GEODEZJA 1 KARTOGRAFIA
t. LIL z. 1, s. 17—30 (2003)

Andrzej Dumalski

Institute of Geodesy
University of Warmia and Mazury
(10-957 Olsztyn, 1 Oczapowskiego Str.)

Variance analysis and properties of NW-E method

This paper presents a geeral concept of an adjustment method Edgeworth series applied.
The author proposes to replace distributions with approximating functions representd by
Edgeworth series, which would be a universal, probabilistic model of the adjustment problem.
Special attention is paid to variance anlysis. A convariance matrix C; of the vector X, its estimate
éf, and and estimate of the variance coefficient o, are derived. Also some further properties of the
proposed method are presented.

INTRODUCTION

Development of methods that apply probabilistic models of measurement errors is
one of the subjects of adjustment calculus. The adjustment problem is usually defined as
a mathematical model of a network plus an assumed criterion of adjustment. The criterion
stems from the applied method of estimation. The mathematical model, however, should
describe geometric properties of a network itself but also should contain necessary
information about functional and probabilistic properties of measurement errors.

Some papers [1, 2] propose to replace distributions with approximating functions
represented by Edgeworth series. This series not only approximates distributions but also is
a probabilistic model of the adjustment problem. This work includes new properties of
NW-E method (e. g. variance analysis of adjustment results) but also a short, theoretical
reminder of the methods principles.

1. Theoretical assumptions

The origin of Edgeworth series is a rather general assumption that a density function
f¢ of every distribution can be presented in the following form
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&) =™ () + r(e),

where f® is a density function of normal distribution and r(e) is a residue (¢ is
a standardised random variable).
For our purposes Edgeworth series can be written as follows

d3fRN(8) l d4fRN(€)+19 zdﬁfRN(£)+
de? 4177 get T el T ggs

1
fEE@ =" - ETid
10 d°f*E) 35 d7f® () 280 ,d’f*(e)
51T ges T T g T T g
where f£(¢) is a density function of Edgeworth series, and y, and y, are respectively
asymmetry and excess coefficients.
The general adjustment problem, which contains non-natural distributions, can be
presented in the following way [3]:
— functional model of network

x=AX+¢
— probabilistic model
x~R[O% X]
— adjustment criterion which stems from the maximum likelihood method

max L" (X) = max ﬁf? X, x)

XeX, XeX, i=1

where : a € T,, and x € M,;, — vector of measurement results or free terms, A € M,
—matrix of coefficients, X € M, ,, — vector of unknown parameters of the functional model,
g€ M, — vector of measurement errors, M, — set of matrices of dimension (a,b), X, — set
of possible solutions, x; = [x]; — i-th measurement result, R*[@ ¢, X] € R is a distribution
with parameters @ ¢, X, belonging to a set of potential, probabilistic models of measurement
errors R = {R“ : ae T,} represented by the following density function

FoesX) = _lJf?, (x: X), aeT,

(one assumes that variables x; are independent for every i = 1,...,n).
For practical purposes the original target function LW (x;X) is replaced with
a logarithmic function

1% X) =l X) = nzlnff,. (xi; X).

i=1
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Consequently the adjustment criterion turns into the following form

Xe X, Xe

max " (x; X) = max {Zlnf;(x,-; X)}, aeT,.
X i=1

To find such aX € X, that max [*(X) =1%(X), one of optimisation methods can be applied
e. g. Newton method where an iterative formula is as follows

X=X+ 7 [QX) g(X)
g0+ = x — AX 0+

where: 7 is a coefficient of convergence improvement, g (X) is the gradient of the target
function:

_ )
g@%—aX
and
UM o
QX)) = Xox’ (Hessian of this function.)

Replacing the density function with Edgeworth series i. e. assuming that

fe (&5 © e, = fE(e; OF),

the earlier formulated adjustment problem turns into the following form:
— functional model of a geodetic network

x=AX+¢
— probabilistic model

x ~ RF[OF; X]

— adjustment criterion following from application of the method of maximum
likelihood

Xe X, Xe

E(y. _ . B ]
max [°(x; X) ma;f {glnfl(xl, X)}

The worked-out method, named NW-E [1], has a very important general property

7,=0,7.=0

NW - E——NK

(NK the least squares -method).
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It means that if there is no anomalies in distributions of measurement errors, the only
method to be used is the least squares one.

2. Variance analysis

Presented in previous papers results of research into application of a new
probabilistic model represented by Edgeworth series would not be complete if one
neglected very important, from practical but also theoretical point of view, variance
analysis. This paper is concern with a covariance matrix of the parameter vect;or Cy also its
estimate C,g and with an estimator of the variance coefficient J,.

