSQ - least squares method 
v - standardised residual 
f (v) - damping function 
k, k0 - controlling parameters 

of damping function 

Fig. l. Examples of damping functions: a) Huber's function, b) Hampel's function, c) Danish function

Huber's function (Fig. la) radically rejects all the observations (their weights are
assigned the zero value), whose corrections (estimated with classic LSQ) are outside the
established acceptable interval (-k0; k0). In Hampel's function (Fig. 1 b) two additional
acceptable intervals are adopted, (-k; -k0), (k0; k), in which observations are damped
linearly. In Danish function (Fig. le), the observations, whose corrections are outside
the basic acceptable interval, are damped exponentially.

The shape of the diagram of the proposed damping function (a quadratic dam­
ping function QDF) is as shown in Figure 2. The function is, in a sense, a modified
Hampel's function (Fig. I b). The linear course of the diagram in additional intervals
(-k; -k0), (k0; k) are replaced with fragments of a parabola. The assumed objective of
the projected function was as follows: the observations that only slightly go beyond
the limits of the acceptable interval (-ko; ko) should be damped "softly" (like in the
Danish function), while those that definitely deviate from it should be damped more
radically. It is also necessary to define the limit k, outside of which the observation is
assigned the weight equal to zero.
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Fig. 2. A diagram of the proposed quadratic damping function QDF 

2. Deriving formulae for the damping function 

Below there is the procedure of deriving formulae for the damping function as a 
function of variable values of standardised corrections v and controlling parameters ko 
and k. Detailed formulae have been derived for a function increasing in the interval 
(-k;-k0) and decreasing in the interval (k0;k). 

First let us quote the formulae for the quadratic function, which are well known 
from algebra. The general form of a quadratic trinomial in the system of (0, v,J ( v)) is 
as follows: 

f (v) = av2 + bv + c; a * O; b, c ER 

whereas its standard form (Fig. 3) is given as 

f ( v) = a (v - p )2 + ą
where 

b 
P- --· - 2a'

fl
q=-- 

4a 

fl= b2 - 4ac 

(fl is the discriminant of a quadratic trinomial). 

(1) 

(2) 

(3) 

(4) 
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r (v) 

q 

o 

Fig. 3. An example of a quadratic function in the canonical notation 

The roots of a quadratic trinomial (in cases similar to the damping function - cf. 
Fig. 3) are calculated from the following formulae: 

-b- y"E. 
V1 = , V2 = 

2a
-b + y"E. 

2a
(5) 

The damping function in the interval (-k; -ko)

Here the parameters assume the following values (cf. Fig. 2) 

q = l; p = -ko (6) 

Considering (4), the x-intercept (5) at the point -k can be expressed as 

-b - vE_ -b - ✓b2 - 4acv1 = -k = --- = ------ 
2a 2a

(7) 

The other root is of no interest to us, as it is outside the considered interval (-k; -k0). 
Based on (3), (6) and (4) one can also note that 

b
(8) ko= -

2a

and 

t:, b2 - 4ac
= =l (9) 

4a 4a

Thereby a system of 3 equations (7), (8), (9) with three unknowns (a, b, c) have been 
obtained 
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b + ✓b2 - 4ac 
k=----- 

2a 
b 

ko= - 
2a 

b2 - 4ac 
---=l 

(IO) 

4a 
By solving the system (1 O) one obtains the coefficients of the quadratic trinomial as 
the functions of controlling parameters ko and k 

l 
a=---- 

(ko - k)2 

b = _ 2ko 
(ko - k)2 

( 11) 

(12) 

ko 
c=l---- 

(ko - k)2 

The system (1 O) is also satisfied for a = O, but according to the assumption in 
(1 ), that solution is rejected. Finally, the formula (2) for a damping function within the 
interval (-k; -ko) adopts the following form 

(13) 

v2 + 2k v + k2 - o o f1(v)=l- 2 (ko - k) 
(14) 

In order to find the specific formula for the damping function within the interval 
(ko; k), one adopts the same assumptions as previously (6) 

q = l; p = ko (15) 

Following the same steps (formulae (7) to (13)) leads finally to the parabola equation 
with the apex at ko (Fig. 2) 

_ ii2 - 2ko ii + k6 
h (v) = l - 2 

(k - ko) 
(16) 

Comparing (14) and (16), it is easy to establish a general formula for the damping 
function for lii11 E (k; ko) 

v2 - 2ko lvl + k6 
f (v) = I - 7 (k - ko)~ 

(17) 

