
 Opto-Electronics Review 29 (2021) 126-132 

 
 

Opto-Electronics Review 

 
journal homepage: http://journals.pan.pl/opelre 

 

 

https://doi.org/10.24425/opelre.2021.139482  

1896-3757/ Association of Polish Electrical Engineers (SEP) and Polish Academic of Sciences (PAS). Published by PAS 

© 2021 The Author(s). This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 

Formula for temperature distribution in multi-layer optical 

fibres for high-power fibre lasers 

M. Grábner*     , P. Peterka       , P. Honzátko  

   

  

 Department of Fiber Lasers and Nonlinear Optics, Institute of Photonics and Electronics, Czech Academy of Sciences,

1014/57 Chaberská St., 18251 Praha 8, Czech Republic 
 

 

Article info  Abstract 

Article history: 

Received  10 Sep. 2021 

Received in revised form 22 Oct. 2021 

Accepted  23 Oct. 2021 

Available online 12 Nov. 2021   

 High power fibre lasers need to be cooled efficiently to avoid their thermal damage. 

Temperature distribution in fibre should be estimated during the fibre laser design process. 

The steady-state heat equation in a cylindrical geometry is solved to derive a practical 

formula for temperature radial distribution in multi-layered optical fibres with arbitrary 

number of the layers. The heat source is located in one or more cylindrical domains. The 

validity of the analytical formula is tested by comparison with static heat transfer simulations 

of typical application examples including octagonal double clad fibre, air-clad fibre, fibre 

with nonuniform, microstructured core. The accuracy sufficient for practical use is reported 

even for cases with not exactly cylindrical domains. 
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1. Introduction 

Thermal management of high-power fibre lasers [1] is an 

indispensable part of their design. As the pump power is 

absorbed in the active area of the fibre-doped core, the part 

of absorbed power is transformed to heat that increases the 

fibre temperature. To avoid thermal damage of the fibre 

and its coating, heat should be efficiently transferred away 

by a medium surrounding the fibre. The cooling efficiency 

can be assessed based on the estimation of temperature 

distribution in the fibre cross-section which, in turn, 

depends on the intensity of the heat source, i.e., the power 

absorbed, and on the thermal parameters of the fibre cross-

section structure.  

Several works studied temperature distribution in fibre 

lasers from different perspectives. A time domain heat 

transfer analysis of doped fibres was presented [2]. A 

formula for the temperature distribution in a two-layer fibre 

was derived from a steady-state heat equation [3]. The 

thermo-optical behaviour of air-clad photonic crystal fibre 

lasers was investigated, as well [4]. Thermal influences on 

kilowatt Yb-doped double-clad fibre lasers were studied 

numerically [5]. An analytical approach for the thermal 

design of high-power lasers based on one dimensional heat 

equation was also presented [6]. Thermal effects in high-

power CW fibre lasers were studied by solving the radial 

heat equation [7]. Transient heat conduction and thermal 

effects in a pulse end-pumped fibre laser were analytically 

solved [8]. 

Temperature distribution in a double-clad fibre as a 

function of the heat load was obtained using a finite 

element method [9]. Heat transfer equation was 

analytically solved for the case of a high-power fibre laser 

with a double cladding [10]. Relation for the temperature 

distribution in a three-layer cylindrical structure of a 

double-clad fibre was given [11] and an efficient heat 

transfer technique was discussed [12]. Considering [3] and 

[11], temperature dependent effects in Tm-doped fibres 

lasers were analysed [13]. An analytical temperature model 

based on a thermal conduction equation was reported for 

double-clad Yb-doped fibre lasers [14]. Thermal 

characteristics of Tm-doped fibre lasers in double-clad and 

triple-clad arrangements were also studied based on the 

analytical model of the radial temperature distribution [15]. 

An efficient cooling of fibre lasers by means of a metal 

cladding was presented, as well [16]. A thermal distribution 

with different heat sources and an analytical solution of the 

heat transfer equation in double-clad fibres were 

investigated [17]. An analytical thermal resistance model *Corresponding author at: grabner@ufe.cz 
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was proposed and applied to calculate heat dissipation in an 

Yb-doped double-clad fibre [18]. Recently, temperature 

distribution inside a double-cladding optical fibre laser was 

examined [19].  

In the works cited above, the number of the considered 

cylindrical layers is limited or there is no explicit formula 

presented for cases with a higher number of layers. 

However, in some applications, the number of cylindrical 

layers forming the fibre and its surrounding is higher than 

two or three that has been usually assumed in theoretical 

approaches, so far. Numerical simulation is possible in 

those cases, but it is not practical for the structure design 

optimization, or it is not even needed for the initial 

estimation of the temperature distribution. 

