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Abstract: The paper addresses the problem of solving overdetermined systems of linear 
equations by means of methods of robust estimations, which eliminate the effect of outliers 
on the estimation results. The process of estimating a vector of parameters was accomplished 
by means of circular in structure neural networks. Formulating the problem in the aspect 
of a method for estimating parameters requires formulating an energy function (objective 
function) whose form was modified by means of a determined weighting function. 

In the final part of the paper the effectiveness of the methods described was evaluated 
in terms of controlling and diagnosing a geodetic observation system. The article is merely 
an introduction to a broadly understood problem of geodetic uses of robust estimators. 
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1. Introduction 

Solving a system of linear equations is one of the basic problems in science and 
technology. One of the most frequent basic and practical tasks is estimating components 
of the vector of parameters of overdetermined systems of linear equations 

Ax= I (1) 

where A = [aiJ] E Rrnxn (m > n) is the design matrix, I E R"' is the vector of observa­ 
tions, and x = [x1, x2, ... , x11]T E R11 is the vector of parameters of the linearised functio­ 
nal model being estimated. Particular role in that respect play methods for estimating 
parameters of the overdetermined system of observation equations. The method most 
frequently applied for estimating parameters of linear models (Gauss-Markov models) 
with a specified redundancy is the least squares method with the assumption of Gauss 
distribution of observation errors. 

Although the least squares solution that is optimum in the sense of the l2 norm 
frequently considerably approximates solutions obtained using other norms (Dahlquist 
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and Bjórck, 1983), research on robust statistics proves (Andrews, 1974; Hampel et al.,
1986) that for a distribution of errors subject to the Cauchy distribution (Fig. 1) the
/1 norm is the optimum minimization criterion in terms of the minimum variance of
estimators; that norm is also used when the vector of observations I includes outliers,
or when the distribution of errors of the vector I is not sufficiently known.
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Fig. 1. Probability density of the normal distribution and the Cauchy distribution

The probability density of the Cauchy distribution, centred at the origin of the
coordinate system is described by the formula

I t 
f(x) = --- (-oo < x < +oo)

n t2 + x2 
(2) 

The diagram of the probability density for the Cauchy distribution resembles the dia­
gram for the normal distribution (Fig. 1 ), but in infinity it approaches the x-axis more
slowly. The expected value £{X}, and consequently the variance Var{X), of the random
variable X, subject to the Cauchy distribution, do not exist.

In order to identify and reduce the effect of outlying observations on the solu­
tion, methods of robust estimations are used, formulated by means of modifying the
objective function in the form of a weighting function assigned to each observation.
Outlying observations considerably distort the values of parameters estimated by means
of traditional least squares. In this case, the gradient of the standard objective function
in the form of the square of the norm of the vector of residuals is a linear function
of that vector. It means that the influence of the value of the vector of residuals on
the estimated vector of parameters is linear. The methods of robust estimations are
connected to the method of the greatest likelihood (Wiśniewski, 1982) and the so
called "rule of the choice of an alternative" (Kadaj, 1984).
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The purpose of this paper is to show the features of "resistance" to outlying 
observation errors of objective functions modified by restructuring it to increase its 
effectiveness and the use of the method of determining the estimator x* of the vector 
of parameters x and the vector of residuals v = Ax - 1 by means of neural networks 
of a circuit structure. The estimation strategy, regardless of the function type, does not 
introduce numerical limitations due to the fact that the Hessian is not positive definite, 
what is required in the Newton's method. 

2. Formulating the problem 

Formulation of robust estimation problems in the aspect of solving them by means of 
neural networks requires constructing a suitable energy function (objective function) 
F(x), whose lowest energy state corresponds to the optimum value x* of the vector of 
parameters x. The energy function should not be associated with the physical meaning 
of energy; its name results from similarities between their properties. If the variations 
of the energy function during the operation of the algorithm are not positive, then the 
energy function is the Lapunov function (Korn and Korn, 1983). 