A damping function for an algorithm of adjustment resistant to outlying observations 
(for any v1) can be expressed as follows 
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l l for \IE (-ko;ko) 
_ 112 - 2ko lvl + k6

f (v) = I - ----- for 1111 E (ko; k) 
(k - kof

O for lvl > k
This notation directly results in the formula of a weight function 

(18) 

r for VE (-ko;ko) 
_ _ v2 - 2ko lvl + k6

for lvl E (ko; k) (19) p(v)=f(v)-p= (1- 7 )·p
(k - ko)-

o for lvl > k
where p are the weights of observations, established from their a priori mean square 
errors (p; = 1 /mn-
3. Algorithm of adjustment resistant to outlying observations 

Algorithms of adjustment resistant to outlying observations (gross errors) require a 
certain modification of the least squares method. The problem can be formulated by 
defining a functional model 

V=AX-L (20) 

and adopting the adjustment criterion 

(21) 

The variables A, P, L, X and V denote matrices in a classic adjustment according 
to the least squares method (A - design matrix, P - weight matrix, L - observation 
vector, X - vector of unknown parameters - estimated increments to approximated 
unknowns, V - vector of residuals). The expression [ F (v) - P] denotes an equivalent 
weight matrix, whereas F (v) is a diagonal damping matrix in the following form 

F(v) = 
o 
o 

o o J (v11) 

(22) 
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Hence, the equivalent weight matrix can be written as

[F(V)·P]= 
o 
o 

o o p (v") 

(23)

The values of standardised residuals v,. are calculated from residuals v; estimated
with the classic least squares method (the initial step of adjustment)

V - l v,-=- 
mv; 

(24)

Information about mean square errors of residuals is contained in a covariance matrix
of residuals Qv (square roots of the diagonal elements of the matrix will be needed)

(25)

To simplify it, the mean square error of the unit weight (the value of the standard
deviation estimator) in (25) has been adopted as mo = 1.

Standardised residuals, determined from (24) will be elements of the vector V, 
which in turn is an argument of a matrix function F (v) - cf. (22). The algorithm of
adjustment resistant to outlying observations with the use of the proposed damping
function is presented in the block diagram in Figure 4.

The controlling parameter found in the damping function (18) is chosen similarly
as in other known damping functions (Wiśniewski, 2005). The first step consists in
adopting a level of probability y for the determined interval of standardised corrections
f... v = (-ko; ko>. Then, assuming the normal distribution for observation errors, the value
of parameter ko is determined

ko 

rt» E (-k0;k0)) = 2J ~ exp(-;2)c1v = 2¢(k0) = y 
o 

The values of function ¢ (ko) are listed in tables, hence it is easy to find the value
of the argument ko for the given value of the function. An additional criterion of the
damping function (parameter k - cf. Fig. 2) is adopted empirically. A too low value
of the parameter can result in a risk of failure to spot an outlying observation, while
a too high one - can result in a very slow convergence of the iterative process. It is
recommended that the initial value of parameter k should be taken from the interval
(4; 6), like for the Hampel's function.

(26)
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Classic LSO 
X= (A'PA)'A'PL 

V=AX-L 

Standardising the residuals 

Q,= p·'-A(A'PA)1A1 

v.vi = __}__ 
111\li 

Criterion of damping function 
k11 =')(see below *) 
Permissible interval: 

/',.v=(-ko;ko) 

Iteration i= O 
V'1'=V 
pv•= P 

Additional criterion: k =? 
~----Additional acceptable interval 

( -k; -k0)v(k,,; k) 

Damping function 

/{Ppl) = ... (see below*) 
Damping matrix 

F(V"') = ... (see below***) 

Iteration i: = i + l 
p':1 = F(V":-'J)P'1"" 

X"'= (ATPv1A)"'A1P';1L 
V"1 = AX''' - L 

Standardising the residuals 

Q;: = crv• r' - A (A'P"'A)'A' 

YES 

STOP 
Finish 

NO 

*) k11 = J(y) - for normal distribution (y - assumed probability) 

**) + k; 
for r,v> E (- k . k )/ o, (J 

for IPF'I E (-k0; k) 
for lif'I > k

***) F(V1
;;) = diag{f(v;-''),J(\i,v1 ), ... ,J(v,;')) 

Fig. 4. The algorithm of resistant adjustment with the use of the proposed damping function 
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4. Numerical examples 

The process of adjustment (by the parametric method) of a set of observations of 
one quantity (to make calculations simpler) as an example to illustrate the application 
of theoretical algorithmic assumptions (Fig. 4) is presented. The task can obviously 
be performed more easily with the use of the direct observation adjustment, but the 
parametric method is more common (universal) in the algorithms of adjustment of 
geodetic observations. 