According to the properties of the maximum likelihood method the estimate of C; can
be presented in the following form:

C; = - E{Q(X}" = (AE{D(X)}A)" = (ATD(D)A) M
where

2

o £ ATTV S
QX) = aXE)XTl X) = - A"D(XA.

DX) is a diagonal matrix of elements:

6

Zh;’(1 + é;h,-) - (ih}jz

[D(X)]n‘=1_i:1 —
6 2
(1 + Zhij
i=1
where
B dh
de de

If the number of additional observations approaches infinity then C§ — Cj. From
the practical point of view it is just impossible thus Wisniewski [3] proposed that the
covariance matrix of measurement results C, could be the basis for computation of Cj (with
application of the covariance propagation law). The following property is used here:

If

I5(X) = max I(X)

XeXq
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then

gX)=ABX)=0 2)

where

6
i

X)) =& - = 3)

6
S
=1

i
i

Let d3 be the error of the estimator X, i. e.
X=X+6; 4)

Thus if E{dx} = 0 then E{X} = X.
Consequently (on the basis of a covariance matrix definition)

Ci = E{(X - E{AN& - E{XY} = E{& - )X - X} = E{0:05} = Coy ()
The matrix Cs; is obtained with use of the law of covariance matrix propagation, but firstly

a linear relationship between the vectors i and & (with a covariance matrix C,) should be
drawn up. Since

E=x-AX=x - A(X +0p) =x — AX — Ad; = — Ad; (6)

then b(dx, €) is a vector function of the following elements

ih} (0% &)

BX))i= & - Agy6; — —— = [b(dz &)); (7)
6
1+ Eh,-(é,;», €)

i=1

Expanding b(d3,¢) into Taylor series in neighbourhood of 03, €, (E{dz} = 0,
E{e} = 0) one obtains

b(03, &) = D(X)e — D(X)Adx + b (8)

where b = E{b(0%, €)} — non-random residue of the expansion.
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Placing the expansion (8) into the equation (2) (the necessary condition of an extremum)
one can write

g(X) = AT[D(X)e - D(X)Ad; + b] = — ATD(X)Adz + ATD(X)e + A”h = 0 ©)
Solving the equation (9) with respect to dx it is obtained that
0z = (ATD(X)A)'A'D(X)e + (ATD(X)A)'A"b.
or
0y = Se + 5, (10)
where
S = (A'D(X)A)"'A'D(X)

and so= (ATD(X)A)™" A”b is a non-random vector.
Applying the law of covariance matrix propagation to (10) one can obtain

Cs; =SC, §"=C; (11)
The matrix C; (11) has a property that can be written down in the following theorem:
THEOREM 1
If NW — E ““22223K, then Ci — CI¥ = (ATC;'A)"

Proof

The theorem is true if one can prove that:

2 ~ _ (NK
lim Ci=C.
y1—0.y2—0

Since

lim [DX)],= lim - o =1 i=1 i1

2
ag; -
¥1—=0.72-0 Y1—=0.y2—0 (l 2. z : h,)
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(ify, > 0iy, = 0toh, h, h; = 0)
No)

1 1
lim D(X) = diag (——2 - —2) =,
y1— 0,720 O On

On this basis it can be written that
lim S=(ATC;'A)Y' ATC;'.
y1—0,y2—0

and finally that

lim Cz= lim SC,S"=(ATC;'A)'ATC;'C.C;'AATC;'A)"'=(ATC;'A)"

71—0,y2—>0 71=0,72-0

Let us assume that C, matrix can be written down using the following model

C.=wviC,

where C, is a known cofactor matrix, and ¢ ¢ is an unknown variance coefficient.
Thus

Ci=SC.S"=03SC,S8"=03Cy
where Ci = SéeST (ée — cofactor matrix of the vector X’).

The following matrix éX is the estimate of Cy

Cy=62Cy=8C,87
at

THEOREM 2

¥, =0,y,=0 ~ o
If NW — E ——— NK, then C3 — C ¥ = (ATPA)

1 1
where P = diag (~—2 ~—,) — weight matrix of NK method.
oi O,
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Proof

Since (Theorem 1) lim Ciz=(ATC;'A)! thus

y1—0,y2—0

~ 1
lim Cy=— lim Ciz=—(ATCA)'= (ATPA)™
0

1
- —
71— 0,720 J1 y1-072-0 g

(if only C, =03 C, = aiP™).

3. Numerical example

Numerical tests were carried out using a simulated level network shown in the
following Fig. 1.