Fig. 2. A general scheme of the architecture of a neural network for solving overdetermined systems of 
linear equations of the form Ax = 1 

In general, the problem of estimating the vector of parameters x of the system of 
observation equations ( l) consists in minimizing the energy function 

Ill 

F(x) = Ł w;[v;(x)] 
i=I 

(3) 
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n

where v;(x) = a;x - l; = Ł a;JXJ - l; are coordinates of the vector of residuals v, 
j=I

and w;(v;) represents an arbitrarily chosen convex function of x in the whole space 
R", that ensures the convergence of the minimization algorithms (Cichocki and Unbe­ 
hauen, 1992). The choice of that function whose form is essential in the process of 
estimating parameters is arbitrary, providing it is differentiable, because in the process 
of minimization by means of neural networks the gradient of the objective function as 
the activation function must be known. The diagram of the architecture of the neural 
network used for solving systems of linear equations has been presented in Figure 2 
(Cichocki and Unbehauen, 1992). 

Gradient methods, whose operation bases are known values of parameters of the 
gradient vector of the objective function, belong no doubt to effective optimisation 
methods. Considering the effectiveness of gradient methods as the basis for further 
discussion, the problem of estimating parameters of energy functions consists in solving 
a system of differential equations 

dx - = -7J(t)VF(x) 
dt

(4) 

where x = [x1, X2, ... , Xn]T, and 

V F(x) = [o:(x)' o:(x)' ... , oF(x)] = AT(Ax - I) 
uX1 uX2 OXn

The matrix of learning coefficients l](t) = l],j(t) is a diagonal n x n matrix. Considering 
that 

(5) 

F[x(t)] > O (6) 

and 

d f oF dx dx -F[x(t)] = L.J ---1 = [VF(x)]T- ~ O 
dt i=) OXj dt dt

one can notice that the function F is the Lapunov function, which for the solution 
x(t) is a real function of the C1 class such that F(O) = O. The solution of (4) is thus 
asymptotically stable. 

Parameters of the function will be estimated by solving a system of differential 
equations in the form 

(7) 

d
11 

{ 

111 

[ [ n )]}:: = - Ł n» Ł a;pcp; Ł a;kXk - l;
p=I 1=! k=I

(8) 
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where the function 

(9) 

is an activation function, i.e. an influence function. 
With the weighting function w1 [v;(x)] = v;, the values of estimators obtained as a 

result of minimizing the function 

Ill 

F1 (x) = _L v;(x) = IIAx - lilz (10) 

correspond to the least squares estimators. In the case of unequally accurate observa­ 
tions one has to deal with the standard energy function in the form (Coleman et al., 
1990) 

Ill 

F2(x, P) = _L p;v;(x) = (Ax - I?P(Ax - l) 
i=! 

(11) 

with the weight matrix P = diag(p1, p2, ... , p,,z). For this case the weighting function is 

(12) 

It is known from subject literature that in order to identify outlying observations 
and eliminate their deformable effect on the estimation results, a number of modi­ 
fications to the energy function have been introduced in the form of the weighting 
functions, which exhibit properties resistant to outlying observation errors. 

The activation functions ¢;[v;(x)] mentioned in the following part of the paper 
are the derivatives of the m-argument functional F(x) in the direction of v(x). When 
formulating weighting functions the activation function of the resistant estimator is 
assumed continuous and bounded; the breakdown point a* as a specified limit of 
random errors, used to obtain the expected solution of the problem of estimation is 
their characteristic feature. 

Let G be a particular family of cumulative distribution functions and F - a 
real-valued function determined on G, i.e. a functional. For the discrete distribution 

Ill 

E(G) = _L x.p, (p; - the probability of adopting the value x; from the set A E R). 
i=! 

Replacing G with the empirical cumulative distribution function G111, and x; with v;(x), 
leads to (Ostasiewicz, 1999) 

E(G111) = J v;dG111[v;(x)] = v(x) 

because dG111[v;(x)] = 1/m, i= 1, 2, ... , m; (m - number of observations). 