Example 1 

A set of observations contains equally precise results of the measurement of a certain 
length x, performed 4 times: cf; = { 100.006; 100.003; 99.997; 100.054), of which one 
distinctly differs (deviates) from the others. The approximate value of the unknown 
quantity has been adopted as x0 = 100.000 rn while the mean square error of the 
measurement: m = 0.005 m. 

The adjustment will be performed by applying the proposed quadratic damping 
function (QDF) and then, for comparison, the procedure will be repeated with a diffe­ 
rent damping function - Hampel's function (cf. Fig. 1). 

The method of resistant adjustment with the use of QDF 

The initial stage - classic least squares method (LSQ) 

d 1 + v 1 = x0 + c5 x 
d2 + v2 = x0 + c5x 

- A= d3 + v3 = x0 + c5x 
d4 + v4 = x0 + c5x 

L= 

6 mrn 
3 mrn 
-3 mm 
54 mrn 

X = [c5x] 

P = diag {0.04; 0.04; 0.04; 0.04) 

( 
T )-I T X = c5x = A PA A PL = 15 mm 

V= AX-L = 

9 mm 
12 mrn 
18 mm 
-39 mm 
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Standardising the residuals: 

18.75 -6.25 -6.25 -6.25 

Qv = p-I -A(ATPAf AT= -6.25 18.75 -6.25 -6.25 Yl8.25 
-6.25 -6.25 18.75 -6.25 - Inv;= 

-6.25 -6.25 -6.25 18.75 

v, 9 v, = -= = 2.08 
1n.,I ✓18.25 
V2 12 2.08 v2 = - = = 2.77 
mv2 ✓18.25 -v= 2.77 
V3 18 4.16 

V3 = - = = 4.16 
mv3 ✓18.25 -9.01 

V4 -39 
V4 = - = = -9.01 

mv4 ✓18.25 

The level of probability is adopted asy = 0.95, hence (normal distribution tables) 
the criterion of the damping function is determined as ko == 2. Therefore, the acceptable 
interval is ~v = (-2; 2). None of the four standardised residuals lies within the interval. 
Let us assume an additional criterion of a damping function: k = 6. An additional 
acceptable interval is (-6; -2) u ( 2; 6). 

Iteration j = O 

vco) = v; reo) = r; l0l = v;
I 

\v;0l\ E (2; 6) f ( iJ;O)) = 1 - 
( v;0l)2 - 2k0 \v;0l\ + kl

= 1.00 - (k - kol

\v~OJ\ E (2; 6) f (~Ol)= 1 - 
( ~

0l)2 - 2ko \v~0l\ + kl = 0.96 - (k - ko)2

\v~0l\ E (2; 6) f (~O))= I - ( 1?)2 - 2ko \v~0ll + kl = 0.71 - (k - ko)2

Jv~ol\ > 6 - f ( ~0l) = O.OOO 1 (== 0) 

F(V(Ol) = diag{l.00;0.96;0.71;0.0001) 
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The residual v:o) is outside each of the acceptable intervals, hence the damping 
function should be assigned the value of zero. However, in order to be able to continue 
the calculations in the next iteration, the value close to zero (e.g. O.OOO 1) is adopted. 
This will make an equivalent element in the weight matrix p(ll, numerically equal to 
zero. 

Iteration j = 1 

p(I) = F (vC0l) · p(O) = diag {o.040; 0.038; 0.028; 4 · 10-6} 

yOl = AXCI) - L = 
-3.47 mm 
-0.47 mm 
5.53 mm 

-51.47 mm 

Q~) = (p(l)rl -A(ATp(l)At AT= 

15.64 -9.36 -9.36 -9.36 mv1 = ✓15.64 
-9.36 16.68 -9.36 -9.36 mv2 = ✓16.68 

= ~ 
mv3 = ✓25.85 -9.36 -9.36 25.85 -9.36 

-9.36 -9.36 -9.36 2.5 · 105 mv4 = ✓2.5. 105 

(]) 

-Ol vi -3.47 = -0.88 
v1 = m~,:l = ✓15.64 

-0.47 = -0.12 
✓16.68 

5.53 = 1.09 
✓25.85 

-51.47 =-0.10 
✓2.5 · 105 

-0.88 
-0.12 
1.09 
-0.10 

F(VC1l) = diag{l; 1; I; l} 



14 Tadeusz Garguła

As all the standardised residuals /1l lie within the interval 6v = (-2; 2), the
I

matrix weight function F (v<1l) becomes a unit matrix and subsequent iterations would
have no effect. The values calculated in this iteration (j = I) are regarded as final.
Further calculations (observations adjustment, unknowns, precision evaluation, etc.)
are conducted according to the classic LSQ.

