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Abstract: Least squares (LS) estimation is one of the most important tools in geodetic 
data analysis. However, its prevailing use is not often complemented by an objective view 
of its rudiments. Within the standard formalism of LS estimation theory there are actually 
several paradoxical and curious issues which are seldom explicitly formulated. The aim of 
this expository paper is ro present some of these issues and ro discuss their implications 
for geodetic data analysis and parameter estimation problems. In the first part of the paper, 
an alternative view of the statistical principles that are traditionally linked to LS estimation 
is given. Particularly, we show that the property of unbiasedness for the ordinary LS es­ 
timators can be replaced with a different, yet equivalent, constraint which implies that the 
numerical range of the unknown parameters is boundless. In the second part of the paper, 
the shortcomings of the LS method are exposed from a purely algebraic perspective, without 
employing any concepts from the probabilistic/statistical framework of estimation theory. In 
particular, it is explained that what is 'least' in least squares is certainly not the errors in the 
estimated model parameters, and that in every LS-based inversion of a linear model there 
exists a critical trade-off between the Euclidean norms of the parameter estimation errors 
and the adjusted residuals. 

Keywords: Least squares, unbiasedness, unboundedness, linear model, ill-posed pro­ 
blems, uncertainty principle, estimation error 

1. Introduction 

The method of least squares (LS) estimation is one of the most popular and impor­ 
tant tools for geodetic data analysis (Dermanis and Rummel, 2000). Since its formal 
development by Gauss and Legendre, scientific inference based on LS techniques has 
overwhelmingly dominated the work of geodesists in both theoretical and practical 
aspects. Moreover, the underlying principles of LS estimation have acquired a status 
of universal consent over the years, which occasionally discourages the pursue of 
alternative routes for data analysis and parameter estimation problems. For example, 
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geodesists are often guided by an unenthusiastic (if not negative) attitude towards the 
use of biased est i mat ion techniques, thus conforming to the widespread belief that 
unbiasedness is a natural property that should always accompany the process of opti­ 
mal parameter estimation. A characteristic paradigm 1s the use of ridge-type estimators 
which is commonly justified on the basis of improving the numerical stability of the 
ordinary LS solution at the expense of a small deliberately induced bias, and rarely 
on the fact that ridge regression is an independent estimation technique which has its 
own compound theoretical background that strongly competes with the traditional LS 
logic (Efron, 1975; Rao and Toutenburg, 1995). 

The objective of this paper is to re-visit the LS "logic" by discussing some of its 
problematic aspects for parameter estimation problems. In the first part of the paper an 
al terna ti ve view of the statistical principles that are traditionally linked to LS estimation 
is given. Specifically, it is shown that the property of unbiasedness for the ordinary LS 
estimators can be replaced with a different, yet equivalent, constraint which implies that 
the numerical range of the unknown parameters is boundless. The consequences that 
arise from this dualism in the context of geodetic parameter estimation are discussed, 
and some comments on the statistical foundations of least-squares are also made. ln 
the second part of the paper, the shortcomings of the LS logic are exposed from a 
purely algebraic perspective without making any reference to quantities commonly 
used within a probabilistic framework (e.g. variance, bias, mean squared error). In 
particular, it is explained that what is 'least' in least squares is certainly not the errors 
in the estimated parameters, and that in every LS-based inversion of a linear model 
there exists a critical trade-off between the Euclidean norms of the parameter estimation 
errors and the adjusted residuals. A type of uncertainty principle for inverse problems 
with linear models is also introduced in the paper, which gives further insight into the 
limitations of classic LS estimation. 

lt must be noted that the ideas presented herein should not be viewed as a disagre­ 
ement with the practice of applying the LS methodology for geodetic data processing, 
but merely as a suggestion to adopt a more objective and unbiased appreciation of 
its optimality principles. Also, let us add that there is nothing mathematically new 
about the considerations presented in this paper (although some well-known issues 
have been elaborated more deeply), and what we only attempt to convey is that the 
logic associated with LS estimation receives a more objective treatment than it is often 
given by geodesists. An interesting appraisal of the LS theory for geodetic adjustment 
problems can also be found in Moritz (1989), which however puts emphasis on rather 
different issues from the ones discussed herein. 

2. Unbiased or biased estimation? 

The criterion of unbiasedness is intrinsically related to the [requent ist approach in 
probability theory. The latter provides the backbone of what is known as the classic 
view for statistical inference problems, in contrast to the more controversial Bayesian 
methods which represent the movement of subjectivists in estimation theory (Jaynes, 
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2003). Note that for Bayesians there is usually no contemplation about possible biases 
in their estimators, since this notion is totally irrelevant within the Bayesian vision of 
statistical inference (Barnett, 1982; pp. 16-19). 