(13) 
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Assume further that the set of observations contains 100a% of outlying observa­ 
tions, located at point v(x). Then the cumulative distribution function of the observa­ 
tions will be 

Gv;(x),cr(y) = (1 - a)G111(y) + O'~v(x)(y) (14) 

where G111(y) is the a cumulative distribution function corresponding to observations 
free of gross errors, and 

{ 
1 when y ? v1(x) 

~v(x) = · O when y < v1(x) 
(15) 

is the cumulative distribution function of observations affected with gross errors. It in­ 
dicates that the cumulative distribution function Gv;(x),r is located in the neighbourhood 
t ::;; a of the cumulative distribution function Gm(y). 

From the above, the activation function of the functional F for the cumulative 
distribution function Gm is defined as the derivative of F at Gm in the direction of 
~v(x)· 

IF[ ( ). G ] _ 1· F(Gv(x),a) - F(Gm) 
V X, m - Im------- 

cr--->0 Q' 
(16) 

The influence function / F describes the local resistance of the estimator to outlying 
observations. From the definition of an activation function it results that the breakdown 
point a corresponds to the minimum participation of point disturbances at v(x), and 
the functional F(Gv;(x),cr) is unlimited because of an undefined number of observations. 
If the minimum a does not exist, then the value a~, is adopted on the basis of the 
precision of the measurement instrument and the method used. 

The mean is not a good resistant estimator. For the mean one has 

E(Gv(x),cr) = (1 - a)E(G) + av(x) 

In that case the form of the influence function is as follows 

{
a[v(x) - E(G)]} /F[v(x);E,G] = lim ----- = v(x)- E(G) 

cr--->O Q' 

(17) 

(18) 

and a• = O, because the influence function is unbound. For the empirical cumulative 
distribution function Gm, the a~, = 1/m, what means that even one outlying observation 
will change the value of the estimator. For the median and for the M-estimator (an 
example of the greatest likelihood estimator) a• = 0.5 (Ostasiewicz, 1999), which 
means that the breakdown of the estimator will take place only when the number of 
outlying observations reaches at least half of all observations carried out. It is worth 
to mention that the form of the M-estimator is not explicit, but it results from the 
solution (usually with the iterative method) of a particular equation. In practice, a 
restricted activation function is replaced with its smooth approximation. 
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3. Activation functions of chosen estimators 

A convex function of resistant properties, used in linear algebra and research concerning 
robust statistics is the function 

(19) 

suggested by Karayanninis (Karayiannis and Venetsanopoulos, 1992). The correspon­ 
ding activation function has the form 

8{! ln[cos[(av;(x))]) 
ip(P}[v;(x)] = a[v;(x)] = atanh[,Bv;(x)] 

For a = 1 and large values of /3, the function 

tanh[,Bv;(x)] ::::: 1 - 2e-f3v;(x) 

(20) 

(21) 

and then the function (20) converges to I v1(x)I (Fig. 3). After switching the values of 
parameters a and /3, the estimators obtained approach classic least squares estimators. 
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Fig. 3. Weighting function and the activation function according to Karayiannis 

The following function used sometimes in digital signal processing 

(22) 

also belongs to the class of convex functions. Its form corresponds to the rule of mini­ 
mum absolute residuals, as "natural" robust estimation. The function (22) is irregular 
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and in numerical application it requires the use of special procedures of mathemati­ 
cal programming (Abdelmalek, 1980; Kadaj, 1998) or the use of numerically simple 
algorithm by means of neural networks. The activation function is defined as 

(23) 

The function sgn[v;(x)] determines the sign of the derivative from the left or from the 
right in the neighbourhood of the point x (the function (22) is a continuous function, 
but not differentiable). 

w5[v,(x)] 

a 
/ v;(x) 

Fig. 4. The hyperbolic function 

An alternative is the hyperbolic function (Fig. 4) in the form (Kadaj, 1988) 

ws[v;(x)] = ✓v;(x) + a2 

and the activation function corresponding to it 

ć) ✓v;(x) + a2 v;(x) 
q>5[v;(X)] = OV;(X) = --;::/=== 

-y v;(x) + a2

approaches 1 for v;(x)- oo and a particular value of a (Fig. 5). 
Considering 

(24) 