In this paper, a simple analytical formula is derived for 

temperature distribution in cylindrical optical fibre 

structures with arbitrary number of layers. The validity of 

the formula is tested by comparison with finite element 

computations of typical application examples. 

2. Analytical model 

The analytical formula for the radial distribution of 

temperature was given in Ref. 3 for a two-region static heat 

transfer problem in cylindrical geometry. The basic form of 

the model that was used in further works is as follows: 

𝑇1(𝑟) = 𝑇0 −
𝑄1𝑟2

4𝑘1

 , 

𝑇2(𝑟) = 𝑇0 −
𝑄1𝑎1

2

4𝑘1

(1 + 2 ln
𝑟

𝑎1

) , 

𝑇0 = 𝑇𝑏 +
𝑄1𝑎1

2

4𝑘1

(1 + 2 ln
𝑎2

𝑎1

) , 

where the notation of quantities involved is described 

below. The generalization of the problem for the case of 𝑁 

cylindrical layers (see Fig. 1) considered here is defined as: 

∇2𝑇𝑛 = −
𝑄𝑛

𝑘𝑛

 for layers 𝑛 = 1, … , 𝑁 

with interface boundary conditions:  

𝑇𝑁(𝑎𝑁) = 𝑇𝑏  

𝑇𝑛(𝑎𝑛) = 𝑇𝑛+1(𝑎𝑛) 

𝑑𝑇1(0)

𝑑𝑟
= 0 

𝑘𝑛

𝑑𝑇𝑛(𝑎𝑛)

𝑑𝑟
= 𝑘𝑛+1

𝑑𝑇𝑛+1(𝑎𝑛)

𝑑𝑟
 

for 1 ≤ 𝑛 < 𝑁 where r [m] is a distance from the centre, 

Tn (r) [°C] is the temperature radial profile, Qn [W/m3] is 

the power density of a heat source, an is the outer radius of 

the n-th layer, kn [Wm−1K−1] is the thermal conductivity, Tb 

is the boundary (background) temperature. Here, the 

subscript n means that the variable is evaluated in the n-th 

layer counted from the centre. The heat power density Qn 

is assumed to be constant within the n-th layer and is zero 

in layers without the heat source. Generally, if the line heat 

power density (or heat load) Ql [W/m] is given, the volume 

density is obtained as Q = Ql/A where A is the domain 

cross-section area of the heat source. 

Assuming that all relevant quantities of the problem are 

isotropic and independent of the longitudinal coordinate z, 

the left-hand side of Eq. (4) is ∇2𝑇 =
𝑑2𝑇

𝑑𝑟2 + (1/𝑟)
𝑑𝑇

𝑑𝑟
. A 

homogeneous solution of Eq. (4) is obtained by a 

separation of variables giving 
𝑑𝑇𝑛

𝑑𝑟
= 𝐶𝑛/𝑟 where Cn are 

constants and 1 ≤ n < N. An inhomogeneous solution of 

Eq. (4) is obtained by variation of constants as  

𝑇𝑛(𝑟) = −
𝑄𝑛

4𝑘𝑛
𝑟2 + 𝐶𝑛 ln 𝑟 + 𝑇0𝑛 where Cn and T0n are the 

constants. From the condition in Eq. (7), it follows C1 = 0. 

From the conditions in Eq. (8), the relation for Cn in terms 

of Cn−1 is determined. Finally, the conditions in Eqs. (5) and 

(6) are applied consecutively to determine the additive 

constants T0n. The resulting formula for the radial 

temperature distribution is:  

𝑇𝑛(𝑟) = 𝑇01 + 𝐾𝑛(𝑟),  1 ≤ 𝑛 ≤ 𝑁 

where:  

𝐾1(𝑟) =
𝜏1

4
𝑟2 

𝐾𝑛(𝑟) =
𝜏𝑛

4
(𝑟2 − 𝑎𝑛−1

2 ) + 𝐶𝑛 ln
𝑟

𝑎𝑛−1

+ ∑
𝜏𝑖

4
(𝑎𝑖

2 − 𝑎𝑖−1
2 )

𝑛−1

𝑖=1

+ ∑ 𝐶𝑖 ln
𝑎𝑖

𝑎𝑖−1

𝑛−1

𝑖=2

 

for 1 < 𝑛 ≤ 𝑁, 

with 𝜏𝑛 = −𝑄𝑛/𝑘𝑛 and the constants:  

𝑇01 = 𝑇𝑏 − 𝐾𝑁(𝑎𝑁), 

 

𝐶𝑛 =
𝑘𝑛−1

𝑘𝑛

𝐶𝑛−1 +
𝑎𝑛−1

2

2
(

𝑘𝑛−1

𝑘𝑛

𝜏𝑛−1 − 𝜏𝑛). 