Without trying to diminish the value of the unbiasedness criterion, a warning 
must be raised to indicate that we may have been caught in a semantic trap of our 
own making. The very name unbiased suggests the appeal of this concept to notions 
of scientific objectivity. However, let us take a closer look at the general form of the 
mean squared error (MSE) of an arbitrary parameter estimation process 

MSE(ł = Ej(8 - 8)2ł = [£{Bl - ef + vor(8) (l) 

where 8 is s0111e estimator ofan unknown deterministic parameter e, EO denotes the 
ensemble averaging operator in the sense of probability theory, and var() stands for the 
variance of an underlying random variable. The difference £{8l-8 is commonly termed 
the 'bias' of the estimate 8, a name which implies something that we must remove at 
all costs If this difference had been called instead the "component of the MSE that is 
orthogonal to the variance of 8", as suggested by the Pythagorean expression of (I), it 
would have been more clear that the two contributions to the total MSE are on equal 
footing. lt is foolish to decrease one at the expense of increasing the other, yet this 
is exactly what unbiased estimators normally do when they set a priori the difference 
£(0) - e equal to zero. 

Various arguments can be found to support and/or to oppose the use of the unbia­ 
sedness criterion in parameter estimation problems. Statisticians often dispose the si­ 
gnificance of unbiased estimates because they do not remain invariant under a simple 
transformation in the underlying parameters, i.e. the square of an unbiased estimate 
0 of e is not necessarily an unbiased estimate of 82. On the other hand, a similar 
reasoning can be adopted against biased estimates, since a linear transformation of 
the input data does not automatically implies a corresponding linear transformation 
to a biased estimator (Efron, 1975). An appraisal of the unbiasedness property is 
given in (Savage, 1972; pp. 244-245), where it is claimed that a serious reason to 
prefer unbiased estimates in statistics seems never to have been proposed, while Tukey 
( 1960) supports the abandoning of the unbiasedness property in data analysis problems 
from a modeller's point of view. Note that, in spite of its apparent persuasive logic, 
an unbiased estimator may lead to absurd results in practice. An example is given in 
(Barnard, 1963) where it is shown that the condition of unbiasedness can produce an 
estimate 8 of all values which lie outside the range of possible e.

An elegant argument in support of unbiased estimators is that they can recover 
the true model parameters in the presence of errorless data (Liebelt, 1967; p. 137), 
whereas biased est i ma tors generally fai I to achieve this property. In fact, Gauss had 
incorporated this reasoning into the requirements for an optimal linear estimator when 
he established the LS method in a rigorous statistical context and proved its equivalency 
with Legendre's original formulation (Eisenhart, 1964). However, one may provoca­ 
tively argue that it is not reasonable to adopt an optimal estimation criterion on the 
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hypothetical basis of using 11 with errorless observations. After all, geodetic data sers 
are always contaminated by external random noise. 

111 a probabilistic context, the unbiasedness condition for parameter estimation 
problems ensures the exact (errorless) recovery of an unknown quantity after infini­ 
tely many repetitions of the data collection process and their subsequent adjustment: 
E!Bł = e This is. however, a rather peculiar principle to base the optimal processing 
of a single data set. since all that we have available in practice is a finite group of 
measurements I l f asymptotic properties need to be imposed on the statistical behaviour 
of a parameter estimator, why not choose consistency instead of unbiasedness? A con­ 
sistent estimator e approaches the true unknown value as the number of the available 
data increases (Barnett, 1982; p. 134) It can be argued that, in view of the increasing 
volume of geodetic data that becomes available nowadays, such an asymptotic pro­ 
perty seems a more sensible requirement than the unbiasedness condition. Note that 
consistency is quite different in spirit from unbiasedness, and the two properties are 
generally unrelated since there exist unbiased inconsistent estimators as well as biased 
consistent estimators (Savage, 1972). 

Taking a more practical standpoint, it is instructive (and fair) to recognize the merit 
of unbiasedness in the sense that it sets to zero one of the two factors contributing to the 
total MSE of any parameter estimation procedure. LS estimators, in particular, combine 
this property with the additional minimization of the second term that contributes to the 
total MSE, namely var(B); see (I). However, the fact that an estimator has minimum 
variance in the class of unbiased estimators does not guarantee that its variance is 
numerically small. In linear models with an ill-conditioned design matrix, in particular, 
the variances of the LS estimated parameters may be too large for practical purposes. 
A simple example can be mentioned for the case of the standard Gauss-Markov model, 
y =Ax+ v, E{vl = O, E{vvTl = 0"2I, where it holds that (Hoerl and Kennard, 1970) 

trace C, > 
Amin 

(2) 

where C, is the covariance (CV) matrix of the LS estimated parameters, and Amin is the 
smallest eigenvalue of the normal matrix AT A. If some of the columns of A are nearly 
collinear, then /lmin is close to zero, which in turn causes a significant deterioration in 
the statistical accuracy of the LS solution. 

3. Two equivalent statistical views of LS estimation 

According to the Gauss-Markov theorem, the LS methodology provides a linear and 
uniformly unbiased estimator that has the minimum MSE among any other linear unbia­ 
sed solution; such estimators will be abbreviated in the sequel as BLUE (Best Linear 
Unbiased Estimators). In this section, after a short review of the BLUE perspective, 
we present an alternative viewpoint for the statistical properties that can be associated 
with the ordinary LS estimators. 
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3./. The general linear model

Let us begin with a system of linear (or linearized) observation equations of the 
following form 

y=Ax+v (3) 

where y is a known observation vector, x 1s an unknown parameter vector, and A 
is a design matrix of known coefficients with full column rank. The residual vector 
v contains unknown random errors (data noise) whose statistical characteristics are 
typically given 111 terms of the first and second order moments 

(4) 

l n practice, the error CV matrix C is often considered partially known and its un­ 
certainty is commonly controlled by one or more scaling factors (variance components) 
which can be estimated a posteriori from the available data. Since the knowledge of 
the error CV matrix does not play a crucial role in the rest of this paper, we assume 
that C is a fully known symmetric and positive-definite matrix. 