(25) 

lim 
v;(x)-,-oo 

✓v;(x) + a2

----- = -1 
v,(x) 

and 

✓v;(x) + a2

lim ----- = + 1 
v;(X)-,+oo V;(X) 

the function (24) has two sloping asymptotes: w5[v;(x)] = lv;(x)I (Fig. 4). For a - O 
the function approaches the function resulting from the rule of the minimum of the 
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sum of absolute residuals (cf. (22)), and with growing a the estimators of parameters
of the system approach the values of the least squares estimators.
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Fig. 5. Weighting function and the activation function according to Kadaj

Favourable results of identifying outlying observations can also be obtained by
adopting a modification of the objective function in the form of the logarithmic function
(Liano, 1994)

w6[v;(x)] = log[l + 0.5v;(x)] (26)

whose activation function

8 log[l + 0.5v;(x)] 
</>6=------­ 

ov;(x) 

is the non-linear function of v;(x). For v1(x) - oo

v;(x) 
1 + 0.5v2(x) 

I

(27)

v,-(x)
I +0.Svf (x) . 1

lim --- = hm ----- = O
V;(X)-too V;(X) V;(X)-too 1 + 0.5v;(x) 

what indicates an increase in suppression of growing gradient values, and as a result
of an increase in suppression of the effect of outlying observations on the estmation
results (Fig. 6).

Another function modifying the objective function is the commonly known we­
ighting function used in the "Danish" method of robust estimation



86 Jozef Gil 

for lv;(x)I ~ k 

for lv;(x)I > k 

where k is a limit of random errors, and a, f3 are suppression parameters.
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Fig. 6. Logarithmic weighting function and the activation function

For lv;(x)I ~ k the activation function has the form

(29) 

while for lv;(x)I > k it is as follows

¢1[v;(x)] = exp{-a[lv;(x)I - k]i3) x {a/J[lv;(x)I - k]f3-I sgn[v;(x)]] (30)

The use of the function (28) (there are a number of forms of this function (Szcze­
pański, 2004)) results in increasing suppression of gradient values for large residuals
v;(x), what causes suppression of the influence of outlying observations (Fig. 7), be­
cause for v(x) - oo

exp{-a[lv;(x)I - k]P) ~ 
0lim ~

lv;(x)l-->oo lv;(x)I

and

exp{-a[lv;(x)I - k]f3) x {a/J[lv;(x)I - k]P-1} x sgn[v;(x)]
lim --------------------- - O

lv;(x)l-->oo lv;(x)I
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Fig. 7. The "Danish" weighting function and the activation function 

Using the algorithm for minimizing the energy function by means of neural ne­ 
tworks the author has simplified the "Danish" function excluding the coefficient f3 with 
no harm to the minimization result. 
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Fig. 8. The weighting function and the activation function according to Huber 

The most popular modification of the energy function 1s the Huber weighting 
function (Fig. 8) of the form (Huber, 1981) 
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{
[v;(x)]2

w8[v;(x)] = ? 
a [v,(x)[ - a- 

for [v;(x)I ~ a 
for lv;(x)[ > a 

(31) 

where the coefficient a like in the case of e.g. the hyperbolic function (24) is the limit
of random errors, adapted to the specificity of a task considered. In this case it is the
spline function (a parabola and two half-lines tangent to it). When the residual equals
a, the value of the activation function (a derivative of the weighting function)

{

-a 
¢s[v!(x)] = :(x) 

for v1(x) < -a 
for lvJx)I ~ a 
for v1(x) > a 

(32)

equals a. Huber has shown that if the function w8[v1(x)] is bound by the absolute value
of the constant a, then the estimator resulting from that function is an estimator with
the least variance in a class of functions of that bounding (the asymptotic feature of
robust estimators). It is also true for other estimators satisfying that assumption.
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Fig. 9. The weighting function and the activation function according to Hampel

Favourable minimization results in terms of robust estimations can be obtained by
applying the energy function that uses the Hampel weighting function (Hampel, 1971;
Hampel et al., 1986).