In Eqs. (11) and (13), the quantities with zero index are 

assumed to be zero. 

 The analytical model in Eqs. (9)–(13) can be considered 

as a straightforward generalization of Eqs. (1)–(3) or of 

their particular extensions presented in literature, so far. 

(5) 

(3) 

(4) 

(8) 

(7) 

(6) 

(9) 

(1) 

(2) 

(10)
 

(11) 

(12) 

(13) 

 
 

Fig. 1. The geometry of the static heat transfer problem in 𝑁 

cylindrical layers with the heat source 𝑄1 in the innermost 

domain.  
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Nevertheless, it has a great potential for the practical usage, 

e.g., as a part of fibre laser/amplifier models based on the 

solution of laser rate equations [20,21], since quite often 

the higher number of cylindrical domains with different 

thermal conduction properties are involved in active fibre 

problems and numerical simulations are computationally 

too demanding for the purpose. In particular, the outer 

layers of the fibre, its coating and the surrounding 

environment can have significant impact on the overall 

temperature distribution in the cross-section of the fibre 

structure. This will be also demonstrated in the next section 

where the validity of the analytical model Eqs. (9)–(13) is 

checked by means of several application examples. 

3. Test problems 

3.1. Fibre in circular slot 

The first fibre heating test problem is defined as follows. 

The fibre is modelled as a 5-layer cylinder with the layers 

1, 2 composed of silica, the layer 3 of a polymer, the layer 

4 of a Sylgard 184 kit, and the layer 5 is made of 

aluminium. Note that the Sylgard 184 kit is used here only 

as an example and there are other materials that are more 

suitable for the applications of high-power fibre lasers due 

to their higher thermal conductivity. The geometrical and 

material parameters of a fibre cross-section are summarized 

in Table 1 where the domain radius a and the thermal con-

ductivity values k are stated. The boundary (or background) 

temperature is set to Tb = 22 °C in all test problems. 

Table 1. 

Cross-section geometry parameters, radius a  

and thermal conductivity k. 

n Material/domain an [μm] kn [Wm−1K−1] 

 SiO2 core 12.5 1.38 

2 SiO2 cladding 200 1.38 

3 Polymer coating 280 0.18 

4 Sylgard 184 400 0.27 

5 Aluminium 450 238 

 

Figure 2 compares the analytical solution with the 

numerical one computed by the finite element method 

(FEM) in COMSOL with the same geometry. Both 

solutions are identical, but one should note that the 

temperature distribution evaluation by an analytical model 

is faster by orders of magnitude than a FEM simulation. 

This is advantageous especially when a temperature model 

serves as part of some sort of feedback mechanism inside 

the fibre laser model (e.g., temperature dependent 

absorption and emission spectra) where iterations are 

needed to find a solution [20,21].   

It is instructive to see how the temperature at the critical 

point on the boundary of cladding and coating depends on 

the heat load. Figure 3 shows that the temperature increases 

with the heat load with a slope determined by the cladding 

radius, provided that all other parameters are fixed. 

Considering a polymer temperature limit of around 80 °C 

that should not be exceeded [16], a sufficiently large 

cladding radius is needed to stand a given heat load with no 

polymer coating damage. 

 Finally, let us briefly comment on the relation between 

the heat load and the pump power. Both the pump power 

evolution along the fibre and the corresponding local heat 

load can be estimated using numerical models of the active 

fibre [20,21]. The heat load can be also roughly estimated 

considering the pump absorption Ap [dB/m] that is constant 

along the fibre (see e.g., [22] for a more realistic model of 

the pump absorption) and assuming the constant power 

conversion efficiency η [–]. Then the resulting heat load 

Ql [W/m] along the fibre as a function of the length 

coordinate z [m] can be expressed as: 

𝑄𝑙(𝑧) = (1 − 𝜂)𝑃𝑝(0)𝑎𝑝 exp(−𝑎𝑝𝑧), 

where 𝑎𝑝 = (𝐴𝑝/10)ln10 and Pp (0) [W] is the input pump 

power. For Pp (0) = 1200 W, Ap = 3 dB/m and η = 0.59, it 

gives Ql(0) = 340 W/m at the beginning of the fibre. 