Despite its simplistic linear character and its inherent restriction for additive da­ 
ta errors, the model of (3) is overwhelmingly used in all areas of modern geodetic 
research. In principle, in all such cases we generally seek to determine an unknown 
quantity e which depends on the archetypal parameter vector x. For convenience, we 
consider here only the case where e is a linear function of the unknown parameters 

(5) 

with q being an arbitrary known vector. Based on the knowledge of the data vector 
y, various types of estimators 13 = 13(y) can be considered, each of which complies 
to specific optimal criteria and assumptions. In the following section, we describe the 
statistical characteristics of the usual LS estimators that can be associated with the 
linear models of (3) and (5). 

3.2. The BLUE approach 

A linear estimator of the unknown scalar quantity e has the general form 

(6) 

where the vector b and the scalar c need to be determined according to some optimal 
criteria. The statistical formulation of LS estimation is based on two fundamental 
properties that the estimator of (6) should satisfy simultaneously. namely 

A T 
I) Uniform unbiasedness: E\0ł = e = q x for any parameter vector x, 
2) Mi111111um MSE E((A - 8)2ł = minimum. 
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It is easily shown that the first property leads to the following constraints for the 
quantities b and c 

bT A T = q (7) 

C = 0 

The MSE of the linear estimator 13 has the general form 

(8) 

(9) 

and its minimization, subject to the constraints of (7) and (8), leads to a unique solution 
for b through the method of Lagrange multipliers. The result 1s given by the following 
equation 

b = c-1A (ATc-1A)-1 ą c10)

Based on (6), (8) and (IO), the optimal estimate of 0 = q T x is thus given by 

which implies the following, well known LS estimate for the parameter vector x 

( 12)

In the next section, the BLUE estimators of (II) and ( 12) are derived through 
a different approach, without departing from the broad context of optimal statistical 
inference. This alternative perspective represents only an attempt to elucidate the logic 
of the unbiasedness condition that is associated with LS estimation. 

3.3. Unboundedness vs. unbiasedness: an alternative approach for LS estimators 

Taking into account (9), let us point out the critical fact that the MSE of the linear 
estimator § depends directly on the vector of the unknown parameters x. This is 
something that we should generally expect from any type of estimator, regardless of 
the algorithmic relationship between the parametric quantities x and 0. Consequently, 
if the range of x is unbounded, the second term in the MSE expression of (9) becomes 
unbounded too. 

ln order to ensure that the MSE of (J remains finite, regardless of the numerical 
range of the unknown parameters, the following condition should thus be satisfied (see 
Eq. (9)) 

( 13) 

where OT corresponds to a row vector of zeros. Subject to this last condition and given 
that c is only a constant scalar, the MSE minimization for the linear estirnator ć' yields 
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b = c-1A(A1C-1Ar1 q and C = o ( I 4) 

wh ie h, i n tu 111. gives rise to the same opli ma I est i mates for 0 and x that were derived 
in the last section. 

Hence, we can obtain the same BLUE-type optimal solution without using the 
requirement 01 unbiasedness for the estimated parameters. An equivalent statistical 
formulation 01 the LS estimation process can thus emerge which is articulated as 
follows: "among all linear estimators that can provide finite MSE for a set of unknown 
parameters wi th u n bounded ( or unspecified) range, LS estimators yield res u Its with 
minimum MSE". 

lt may appear that we have removed the requirement of unbiasedness at the expense 
of a more restricted version for the LS estimation method. Obviously, the property of 
unbiasedness for the estimated parameters has not been lost in this case, since it will 
now be a direct consequence of (14). Furthermore, the resulting estimators are not 
restricted in any way, and they can be implemented regardless of the actual range of 
the true parameter vector x. In fact, what the previous alternative formulation should 
make us sceptical about is the following question: will the ordinary LS estimation 
algorithm give optimal results (in the MSE sense) when x is a vector of bounded 
parameters within a known specified range? 

4. Discussion 

An instructive way to look at LS estimation is to recognize the fact that its statistical 
optimality is closely associated with the assumption that the range of the unknown 
parameters x is unbounded. Such a perception is not new and it has already appeared 
in the statistical literature (e.g. Barnard, 1963; Hoerl and Kennard, 1970). Geodesists 
should be aware of this connection, since in all geodetic adjustment problems the 
parameters that need to be determined surely lie within a finite range. It should be ack­ 
nowledged that this type of information is not integrated in the ordinary LS estimation 
process. 