The method of resistant adjustment with the use of Hampel's function

The initial stage (LSQ) together with standardisation of residuals and determination of
parameters ko and k will be identical as in the previous method (quadratic damping
function). Calculations will be continued starting with iteration j = O. The formula for
Hampel's damping function - cf. e.g. (Wiśniewski, 2005) will be applied

f (v) = lvl - k
ko - k 

(27) 

Iteration j = O

v<0i = v· p<0l = P· 
' ' 

/Ol= ii; 
I

1~0)1 E (2; 6) f (~O))= 
lv;oll - k 

= 0.98 - ko - k 

lv~0llE(2;6) f (v~O)) = 
lv~oJI - k 

= 0.81 - ko - k 

lv~0ll E (2;6) f (v~O)) = 
1~0)1-k

= 0.46 - ko - k 

lv:iO)I > 6 - f (v~O)) = 0.0001 (= 0) 

F(v<0l) = diag{0.98;0.8I;0.46;0.0001} 

Iteration j = 1

p(I) = F(v<0l). p(O) = diag{0.039;0.032;0.018;4· ,o-6} 
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y(l) = AX(!) - L = 

-2.92 mm 
0.08 mm 
6.08 mm 

-50.92 mm 

Q~l = (pOl(-A(ATp(IlA( AT= 

14.40 - l l.11 -li.li -11.ll niv1 = ✓14.40 
-11.11 19.75 - l l.11 -li.li m,v2 = ✓19.75 

= - ✓43.24 -li.Il -11.11 43.24 -11.11 mv3 = 
-11.11 -11.11 -11.11 2.5 · 105 

1nv4 = ✓2.5 • 105 

(!) 
-Ol v1 -3.47 
vi = m = --- = -0.77 

m.,
1 

✓15.64 
(I) 

-(I) v2 -0.47 
v2 = m = = 0.02 

mv2 ✓16.68 
(I) 

-(I) V3 5.53 
V3 = m = = 0.92 

mv3 ✓25.85 
(]) -51.47 

-0) V4 = -0.10 
V 4 = m~~) = -✓-;::2=.5=·=1=0=5 

-0.77 
0.02 
0.92 
-0.10 

F(v<1l) = diag{I; I; I; 1} 
Like in the previous method (QDF), the calculation cycle ends with the first iteration. 

Classic adjustment according to the LSQ (without outlying observations) 

In order to compare the two methods (QDF and Hampel's function) to find the 
one which produces more reliable results, adjustment according to the classic LSQ will 
also be performed. In this case the set of observations does not contain gross errors 
(c/1 = {100.006; 100.003; 99.997; 100.002)). The outlying observation c/4 was replaced 
with the expected value (the arithmetic mean) of the other three observations. 

c/1 + V1 = Xo + OX 
c/2 + v2 = x0 + ox -A= 
c/3 + V3 = Xo + OX 
d4 + v4 = x0 + ox 

L= 

6 mm 
3 mm 
-3 mm 
2 mm 

X= [ox] 
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P = diag (0.04; 0.04; 0.04; 0.04} 

V= AX-L = 

-4.0 mm 
-I.O mm 
5.0 mm 
O.O mm 

The major data from the adjustment of observations with the use of each of the 
three methods are presented in Table I. 

Table I. Data from the adjustment with the use of various methods (example I) 
Observations Adjustment weights Residuals Unknown 

No. d; [m] /Jl [m-2] v; [mm] óx [mm] 
QDF I Hampel I LSQ QDF Hampel LSQ QDF Hampel LSQ QDF Hampel LSQ 

l 100.006 0.040 0.039 0.040 -3.5 -2.9 -4.0 

2 100.003 0.038 0.032 0.040 -0.5 0.1 -I.O 
2.5 3.1 2.0 

3 99.997 0.028 0.018 0.040 5.5 6.1 5.0 
4 l 00.054 I l00.054 I I 00.002 O.OOO O.OOO 0.040 -51.5 -50.9 O.O 

The results of the adjustment (residuals, unknowns) obtained with the LSQ can be 
regarded as neutral (expected). The results obtained with the QDF are closer to those 
values than the ones obtained with Hampel's method. It is worth noticing the values of 
adjustment weights: Hampel's function damps too strongly the effect of observations 
No 2 and 3 (not containing gross errors) on the adjustment results. The proposed QDF 
function distorts correct (non-outlying) observations to a lesser degree. 