3.2. Octagonal cladding fibre 

As the second example, an octagonal cladding fibre 

with a flat-to-flat size FtF = 250 μm is selected. Octagonal 

and other polygonal shapes are typical examples of 

breaking the circular symmetry of the cross-section of 

double-clad fibres. Such cross-sections are beneficial for 

mode scrambling and correspondingly improved pump 

 

         Fig. 2. Radial distribution of the fiber temperature in the circular slot.  
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Fig. 3. Temperature at silica/polymer boundary (r = a2) as a 

function of the heat load for several cladding radii a2. 
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absorption [1,22]. Figure 4 shows the cross-section 

geometry and the spatial distribution of temperature 

obtained from a numerical simulation. The materials and 

background temperature are the same as in the previous 

example but a more realistic scenario with the fibre located 

inside a square groove is analysed. 

Figure 5 compares the analytical model (with 5 layers) 

with a simulation for two values of a heat power density. 

Here, the distance from the centre is measured along the 

x - axis. Analytical model slightly underestimates the 

temperature in a whole region of distances. When the fibre 

is in the corner of the square groove so that the polymer 

layer touches the alumina walls, which is the realistic 

assumption, the temperature profile becomes non-

symmetrical with respect to the fibre centre.  

 Figure 6 compares the model and simulation in that 

case. The analytical formula still provides fairly accurate 

results with the highest error being at the outer regions 

where the temperature is low. 

3.3. Fibre with nonuniform core  

In the examples analyzed so far, the core is assumed to be 

uniformly doped resulting in a constant power density of 

the heat source in the entire core area. There are, however, 

alternative designs possible. Figure 7 shows the core cross-

section of the radius rc with 7 doped rods in a hexagonal 

setup. 

Shaded circles are the doped areas with the diameter t, 

the dashed circles denote preform tubes stacked together 

during a fibre drawing process. Since the area of the doped 

domain and so of the heat source is smaller than the core 

area, the temperature is expected to form hot spots in doped 

rods. The analytical model assuming cylindrical symmetry 

cannot describe such structure precisely but one can 

approximate it by an equivalent structure with the doped 

layer of thickness t1, see Fig. 7. In order to maintain the 

same heat source density, the area of this layer has to be the 

same as the total area of 6 outer rods in the original 

structure. In our case, it follows that t1 = 9t2/(8rc).  

The radial distribution of temperature in the octagonal 

cladding fibre with 7 doped rods in the core was obtained 

using FEM (see Fig. 8) and in the equivalent 8-layer 

structure using the analytical model with the results 

presented in Fig. 9. 

 

Fig. 4. Spatial distribution of temperature in the octagonal 

cladding fiber for Ql  = 150 W/m.  

 

Fig. 5. Radial distribution of temperature in the octagonal 

cladding fiber.  
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Fig. 6. Radial distribution of temperature in the octagonal 

cladding fiber located in the corner of the square slot.  
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Fig. 7. Scheme of the core cross-section with 7 doped rods 

(left) and an approximately equivalent structure (right) 

with a doped layer with the same cross-section area as 6 

outer rods.  

 

Fig. 8. Spatial distribution of temperature in the octagonal 
cladding fiber with a core with 7 doped rods. Left: entire 

cross-section, right: core area.  
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Compared to the uniformly doped core, the local 

temperature peaks at the centre and on the outer rod are 

predicted by FEM simulation. While the local temperature 

hot spot on the outer rod is not predicted by the model, it is 

evident that the peak temperature at the central hotspot is 

predicted very well by the model, the temperature shift 

being due to the non-circular shape of outermost layers. 

Apart of this shift, the analytical model gives the same 

temperature profile as FEM simulation with the same 

layered structure of the core. 

In practice, the micro- or nanostructured core [23,24] 

can be applied to decrease the average doping 

concentration in the core to values that would not be 

available in the case of uniformly doped core due to a lower 

limit of concentration given by technological restrictions. 

For example, the rare earth ions concentration higher than 

3.5 wt% is necessary for the efficient operation of a high-

power thulium fibre laser exploiting so-called two-for-one 

cross-relaxation optical pumping [25,26]. 

Figure 10 presents a comparison of the temperature 

profiles in a uniformly doped core and the core with 7 

doped rods in the case of the same concentration and, thus, 

the same heat density. In the uniform core, the temperature 

is much higher than in the micro-structured core since the 

different values of heat load are related by the ratio of 

doped areas in both scenarios. 