The statistical logic of the LS principle, as this is depicted in terms of a linear 
unbiased estimator with minimum MSE, ignores the fact that the unknown parameters 
are finite in magnitude. A manifestation of this fact is that LS solutions tend to give 
numerical answers that are 'longer', when measured by some Euclidean-type norm, 
than the actual true parameter vector. As an example, we can recall the following well 
known result from the LS adjustment of a simple Gauss-Markov model 

(15) 

which shows that the estimated parameter vector is indeed expected to be longer than 
the corresponding true vector x. 

From the analysis given in section 3, it can be deduced that the property of 
unbiasedness is responsible for causing the BLUE estimators to be blind on the bounded 
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nature of the unknown parameters. This dualism brings up a fairly strong argument 
in Iavor of biased estimation methods. although in geodesy we have often kept a 
pcssjmistic mindset for such techniques. Nevertheless. shouldn't we prefer an estimation 
algorithm which respects the fact that quantities such as the geodetic coordinates in 
control networks, or the spherical harmonic coefficients of the gravitational potential, 
cannot exceed some physically reasonable limits? We must also not forget that the 
lineart-ized) model of observation equations in (3) gives a realistic picture of physical 
reality when the parameters x are confined within certain intervals around their initial 
approximate values. 

At this point. one can argue that the finite range of the unknown parameters can 
be taken into account without giving up the standard LS principle that was originally 
introduced by Legendre. That is, we can always seek optimal estimators x which 
minimize the sum of the squared values in the residual vector ,, = y - Ax. subject to 
appropriate inequality constraints that bound the size of the unknown parameters x. 
Such problems are very common in various disciplines of geosciences and engineering, 
and they can be handled through well known techniques of convex optimisation and 
non-linear programming (e.g. Bjórck, 1996). However, it is important to point out that 
such constrained LS estimators, using either linear or quadratic inequality constraints, 
do not generally produce unbiased results for the unknown parameters and their exact 
statistical properties are quite difficult to be determined (Rao and Toutenburg. 1995; 
pp. 75-82). 

As an example, we can mention the problem where an upper bound bmax is imposed 
on the Euclidean length of the parameter vector in the linear model of (3). lf we seek the 
least squares estimator in the Legendre's sense, i.e. (y-Ax?C-1(y-Ax) = minimum, 
subject to the restriction xTx ( bmax, the final result takes the ridge regression form 

( 16) 

where the regularization parameter k is uniquely determined in this case from the 
given bound bmax as discussed, for example in (Bjorck , 1996; p. 205). The biased 
ridge estimator of (l6) is a common competitor of the LS solution given in (12). The 
ordinary LS estimators are actually known to have worse MSE performance than ridge 
estimators, when the Euclidean length of the parameter vector x is bounded (Hoerl and 
Kennard, 1970). However, it should be pointed out that in geodetic applications with 
linear models having a proper (well-conditioned) algebraic structure, the differences 
that occur in the estimation performance between classic LS techniques and other 
regularization (biased estimation) methods are usually insignificant. 

Closing this discussion. we suggest that potential users of ridge regression or other 
similar techniques that compete with the standard LS estimators should not think only 
in terms of having to choose between a biased or unbiased solution, but they should also 
consider the concurrent knowledge about physical reality that each of these methods 
brings to our quest for understanding. 
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5. An algebraic perspective for linear model inversion 

The logic of LS esurnauon will now be examined from a different perspective. In 
particular, the properties of ordinary LS estimators will be studied from an algebraic 
point or view. without utilizing any probabilistic concepts such as variance, MSE, bias, 
etc Actually. the rationale of the original formulation or LS estimation by Legendre, 
i.e. minimiz.n ion of the sum of the squared residuals. refers to the specific data set 
th.u is available and needs to be analysed. After all, the asymptotic behaviour of an 
estimator is not really relevant for practical purposes. The real problem has always 
been to optimise the inference that we can obtain from a particular and finite set of 
data values. Adopting a frequentisr's approach that optimises the average estimation 
performance over an infinite number of repeated data sets obtained under 'identical 
conditions' can be considered irrelevant, since it corresponds to an imaginary scenario 
that is never attained in practice. 

5.1. Input/output error flow in linear models 

The linear model in (3) provides again the basic framework for our analysis. A crucial 
point in the algebraic approach for optimal parameter estimation is that both x and 
v have specific and fixed values. In the statistical approach the residual vector v is 
considered as a realization of a set of random variables, whereas here it is treated as 
a fixed error vector that is directly linked with the particular data set y. 

If we denote by x an estimate for the model parameters and by v the corresponding 
estimate of the observation errors. the following equation can be written 

y =Ax+ v 

which, in conjunction with (3). leads to the decomposition formula 

v = v + Ae 
The quantity e corresponds to the error vector for the model parameters 

( 17) 

( 18) 

e=x-x ( 19) 

It is worth noting that the left-hand side of ( 18) is independent of the estima­ 
tion procedure. The values in Y are solely dictated by: (i) the quality of the specific 
measurements in our disposal, and (ii) the true values of the unknown parameters. 
One can claim that the residuals v are also a function of our pararneterisation choice 
(i.e. Ax) and a part of them will reflect possible modelling errors in the description 
of physical reality through a finite set of parameters. The most common example is 
the linearizarion errors that occur when we neglect higher order terms in non-linear 
models. Even so. the fact remains that v is not affected by the method used to invert 
the linear system in (3). 
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A key aspect in linear model inversion is to determine how the original errors 
v will be distributed between the two output error 'channels'. namely v and e. It is 
logical to claim that any notion of optimality for the parameter estimator x should rake 
into account (at least ro some degree) the mutual dependence that exists between the 
adjusted residuals and the parameter estimation errors according to ( 18). 