The first subset

The sekond subset

O -fixed points (Rp1,...,Rp7)
[J -new points (P1,...,P8)

Fig. 1
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The network was divided into two sets of observations of the same standard
deviation o but different values of the excess coefficient y,. Each subset contains 4 fixed
points and 5 new ones, however one fixed and two new points belong to both subsets. For
the first subset the excess coefficient was assumed as zero, and ‘‘measurement results’’
belonging to the second subset were simulated on the assumption of non-zero excess
(y,#0). The variance analyses were carried out for three variants differing from one another
in the value of the excess coefficient in the second subset. The following covariance
matrices were obtained after the adjustment of the tested network:

Variant I (y, = 0.5)

[ 0.069 0.007 0.001
0.022 0.004
0.035

C ¥ = (ATPA)" =

1 0.077 0.009 0.001
0.028 0.004
0.044

C;=SC,S =

[ 0.075 0.010 0.001
0.028 0.004
0.044

C:=(ATDXA)" = |

0.002
0.007
0.001
0.069

0.003
0.009
0.001
0.076

0.003
0.009
0.001
0.076

0.001
0.004
0.001
0.001
0.035

0.002
0.005
0.001
0.002
0.038

0.002
0.005
0.001
0.002
0.038

0
0.001
0.004

0.004
0.022

0.001
0.004

0.004
0.027

0.001
0.004

0.004
0.027

0
0
0.001

0.001
0.007
0.069

0.001

0.001
0.009
0.092

0.001

0.001
0.009
0.092

0
0
0.001

0.001
0.007
0.002
0.069

0.001

0.001
0.009
0.003
0.085

0.001

0.001 |
0.009 |
0.003 |
0.085 _
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Variant II (y, = 1.01)

70.069 0.007 0.001 0.002
0.022 0.004 0.007

0.035 0.001
C v 0.069

' 0.240 0.016 0.002 0.006
0.037 0.004 0.013

0.057 0.001
0.096

C;

[ 0.149 0.0127 0.001 0.004
0.027 0.003 0.009
0.040 0.001
0.076

P!
8
1l

Variant III (y, = 1.51)

70.069 0.007 0.001 0.002
0.022 0.004 0.007

0.035 0.001
C 0.069

0.001
0.004
0.001
0.001
0.035

0.003
0.008

0.004
0.003

0.080

0.002
0.005
0.002
0.002
0.049

0.001
0.004
0.001
0.001
0.035

0
0.001
0.004

0.004
0.022

0.001
0.002

0.011
0.001

0.017
0.048

0.001
0.001
0.006

0.009
0.031

0.001
0.004

0.004
0.022

0
0
0.001

0.001
0.007
0.069

SO O O

0.001
0.001
0.159

0.001

0.001
0.005
0.102

0.001

0.001
0.007
0.069

0
0
0.001

0.001
0.007
0.002
0.069

O OO OO

o

~0.001
0.122 |

0.001

0.001
0.004
0.001
0.100

0.001

0.001
0.007
0.002
0.069
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1 0.113 0.045 0.011 0.004 0.013 0.002 0.001 0
0.107 0.027 0.009 0.030 0.004 0 0.001
0.089 0.002 0.008 0.001 0 -0.001
0.154 0.003 O 0 0
0.070 0.011 0.004 0.001
0.045 0.019 0.002
0.096 0.001
0.200

[ 0.069 0.014 0.003 0.002 0.004 0.001 0 0
0.034 0.008 0.005 0.009 0.001 0.001 O
0.047 0.001 0.002 0.003 0.001 0.001
0.077 0.001 O 0 0

0.039 0.004 0.002 0.001

0.026 0.010 0.005

0.064 0.002

0.091

The obtained, for the various values of y,, covariance matrices of the vector X confirm
the earlier claimed theoretical statements especially this one saying that if
v1 — 0 and y, — 0 then C; approaches C :*. One should also notice that if ¥, = 0 and
¥2 = 0 then C,;=C;}’K: Ci.

However, from the equality C ¥ = C¢ one cannot deduce that éz’{ = Cj, because
usually 6™ # 1. The values of the variance coefficient estimator 6", for each of the
presented variants, are shown in Table 1.

Table 1
Variant are
I 0.92
II 0.46
111 0.93

From the practical point of view it is important to analyse how a misjudged value of the
excess coefficient can influence adjustment outcomes. To carry it out one can compare
values of the norms: HX’ —X'|[,(at  X'=0)including all the network points, b€ [, including
the points belonging to the first subset, Hi’ulll to the second one and |])A(pll2 including the
points belonging to the both subsets. The set of the measurement results was simulated with
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the following values: ¥, =0,y,=0.5, 0 = 3. The outcomes of adjustment (values of the above
presented norms) with application of NW-E method and with various disturbances of the
excess coefficient y, are presented in Table 2.