{ 

v;[(x)]2 

w9[v1(x)] = y ln[cosh(c5v1(x))]
v1(x) = const

for lv,(x)I ~ a 
for a ~ lv,(x)I ~ b 
for [v,(x)I > b 

(33) 



111e problem of solving systems of linear equations ... 89 

It is an extension of the Huber function and its derivative (activation function) with 
respect to vi(x) is 

{ 

2v/x) 

¢9[vi(x)] = ~tanh{o[b - lv;(x)I]} 
for lvi(x)I ::;; a 
for a ~ lvi(x)I ~ b 
for lvi(x)I > b 

(34) 

where a and b represent the ranges of the Hampel function, and y and o are certain 
constants (Fig. 9). 

The Hampel function consists of three functions: a square function within the 
range of [-a, a], a hyperbolic function within the range of [lal, Ibi], and a constant 
function. Within the range of [-a, a], the residuals affect linearly the values of the 
activation function. With an increase of the values of residuals, the influence of the 
value of the activation function decreases, and after the threshold value b is exceeded, 
activation function reaches O. The state of suppression of the influence of outlying 
observations with a simultaneous retention of those observations whose values do not 
exceed a certain threshold value results from the course of the function. 

4. Characteristics of methods of robust estimations 

The least squares method in its classic version is not resistant to large blunders, that 
distort the estimated parameters of the observation equation system. The estimation of 
parameters of overdetermined systems of linear equations, including modifications of 
the energy function, and the estimation of parameters of those systems in the norm /1, 
belong to the class of robust estimations. 

It is worth to mention that values of parameters corresponding to average obse­ 
rvation values are obtained from adjustment based on the /2 norm, and parameters 
obtained from adjustment based on the /1 norm correspond to values of observation 
medians on the assumption that A matrix is of a full rank. 

The effectiveness of the discussed methods of estimating parameters, in terms 
of detecting outlying observations, will be checked for a vertical geodetic network 
consisting of 56 points and 87 height differences observed, including a simulation of 
one outlying observation. The test for randomness in the form u = vlm; (m; - residual 
error) has given u = 3.0 for that observation. The levelling network was adjusted with 
minimum limits of degrees of freedom because of no restrictions on the observations. 

In order to evaluate the effectiveness of the methods discussed in the aspect of 
detecting observations affected with a non-random error, random variables (residuals) 
have been classified, and a respective histogram has been made. The classification of 
the values of residuals has been done on the basis of an optimum choice of lengths 
of classification cells (lengths of class units), that makes possible to obtain maximum 
information in a cell, according to the formula (Brillouin, 1969) 
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s = [t + In tT J 
s(s - 1) 

where T is the range of the feature investigated, t is the length of the class unit, and s 
is a value of the variable classified. 

The solution of (35) is the number k 1;:::: t/ s, that expresses an optimum ratio of 
the length of the class unit to the value of the variable classified. If the size of cells 
is too small in comparison to the "size" of the data analysed, then the classification is 
ambiguous; if the size is too big, the effectives of the classification is low. 

Statistical information for data (components of vectors of residuals) in the number 
of 696, which has been obtained on the basis of tests of the methods examined, has 
been accumulated in 148 class units, and a graphical representation of this statistical 
material has been presented in Figure 10. 
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Fig. 10. A histogram of residuals on the basis of the minimization of energy functions with 148 class 
units 

Following approximate practical procedures in order to determine the number of 
class units t, for example by means of the formula 

t ~ 5 logn (36) 

where n is the number of the sample, one should emphasize certain global features of 
the data, but anomalies in the data cannot be modelled (Fig. 11). It results from the 
diagrams presented in Figures 10 and 11 that the distribution of residuals determined 
by the adjustment of a vertical network by means of neural networks with the use of 
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robust estimations is not a normal distribution (a considerable rise near zero), but it 
is close to the Laplace distribution or to the bilateral gamma distribution. Because of 
the existing discrepancies in the estimation of the distribution of probability of random 
variables it is possible to use more sophisticated testing methods (e.g. Law and Kelton, 
1982). 
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Fig. 11. A histogram of residuals on the basis of the minimization of energy functions 
with 14 class units 