An instructive way to view (18) is to perceive it as an error conservation formula. 
In any estimation process that can be designed to invert a linear model, the amount of 
the input errors is always balanced our by the amount of the output errors. In our case, 
the input errors are related to the uncertainty of the given measurements (including 
also possible modelling errors), whereas the output errors contain both the uncertainty 
in the estimated model parameters (e) and the misfit between the estimated model and 
the given data set (v). This kind of error flow that takes place during the inversion of 
every linear model is illustrated in Figure I. 

► \' 

\' ►~NVERSION OF LINEAR MODELS 

Input data errors ~ Y =Ax+ v 

Fig. I. Error flow during the inversion of linear model 

5.2. The Gauss-Legendre uncertainty principle 

In this section, we present an uncertainty principle that underlies every algorithm used 
in linear model inversion. For this purpose, we need to adopt a metric or a norm that 
can measure the size of vectors in the so-called observation space. Such vectors with 
common dimensionality are: the data vector y, the vector of the true data errors v, the 
vector of the adjusted data errors v, and the vector Ae that represents the propagated 
effect of the parameter estimation errors into the observation space. 

A Euclidean norm will be adopted to define the geometric structure in the obse­ 
rvation space. In particular, the length of the data error vector is given by the quadratic 
form 

llvllr = (v TPv) 112 (20) 

where P denotes some positive-definite symmetric matrix that specifies the Euclidean 
metric properties of the observation space. From ( 18) we have 

llvllr = 11,, + Aellr (21) 



Revisiting least S<flfC7res ... 13 

Applying the well known triangle inequaliry to the above formula, yields the fol­ 
lowing relationship 

(22) 

or equivalently 

llvllr :(: llvllr + llellQ (23) 

where Q = A-1PA. Note that the metric change between (22) and (23) is permissible 
when quadratic norms are used, since 

l!Aellr = ([Ae]1 P[Ae])112 

= cirATPAe)112 
= (eTQe)112 
= llellQ 

(24) 

The inequality in (23) identifies an important bound for the performance of any 
parameter estimation method in the linear model of (3 )_ It actually demonstrates the 
fact that, regardless of the specific type of estimator x that we choose to use, we are 
always limited by the quality of our own given data. 

The basic meaning of (23) is that, whenever we try to invert a linear system 
in the presence of additive observation errors, we cannot simultaneously achieve an 
arbitrarily good estimate for the model parameters and an arbitrarily good fitting to 
the given data. If, for example, an estimation algorithm is used such that the error in 
the recovered parameters becomes very small in the sense that llel!Q ---; O, then the 
misfit v between the actual data and the estimated model will be at least as large as 
the original observation errors. 

The above result must be kept in mind by LS users who should not blindly get 
the impression that small adjusted residuals are always associated with good results 
for their estimated parameters. A relevant example in geodetic practice is provided 
by the numerous studies on gravimetric geoid evaluation via comparisons with GPS 
and levelling data. The cm-level residuals that are often obtained after the common 
adjustment of ellipsoidal, orthometric and geoid heights at a network of co-located 
GPS/levelling benchmarks do not necessarily guarantee that the gravimetric geoid ac­ 
curacy is at the same level, since a significant part of the data errors can be absorbed 
by the parameters of the corrector surface model that is traditionally employed for this 
type of adjustment problems. 

The inequality in (23) can be identified as the Gauss-Legendre uncertainty principle 
since these two scientists were the first who made the most important contributions 
for dealing with experimental uncertainty in data analysis problems. For the purpose 
of this paper, equation (23) provides a useful guideline that should remind us of the 
inherent limitations that accompany all criteria, including LS, for the optimal inversion 
of linear models. 
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5.3. Input/output error relationships in linear models 

The Gauss-Legendre uncertainty principle indicates that in every linear model inversion
there is a trade-off between the accuracy of the estimated model parameters and the fit
to the original d.ua. The purpose of this section is to present some alternative formulae
among the various error norms emerging from the inversion of (3). that can give further
insight on the trade-off between ,· and c. 

Starting from the basic decomposition 111 ( 18), we can obtain the quadratic formula

(25)

where P is a positive-definite symmetric matrix whose role is to provide a metric
structure for the observation space. In contrast to the choice of P, which is rather
arbitrary. the metric matrix that is used to quantify the size of the parameter error
vector e in (25) is uniquely determined as Q = A 1·PA. 