Table 2
IXi, | 1%, | 1%, | 1,
2.68 2.28 1.37 0.33
0.1 2.61 2.26 1.27 0.27
0.2 2.56 2.26 1.18 0.22
0.3 2.53 2.27 1.09 0.18

04 2.51 2.29 1.02 0.17
0.5 2.51 2.32 0.94 0.19
0.6 2:51 2.34 0.88 023
0.7 251 2.36 0.82 0.28
0.8 2.51 2.37 0.76 0.34

0.9 2.52 2.38 0.71 0.40

1.0 2.52 2.38 0.66 0.47

The norm values for the proper value of y, (y, = 0.5) are shown in bold
type. The analyses show that the best results (the minimal values of the norms)
were obtained for the best estimate of the excess coefficient. If it is underestimated
one can notice increase in the norm values for the whole set as well as for the
second subset and for the joint points. On the other hand if it is overestimated
the norm of the second subset is on the decrease however the norms for the first
subset and for the joint points are still on the increase. In conclusion, bad estimates
of the excess coefficient worsen the final results of NW-E method.

Additionally, analyses, how a standard deviation estimate ¢ could influence adjustment
result, were carried out. Comparisons of the earlier applied norms || X/}, H)AKIHZ, ||X111|2, |[i’,,|]2
were still the base for it. The measurement results were simulated assuming thaty, = 0, y,
= 0.5, 0 = 3.1. Disturbances led to the outcomes presented in Table 3.

The results for the proper estimate of o are presented in bold type. The disturbances
make the norms be usually on the increase especially for the norms of the all
network points, the second subset and the joint points. It means that an improper
estimate of o leads to worse adjustment outcomes (it is similar to the earlier
shown influence of excess disturbances). It is especially noticeable if the estimate
of the standard deviation is underestimated. One can also notice that the norm
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HXNK — X'|, is independent of o It follows from the fact that if a network is homogeneous
with regard to the value of o then one can obtain (E — unit matrix)

XV = (AT6?EA)'AT02Ex = (ATA)'A’x

Table 3
o | IXI, | 1x, | 1Xal, | 1%,
1.0 2.66 2.21 1.44 0.35
2.0 2.47 2.29 0.91 0.21
31 2.51 2.32 0.94 0.19
8:2 2.53 2:33 0.98 0.18
34 2.56 2.34 1.02 0.17
3.6 2.57 2.33 1.07 0.17

4 2.58 2.31 1.13 0.19

CONCLUSION

The analyses show the new important properties of NW-E method. The most
important is that this method and NK method converge if the probabilistic model
of measurement errors is not disturbed. Thus NW-E method can be treated as a universal
instrument of adjustment taking into consideration also standard assumptions about
probabilistic properties of measurement results. This paper proved that a proper
estimating of the control parameters and especially v, (in presented case) is essential
for the quality of final results. Effects of disturbances of standard deviation are
rather similar to effects of an improper weighing in NK method. Thus an application
of NW-E method requires not only a good estimating of o (like for NK method)
but also of the excess coefficient v,.
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Analiza dokladnosci wlasciwosci metody NW-E

Streszczenie

W niniejszej pracy przdstawiono ogdlna koncepcje metody wyréwnania obserwacji geodezyjnych
z zastosowaniem szeregéw Edgewortha. Zaproponowano zastapienie rozkladéw prawdopodobienstw aprok-
symanta reprezentowana szeregiem Edgewortha, ktéry byiby uniwersalnym, probabilistycznym modelem zadania
wyréwnawczego. Szczegdlna uwage zwrdcono na analize dokladnosdci. Wyznaczono macierz kowariancji C;
wektora X, jej estymatora C; oraz estymator wspéiczynnika wariancji G,. Ustalono niektére wlasnosci metody.

AHOxcett Jlymanvcku

IucrnepcHOHHBIA aHaMH3 U ocobeHHocTH MeToia NW-E

Peswome

B pabote npeacraBneHa oOmiasi KOHLUEMUMsS METOAA yYpaBHHBAHHS TeONE3HYECKHX HaOII0OeHHUiH
¢ npuMmeHenueM Enmxunopda. IlpennoxkeHa 3ameHa pacnpeneieHHH BEPOATHOCTEH amnNpOKCHMH-
pytomel (QyHKUMEH TNpencTaBIeHHOM npu nomomd psga Exmxwiopda, KOTOpbIH sABasAncA Obl
YHHBEPCAILHOH, BEPOATHOCTHOH MOZEIbIO YPaBHHTEbHOH 3ana4n. Ocoboe BHiMaHHe ObLI0 00paleHo
Ha aHaJIM3 TOYHOCTH. Bblla onpenenexa KOBapHALHOHHAA matpuua C; exTopa X, eé ouenkn C;, a Takke
OLIEHKH BapHALUHOHHOTO K03 duueHTa T Onpenenensl HEKOTOPble OCOOEHHOCTH METOA.