As far as the evaluation of methods of robust estimations is concerned, it is possible 
to say that in general their use is limited to checking and diagnosing an overdetermined 
system of observation equations. The results of the tests carried out by the author 
indicate that as far as detecting of outlying observations is concerned, the best results 
are provided by estimation methods based on the use of the Huber, Kadaj, the author's 
and "Danish" functions as well as (which should be emphasized) the estimation method 
according to the rule of the minimum sum of modules. The other modifications of 
energy functions rank a bit lower in this classifications, and their effectiveness in 
identifying an observation affected with a non-random error is very similar. However, 
due to the features of the algorithm for minimizing the objective function, the way it is 
modified, and the values adopted as the limit for random errors, particular estimation 
methods provide slightly different results. 

Let us also note that as a result of the modification of the energy functions in order 
to obtain resistance features of the objective function, parameters obtained slightly differ 
in terms of value (Fig. 12). 

In the author's opinion the differences result from the way of modifying the objec­ 
tive function and the value adopted as the limit a of random errors (in this paper the 
limits of random errors are also denoted as k I, a, b ). Moreover, it should be mentioned 
that the solution of the task of minimizing the objective function by means of neural 
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Fig. 12. Vertical displacements obtained by means of the minimization of selected energy functions 

networks is an approximate solution (iterative methods), and the minimum obtained is 
local. 

5. Conclusions 

The above discussion on the resistance of selected objective functions to considerable 
observation errors and the results of minimizing these functions by means of neural 
networks make it possible to conclude that the robust estimators obtained are less 
vulnerable to outlying observations. From the practical point of view the outlying 
observation should be associated with a considerable error, that largely exceeds the 
range of probable estimations. An outlying observation for which the ratio vJmvi (mvi 
- a correction error) does not exceed the limit error G = 2 may remain unnoticed 
in the process of identifying observations with gross errors, especially when among 
the observations used to form the observation equation system there are several ones 
with errors exceeding several times the limit of random errors. Such a situation will 
appear when the value of the constant a (constants: kl, a, b) is too large, and for a 
small limitation of the weighting function on terms of its absolute value, observations 
without gross errors can be qualified as outlying observations. The limit value of the 
weighting function becomes important because of the possibility of obtaining different 
resistance measures. Outlying observations specified by means of methods of robust 
estimations should be eliminated one by one because each residual is a function of 
all observations and in consequence the outlying observation deforms all calculated 
residuals, especially those referred to the neighbouring observations (Nowak, 1982). 
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Eliminating a single outlying observation provides a chance to identify all remaining 
outlying observations by means of methods of robust estimations, and consequently 
to eliminate them. The evaluation of asymptotic characteristics of robust estimators 
remains an open question in the problem discussed. 
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Zagadnienie rozwiązywania układów równań liniowych
za pomocą sieci neuronowych
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Streszczenie

W pracy omówiono zagadnienie rozwiązywania nadokreślonych układów równań liniowych z zastosowa­
niem metod estymacji mocnych, które eliminują niekorzystny wpływ obserwacji odstających na wyniki
estymacji. Proces estymacji wektora parametrów został zrealizowany za pomocą sieci neuronowych o
strukturze obwodowej. Formułowane zagadnienia w aspekcie ich rozwiązywania, wymagały sformuło­
wania funkcji energetycznej (funkcji celu), której postać modyfikowano przez zastosowanie określonej
funkcji wagowej.

W końcowej części pracy dokonano oceny skuteczności opisanych metod w zakresie kontroli i dia­
gnostyki nadokreślonego układu równań obserwacyjnych. Artykuł stanowi jedynie przyczynek do szeroko
pojętego zagadnienia geodezyjnych zastosowań estymatorów mocnych.