Example 2 

The set of observations discussed in example 1 contained a result which deviated 
from the others. It was eliminated from the computation process (by adopting the 
weight value equal to zero) due to the application of resistant adjustment. The set of 
observations in example 2 also contained a deviating result, but it cannot be regarded 
beyond doubt as incorrect. The value of the measurement (d4) was adopted in such a 
way that its standardised residual ~Ol was included in the additional acceptable intervals 
(-6; -2) U ( 2; 6). Let us check how the resistant adjustment algorithms (including the 
QDF) operate in such cases. The criterion of precision, at which standardised residuals 
should fall within the basic acceptable interval (t, v = (-2; 2)) is adopted as: e = O. I. 
The starting data and the course of the computation process for both methods is shown 
in Tables 2 and 3. 
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Table 2. Adjustment with the use of Hampel's function (example 2) 
Observation index i I 2 3 4 
Observations d; [m] 100.006 100003 99.997 100.034 
Weights p; [rn>'] 0.04 0.04 0.04 0.04 

Observation (-/;) [mm] 6 3 -3 34 
Residuals v; [mm] 4 7 13 -24 
Unknown ox [mm] 10 

Standardised residual ii; 0.92 1.62 3.00 -5.54 
Controlling parameters ko= 2; k = 6 
Damping function /(ii;) I I 0.75 O.I I 

Iteration j = I 
Weights p; [m-2] 0.040 0.040 0.030 0.004 
Residuals v; [mm] -2.33 0.67 6.67 -30.33 
Unknown ox [mm] 3.67 

Standardised residuals ii; -0.58 0.17 1.35 -2.05 
Controlling parameters ko= 2; k = 6 
Damping function /Ui;) I I I 0.99 

Table 3. Adjustment with the use of the QDF (example 2) 
Observation index i I 2 3 4 

Standardised residuals ii; 0.92 I 1.62 I 3.00 I -5.54 
Controlling parameters ko= 2; k = 6 
Damping function /(ii;) I I I I 0.94 I 0.22 

Iteration j = I 
Weights p; [m "] o.o-o I o.o-o I o.038 I 0.009 
Residuals v; [mrn] -1.68 I 1.32 I 7.32 I -29.68 
Unknown ox [mrn] 4.32 

Standardised residuals ii; -0.41 I 0.32 I 1.69 I -2.89 
Controlling parameters ko= 2; k = 6 
Damping function /(ii;) I I I I I I O 99 

Iteration j = 2 
Weights p; [m-"] o.oao I o.o-o I 0.038 I 0.008 
Residuals v; [mm] -1.78 I 1.22 I 7.22 I -29.78 
Unknown ox [mm] 4.22 

Standardised residuals ii; -o.43 I 0.30 I 1.67 I -2.82 
Controlling parameters ko= 2; k = 4 
Damping function /(fi;) I I I I l I 0.83 

- - - - - - - - (Iterations j = 3 -;- 8) - - - - - - - - 
Iteration j = 9 

Weights p; [m-,] o.oao I o.o-o I o.038 I 0.004 
Residuals v; [mm] -2.13 I 0.27 I 6.27 I -30.73 
Unknown ox [mm] 3.27 

Standardised residuals ii; -0.61 I 0.07 I 1.46 I -2.10 
Controlling parameters ko= 2; k = 3 
Damping function /(ii;) l I l I l I 0.99 
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Calculations by Hampel's method are interrupted after the first iteration, as at this 
stage all the standardised residuals belong to the interval (-2; 2) at the precision not 
exceeding the adopted value of e = O. I. 

Adjustment with the use of the proposed quadratic damping function (Table 3) can 
be started with the calculation of the damping function. The initial stage is identical 
as in the previous method (see Table 2). 

The results obtained in iteration j = 2 indicate low convergence of the iterative 
process, hence a change the value of parameter k was decided. After iteration j = 4 (for 
the same reason as previously) a new value of parameter k = 3 was again assumed. To 
simplify the presentation of results, the iterations j = 3--,- 8 are not included in Table 3. 