If we now express the Euclidean inner product between the vectors ,1 and Ae as

(26) 

then (25) may equivalently be written as

llvllt = 11v11t + llelli + 2 (v, Ae)p (27) 

An alternative expression can also be obtained if we employ the usual geometric
interpretation of the inner product between two vectors. In such case the previous
equation takes the form

11v11i = llvlli + lie Ili + 2 llvllP lie I IQ cos e 
where e is the 'angle' between the vectors v and Ae such that

(v, Ae)p 
cos e = Ą

llvllP IIAellP 
(v, Ae)p 

=---- 
llvllp llellQ 

Another interesting expression can be derived by using the identity

Ila + bil" + Ila - bf = 2 llaf + 2 llbf 

(28)

(29)

(30) 

that is valid for any vectors a and b in a vector space whose metric structure is derived
from an inner product (Cloud and Drachman, 1998; pp. 61-62). By setting a= v and
b = Ae, and taking into account the error decomposition from ( 18), the following
equation is obtained

llvllt = 211,,11i + 2 llelli - llrllt 
where the vector r denotes the difference

(31) 

r = v - Ae (32) 
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All the previous formulae relating the quadratic error norms that emerge from the 
inversion of (3) are summarized in Table I. Note that these equations are valid for 
mir type of estimator x that leads to the particular adjusted residuals ,, and parameter 
estimation errors e. 

Keeping i11 mind that llvllP is fixed and independent of the chosen estimation 
method. the three equations shown in Table l should be viewed as constraints on the 
way that the measurement noise is spread among. the output errors in linear model 
i11vers1011. Clearly. if O11e wants to follow a pure LS inversion approach by minimizing 
only the norm of the adjusted residuals llvllr, he takes the risk that a large part of the 
data error energy may leak into llellQ thus causing bad parameter estimates. 

TJ b Ie I. Summary of rile various relationships that exist between the input and output quadratic error 
norms during the inversion of a linear model 

Input Data Error Norm Output Error Contributions 
(fu:ed) (depend on the chosen inversion principle) 

see (27) 
l!vll; llell~ 2(v, Ae)p 

!lvll; 
see (28) 

llvll; llell ~ 2llv11P llel1Qcos0;,A, 
see (31) 

2llvll; 2llell ~ -llv - Aell; 

5.4. ls the LS method a paradoxical choice? 

The merit of the algebraic LS principle is based on the minimization of a Euclidean 
norm for the adjusted residuals. Indeed, if we minimize llvllr subject to the quadratic 
constraint given in (25), we obtain the familiar LS estimator 

(33) 

In this particular case, the input and output error norms are connected through a simple 
Pythagorean relationship 

(34) 

where ,,LS and eLs denote the adjusted residuals and the parameter errors that corre­ 
spond to the least-squares solution xLs. 

When viewed under this perspective, the LS logic can be questioned on the basis 
that it places no emphasis on the actual errors of the estimated parameters. Moreover, 
the sole minimization of llvllr carries the risk that most of the data error energy is 
propagated into the model parameters. A more sensible approach would be to control 
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the relative importance of the adjusted residuals and the parameter errors through a 
regularized regression of the data noise llvllP between llvlh, and llellQ- Actually, the 
regularization techniques that are commonly employed in geodesy for the solution 
of ill-posed inverse problems, such as the Philips - Tikhonov inversion scheme or 
the truncated singular value decomposition method (Schwarz, 1979; Xu and Rummel, 
1994; Bouman and Koop, 1997; Xu, 1998), have the potential to produce a more 
balanced dissemination of the data noise v between the adjusted residuals v and the 
parameter estimation errors e. 

In order to illustrate further the shortcomings of the algebraic LS principle, a 
simple instructive example can be set up as follows. Let us assume that a vector 
of observations y is given which is affected by additive unknown errors v. We can 
generally write 

y=b+v (35) 

where b denotes the unknown theoretical values of the observable quantities. Let us 
also assume that various possible pararneter isations b = j(x) exist for the observable 
vector. For the sake of argument, we consider only two linear schemes 

y = A1x1 + v (Model]) (36) 

and 

(37) 

Note that the data errors are assumed equal in both cases, which implies that each 
pararneterisation is theoretically compatible with the underlying physical phenomenon, 
i.e. adopting one or the other for the representation of b does not introduce extra mo­ 
delling errors into our formulation. The question now is which of the above parametric 
models should we prefer for the optimal analysis of the data set y') 

If we adopt the logic of the algebraic LS principle, we are inclined to choose the 
configuration that provides the best fit to the given data. Let us assume that model J 
performs better than model 2 in the LS sense. In this way, we have 

(38) 

where ,,~s and ,,~s denote the adjusted residuals that are obtained from the LS solutions 
of the two models. Note that both quadratic norms in (38) employ the same weight 
matrix P, since the same set of observations is used in both cases. 

Taking into account (34), the previous inequality yields 

(39) 

where llvllP is the Euclidean norm of the data noise which 1s common 111 both mo­ 
dels. 
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From (39), we finally obtain 

(40) 

The vectors e115 and ei5 correspond to the parameter estimation errors from the LS 
solutions of models J and 2, whereas their corresponding metrics are Q 1 = A·;PA 1 

and Q:, = A[PA2. respectively. According to the algebraic LS principle, we are thus 
faceci with the paradoxical situation where the optimal choice between the two models 
is the one that provides us with the largest quadratic parameter error: 

The above seemingly absurd result 1s only a manifestation of the well known 
fact that overpararneterisation can cause serious problems in LS inversion. indeed, an 
improved fit to a given data set is normally achieved by employing a more cletailecl 
model (A Ix 1) which consists of a larger number of parameters than a simpler model 
(A2x:,). However, as it is seen from the preceding analysis, the more we try to improve 
the LS fit by expanding the parametric model, the larger become the errors in its 
estimated parameters. 