3.4. Air-clad fibre 

As a final example, an air-clad fibre is analysed with the 

geometry depicted in Fig. 11, where also the spatial 

temperature distribution obtained from the FEM simulation 

is shown. In the simulation of the air-clad fibre, the thermal 

conductivity of air [27] was defined using the polynomial 

formula:  

𝑘air(𝑇) = ∑ 𝑐𝑖

3

𝑖=0

𝑇𝑖 , 

with coefficients c0 = −3.9333·10−4, c1 = 1.0184·10−4, 

c2 = −4.8574·10−8, c3 = 1.5207·10−11 where the temperature 

T is expressed in Kelvins. A typical value of the thermal 

conductivity of air is kair = 0.034 Wm−1K−1 for T = 140 °C.  

However, the layer of air cladding contains also narrow 

silica bridges that greatly increase the heat transfer away 

from the fibre centre area compared with the pure air layer 

case. Therefore, when an analytical model is to be applied 

in the case of the air-clad fibre, the effective value of the 

thermal conductivity kef of the air-clad layer should be 

used:  

𝑘ef = 𝑘air

𝑤air

𝑤air + 𝑤SiO2

+ 𝑘SiO2

𝑤SiO2

𝑤air + 𝑤SiO2

 ,      

where in our example wSiO2 = α·0.72 μm (α = 1.3) is the 

effective thickness of the silica bridges and wair = 20.35 μm 

is the respective width of the air domains in the azimuth 

direction. Note that the effective thickness wSiO2 is larger 

than the smallest bridge thickness since the rounded shape 

of the air holes should be considered, see Fig. 11 (right). 

Also, the application of Eq. (16) is of great importance 

because about 90 °C higher core temperature value is 

obtained from the model using the simple relationship 

kef = kair. Furthermore, in order to respect Eq. (15) in the 

analytical model, several iterations are applied where the 

temperature determined in the centre of the air-clad layer is 

chosen as the input of Eq. (15) in the next iteration. 

Figure 12 compares an analytical solution (with 7 

layers) with a numerical one computed by FEM. The 

solution is fully consistent with the FEM simulation of the 

air-clad fibre presented in Ref. 28. The analytical solution 

agrees very well with the numerical one, but it 

underestimates temperature in layers outside the air-clad 

 

Fig. 9. Radial distribution of temperature in the octagonal 

cladding fiber. 7 doped rods with the diameter t = 1 μm 

vs. the uniformly doped core with the same heat load 

Ql = 150 W/m.  
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Fig. 10. Radial distribution of temperature in the octagonal cladding 

fiber. 7 doped rods with t  = 5 μm vs. the uniform core with 

the same heat density Q  = 1.1·1012 W/m3. 
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Fig. 11. Spatial distribution of temperature in the air-clad fiber for 

Ql = 200 W/m. Left: entire cross-section, right: detail of air 

hole shapes. 

(16) 
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layer. This could again be attributed to the square shape of 
the groove.

  Finally, the similar methodology presented here for the 
case of the air-clad fibre can be in principle applied even 
for  other  similar fibre structures,  e.g., for  large-pitch 
photonic crystal fibres [29,30], provided that the effective 
thermal  conductivity  is  determined  also  in  the  micro-

structured part of the fibre.

4. Conclusions

The  analytical  formula  for the  radial temperature 
distribution in multi-layer optical fibres was presented and 
tested in  comparison with the FEM  simulation results. A 
detailed review  of the previous  works on analytical 
formulas for the temperature distribution in optical fibres 
for  high-power fibre lasers  is  provided. Contrary  to 
previous works, devoted to the cases with specific number 
of  layers  (typically  three), a generalized formula  that 
comprises an arbitrary number of cylindrical layers and a 
heat  source  located  in  arbitrary  layers is  presented in  the 
paper. The  derived  formula  is  practical  for a range  of 
optical fibre arrangements; three specific examples known 
from  applications  are  reported  to  demonstrate the 
applicability  of  the  formula. Although  the  formula  was 
derived  for  the  case  of  completely  cylindrical  geometry 
including  a  cooling  medium,  it  was  demonstrated  by the 
analysis  of  octagon  shape  and  air-clad fibres  that  it  was 
fairly accurate even in more realistic scenarios with a fibre 
inside  a  square groove.  The  presented  model  can  be  in 
principle also applied  in  the  case  of  nonuniform  heat 
sources if they can be approximated by several cylindrical 
layers  with  the  uniform  heat  distribution.  It  is  envisaged 
that the presented formula can serve well not only for a fast 
estimation of the radial temperature distribution in multi- 
layer fibres, but  it  can  also be part  of  more  complex

temperature-dependent fibre laser models.
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