Calculations were interrupted after iteration j = 9, as the condition ii; E (-2; 2) 
was satisfied at the assumed precision e = O. 1. Further calculations will not cause any 
significant changes, which can be inferred from the values of the damping function: 
f (ii,) = I. It would be possible to shorten the iteration process by consecutive changes 
of the value of k. The value of the parameter should be determined empirically, by 
observing the course of the iteration process. Reducing the value of the parameter k
too much may result in unnecessary damping correct observations (in this case - d3). 

To compare the effectiveness of the applied methods of damping the outlying 
observations, the results were put in Table 4. The table uses (taken from example I) 
the adjustment results by the classic LSQ (the set of observations does not contain 
incorrect results). 

Table 4. Data from the adjustment with the use of the three methods (example 2) 

Observations Adjustment weights Residuals Unknown 
No. d; [m] p; [m-2] v; [mm] 8x [mm] 

QDF I Hampel I LSQ QDF Hampel LSQ QDF Hampel LSQ QDF Hampel LSQ 

I 100.006 0.040 0.040 0.040 -2.7 -2.3 -4.0 
2 100.003 0.040 0.040 0.040 0.3 0.7 -I.O 

3.3 3.7 2.0 
3 99.997 0.038 0.030 0.040 6.3 6.7 5.0 
4 100.0341100.0341100.002 0.004 0.004 0.040 -30.7 -30.3 O.O 

Like in example 1, it can be noted that by applying the proposed QDF there were 
obtained the results (observation corrections and the value of the unknown) which are 
much closer to the expected ones (LSQ). It is again worth noticing the weights (from 
the last iteration of each adjustment): the weight p3 = 0.030 in Hampel's method is 
clearly understated, though observation d3 is correct. This results in an adverse effect 
on the values of the other residuals, too. The QDF function allows for more reliable 
determination of the weights of correct observation (without gross errors). 

5. Summary and conclusions 

The aim of this study was to develop and test a new method of identification and elimi­ 
nation of outlying observations from a set of geodetic measurements (as a modification 
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of the classic LSQ). The novelty of the method lies in the application of a new form
of the damping function as a component of the objective function.

The theoretical part of the work consists of the proposing the form and deriving
the detailed formula of the damping function. The practical part of the study was based
on two numerical examples. The following tasks were performed (for each of the two
examples):
- adjustment of a set of observations containing a gross error with the use of the

proposed quadratic damping function (QDF),
- performing the adjustment of the same set of observations with the use of the

known Hampel's function,
performing the adjustment of a set of observations without gross errors with the
use of the classic LSQ.
The results were analysed and the criteria of determination of so called controlling

parameters of a damping function were given, assuming that the pattern of observation
errors is consistent with the normal distribution.

The following conclusions can be drawn from the results:
- the proposed damping function (QDF) can be applied as an objective function in

modifying the classic method of least squares,
- the QDF can be applied with a view to detecting (identifying) outlying observations

and damping their negative effect on the adjustment result,
- a negative effect of the QDF on correct observations (excessive damping) is lower

than in other known damping functions, e.g. Hampel's function,
- compared to Hampel's function, the QDF damps more mildly the observations

which are outside the acceptable interval, yet close to its limits,
- the iterative adjustment process performed with the application of the QDF is a

slowly convergent process, which positively affects the corrections of observations
without gross errors,

- the differences between the results adjusted with the use of the QDF and then with
the use of Hampel's function are not too big, but they can be significant in some
geodetic tasks, e.g. in determination of displacement or distortion of objects.
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Propozycja nowej funkcji tłumienia jako składowej funkcji celu
w metodzie wyrównania odpornego na błędy grube
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Streszczenie

Celem niniejszej pracy jest opracowanie i przetestowanie algorytmu wyrównania obserwacji geodezyjnych,
odpornego na błędy grube (metoda estymacji mocnych), z zastosowaniem zaproponowanej przez autora
nowej funkcji tłumienia. Wyprowadzono wzory szczegółowe funkcji tłumienia jako składowej funkcji
celu w modyfikowanej klasycznej metodzie najmniejszych kwadratów. Podano również kryteria doboru
parametrów sterujących funkcji tłumienia. Skuteczność działania przedstawionego algorytmu wyrównania
zweryfikowano na dwóch przykładach numerycznych. Analizę otrzymanych wyników przeprowadzono
w odniesieniu do metod wyrównania odpornego, wykorzystujących inne, znane funkcje tłumienia (np.
funkcja Hampela).