The previous LS 'paradox' does not imply that the fitting performance of a pa­ 
rametric model to a given set of measurements should be excluded from the criteria 
that characterize an optimal data analysis procedure. Let us not forget that one of the 
most important aspects for performing parameter estimation is to facilitate the inter­ 
polation/extrapolation of physical processes and signals based on their observation at 
scattered points. Nevertheless, the trade-off between the fitting performance of a model 
and the accuracy of its estimated parameters suggests that a more balanced approach 
than LS is needed if one wants to reduce the effect of the particular data errors in 
the estimated model parameters (by 'particular' errors we mean the errors that have 
affected the specific data set with which we will perform the estimation). 

6. A numerical example 

A simple example is presented to demonstrate how a biased estimator can produce more 
accurate results in practice than the ordinary (unbiased) LS solution. The evaluation 
is performed by comparing the adjusted residuals and the parameter estimation errors 
that are produced from a given set of simulated data. Our example refers to a common 
application in local gravity field modelling, namely the representation of a gravity 
anomaly field within a l O x l O local area in terms of an analytic functional model. ln 
particular, the following second-order polynomial model is employed 

( 4 l) 

Using a set of simulated observed values 6g1 at l4 points (<p1, A,), we seek optimal 
estimates for the six polynomial coefficients (ao, a 1, a2, 03, a4, o5). The true values 
for the model parameters and the coordinates of the data points are given in Table 2. 
The zero-mean observation noise was simulated according to the error variances given 
in Table 2 (all observations are assumed uncorrelated). 
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Tab Ie 2. The coordinates of the data points. che simulated measurement noise level. and che true
vnłuc-, uf the model parameter- tor the local polynomial represemarion of the free-air gravity anomaly

field

Simulated data points 
Simulated 
noise level True model parameters 

i tp, [Ol A.;[o] O"; rµ Gal] 
~g [mGalJ = a0 + a, tp, + a,A.; + a3 (p;A.; + a, ą,; + a51c;

I 20.3323 20.355 I 8.2 
2 20.1236 20.1452 7.1 a0 = 300 
3 20.2023 20.1025 8.8 
4 20.7654 20.7695 9.3 a,=-1.7 
5 20.4290 20.4262 7.5 
6 20.6532 20.6993 8.2 a,=-2.5
7 20.5656 20.5604 6.1 
8 20.6321 20.63 I 9 8.8 a3 = -0.3 
9 20.6435 20.7099 6.3 

IO 20.4103 20.4187 7.5 a,=-0.15 
li 20.8656 20.8504 8.8 
12 20.9321 20.9419 10.3 as= 0.6 
13 20.9435 20.9399 7.5 
14 20.3103 20.3187 9.8 

The determination of the polynomial coefficients from the simulated data is per­ 
formed using: (i) the ordinary LS adjustment algorithm, and (ii) the ridge regression 
method according to the biased estimation formula in ( 16). The value for the regula­ 
rization parameter in the latter case was set equal to k = O.O I. The results obtained 
from the two schemes are summarized in Table 3. 

For the sake of economy, we present here only the results from two simulations, 
yet similar results have also been obtained in numerous other test repetitions. From 
the values given in Table 3, it is interesting to note the significant reduction (by two 
orders of magnitude') which is achieved in the parameter estimation errors e when the 
biased estimation formula of ridge regression is used. On the other hand, the adjusted 
residuals ,, remain within the same order of magnitude in both cases. Moreover, in the 
case of the ridge regression method, the Euclidean norm llvllr of the adjusted residuals 
is closer to the norm of the actual data errors llvllr, thus making the LS estimate for v 
less accurate than the corresponding ridge estimate. 

ln Figure 2 one can see the change in the Euclidean norms for the parameter 
estimation errors e and the adjusted residuals v, as a function of the regularization 
parameter k used in the ridge regression formula. The particular graphs refer to the first 
of the two simulations shown in Table 3. The values at the origin (k = 0) correspond to 
the results obtained from the ordinary (unbiased) LS solution. Apart from the decrease 
in the parameter estimation errors that occurs with a biased solution for certain non-zero 
values of k, it is also interesting to note that the optimal behaviour for the total
uncertainty of the results (llvllr + llellQ) is not obtained from the classic LS solution; 
see graph (c) in Figure 2. 
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Fig. 2. Change in the Euclidean norms for the parameter estimation errors and the adjusted residuals, as 
a function of the regularization parameter k used in the ridge regression formula 
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Tab I c 3. Results fm the parameter estimation errors and the adjusted residuals that are obtained using 
(i) an ordinarv LS ,olution. and (ii) a bia,ed solution according ro rhe si111ple ridge regression algorirh111 

Simulated errors v k = O (ordinary LS estimation) 
e=x-x v 

k = O.O I (ridge regression) 
e=x-x v 

V3 :::::.- 

V.!::: 

V5 = 
v6 = 
V7 = 
Vg = 
V9 = 
V10::: 

V11 = 
V12 = 

4.7564 
1.7023 
-30878 
8.2965 

11.8372 
-9.0870 
-0.1582 
-9.7735 
4.7302 
3.7512 
-4.5519 
-5.7599 

V13 = -5.6503 
V14 = 9.0730 
llvllr = 3.0141 

e1 = -lO'x 1.0060 
e2 = -lO'x0.3076 
e3= JO'x0.4066 
e4 = -l04x0.0657 
e5 = lO'x0.0402 
e6 = IO'x0.0231 

ilcllo = t.6756 

- 
V1 = -Q.8359 - V2 = -2.2753 - V; = -1.7532 - v, = 9.6868 - 
V5 = 8.9627 - v6 = -10.7198 
v, = - 1.8330 - v, = -10.7846 - 
V9 = 2.4078 - 
V10 = -0.0856 - 
V11 = -0.9412 - V12 = 0.1618 - V13 = 0.2983 - V14 = 4.8864 
[ilvl~r =_ 2.52~~[ 

e1 = -l02x2.9855 
e2 = -lO'x0.1657 
e3 = lO'x0.1247 
e4 = lO'x0.0012 
e5 = - lO'x0.0190 
e6 = l02x0.0l08 

llell o = 0.6640 

- 
V1 = 3.1224 - v, = 0.8366 - V3 = -0.9991 - v, = 7.7370 - 
V5 = 11.6808 - v6 = -10.9749 - v, = -0.1879 - v, = - 10.0981 - 
V9 = l .6334 - 
V10 = 2.9390 - \111 = -3.9224 
V12= -6.6011 - \113 = -5.6801 - 
V14 = 8.2940 
[llvllr= 2.9_1871 

\11 = -7.1350 
v, = 5.7335 
V3 = -4.4936 
v, = 6.9147 
V5 = 6.3592 
v6 = -6.8052 
v, = 3.2513 
v8= 9.0891 
V9 = -6.6277 
V10 = 2.7158 
V11 = -0.3237 
V12 = -12.6446 
V13 = -2.0632 
V 14 = - J.5723 -- - - --~ 
llvll r = ~: 79~0_1 

- 
e1=-IO"xl.l865 ~2= 
e2 = - lO"x0.4608 ~3 = 
e3 = 104x0.5770 ~4 = 
e, = lO'x0.5404 
e5 = -10' X 0.2588 
e6 = -104 X 0.2845 

llell o = 1.9679 

VJ= -8.7614 
4.5342 
-2.l 164 
6.4690 

V5 = 

- Vs= 
Vg = 

- 
V13 = 

2.1339 
-4.5574 
-0.8254 
6.0022 
2.5066 
-0.7242 
-1.4003 
- 7.6765 
0.3038 

e1 = -102x2.9874 
e2 = l02x0.1470 
e3 = 102x0.l041 
e, = l02x0.00l9 
e5 = lO'x0.0215 
e6= -IO'x0.0286 

llell o= 1.0581 

- 
V1 = -4.3834 - 
V2 = 8.2325 - V3 = - 7.5366 - v, = 6.0339 - V5 = 6.0932 - v6 = -4.9733 - v, = 2.1814 - vs = 8.2726 
\19 = -2.7228 
V \O= 3.6747 - 
V11 = -3.6004 
v1, = -13.5371 
v13 = -4.4082 
v1, = -0.1984 
rnwp ~-!~~71J 
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Streszczenie

Estymacja metodą najmniejszych kwadratów (LS) jest Jednym z najważniejszych narzędzi w analizowaniu
danych geodezyjnych. Jednakże powszechne korzystanie z rej metody nie zawsze idzie w parze z pełnym
uświadomieniem sobie jej podstaw. W standardowym formalizmie teorii estymacji LS w rzeczywistości
istnieje kilka paradoksalnych i osobliwych zagadnień rzadko formułowanych wprost. Celem niniejszej
pracy jest przedstawienie niektórych z tych zugadnień i przedyskutowanie ich konsekwencji w analizie
danych gcodezyjnvch oraz problematyce estymacji parametrów. W pierwszej części pracy przedstawiony
Jest alternatywny pogląd na podstawy statystyczne, które są tradycyjnie łączone z estymacją LS. W SZC7.e­
gólności pokazano. że właściwość nieobciąźoności dla zwykłych estymatorów LS może być zastąpiona
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przez inne. równowazne JeJ uwarunkowanie, które powoduje, że zakres numeryczny nieznanych parame­
trów jest nieograniczonv. \V drugiej części pracy przedstawiono wady meiodv LS 7. czysto algebraicznego
punktu widzenia. bez uwzględnienia pojęć z zakresu prot abilisryczncgo/sratysrycznego teorii estymacji.
W szczególności ,, yjaśnione zostało. cło czego odnosi się 'najmnicjsz, · (least) w metodzie najmniejszych
kwadratów. Z pewnością nie odnosi się cło błędów· wyznaczanych parametrów modelu. Ponadto stwierdzo­
no, że w bielej inwersji modelu liniowego opartej na metodzie LS istnieje krytyczna zamiana pomiędzy
normami euklidesowymi błędów wyznaczanych parametrów i wyrównanych residuów.


