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PCA transformation as a method of compression of experiment results

The paper presents a method of statistical analysis of multidimensional data by means of the PCA
transformation (Principal Components Analysis), carried out by means of a neuron network. The PCA
transformation, connected with the Karhunen-Loeve transformation is used for processing signals
treated as stochastic processes. The method discussed in the paper, enables the reduction of input data on
the basis of specified independent principal components with respect to their significance.

INTRODUCTION

One of the basic methods of statistical analysis of multidimensional data is
the method of principal components analysis PCA, used for processing signals treated
as stochastic processes. A closer look at this problem leads to the conclusion that
it i1s a transformation of co-ordinates from a particular system to a system that is
better adapted to the changeability of existing data. The PCA transformation generates
new variables called principal components, which are represented by eigenvectors of
a covariance matrix or correlation matrix. The use of some of the principal components
enables the reduction of the size of the database with respect to its best representation
as the maximum covariance matrix in terms of the trace and the determinant of the
matrix. Useful information in tasks of this type is a description of the system generating
existing data as a linear or non-linear filter.

The paper discusses a PCA transformation based on a correlation matrix, carried out by
means of neuron networks. It deals with the problem of eliminating from the learning set, the
features that have little influence on the extent of variation of particular objects.

1. The energetic function of correlation networks

According to the basic rule by Hebb, a change of the weight vector w; = [y, Wis...,win]”
is proportional to the product of the input signal x = [x,..x,.....xy] and the learning signal [4].
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v = f(wix). (D)
which is the output signal of a neuron 1.e. a linear weighted adder (Fig. 1). The set of joint
stimulations of a neuron is the domain of the linear activation function f(w|x). The increase

of the weight vector Aw; for the linear model of a neuron consistent with Hebb’s rule is
described by the dependence

Aw; = cf(wix)x, (2)

where the learning constant ¢ s a positive number. By changing formula (2) a change of the
weight of a neuron can be expressed as follows

A“'l/ = C(_V: - ,\O) (-\'7 - -\‘U)~ (3)
where xp and y, are certain constants. On the assumption that the learning coefficient ¢ = 1

Awy = yix; — yixo — YoX; + YoXo. )

Y1

Y

Fig. 1. Adaptation linear weighted adder

By adopting a system consisting of a single linear neuron and the number of learning
standards N = 3 (the number of the coordinates of the input vector), the increase of weights
expressed in the scalar form is

A\‘Vlj = WX Xy + WX + Wisxsx; +
Wi X1 Xa + WiaXoXs + WigXsx, +
WHX1X3 + WipXaX3 + WisXsX; — (5)
Wi X1Xo1 T WiaXaXor + Wi3XaXo —
Wi Xo1X) + WipXoi Xz + WizXop Xz +

Xo. yo

Therefore, for any number N of learning standards and & neurons, a change of weights of the
network in time 7, can be expressed in the form of the equation [2]

d . N N
d‘;/ = Z Wit A;\j + 2 Ca Wi + ‘1/: 3 (6)

k=1 k=1
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where Ay, 1s the covariance matrix of the activity of neurons & and j 1.e.

= P - F) - ). (7)

i=1

where: x; — the average value of input vector components, p — the number of input vectors.

If it is assumed that the change of weights is effected numerically by means of the
method of the greatest decrease, the minimization of the energetic function Q (the specified
characteristic value dependent on the condition of the network) progresses in the direction
opposite to the gradient vector, i.e.

dQ dw,,

ag; = :E:VWAAU :E:CAMW dk (8)

k=1 k=1

The form of an energetic function will be obtained after the above differential equation has
been solved. Therefore 1t 1s possible to say:

N N

zw,,\A‘} = —2 EC“ Wy W Ed Wi 9)

k=1j=1 c=1,=1 j=1

Two components can be separated from the form of the function Q (formula 9)
— the first

NN
2 zw,kAk/ Wi, (10)

k=1j=

NI»—-

— the second

___ZZC"M"‘ id‘;wﬂ. (11)

L—lj_l j=1

The first component denotes the variance o7 of the activity i — of that neuron. The proof of
that statement will be presented in the following part of the paper. The second component of
the energetic function can be associated with an objective function in the theory of
optimisation. Itis so, because in search of optimum weight values, the gradient vector V of
the function Q, (w) will be equated with zero, i.e.

V=cw-d=0 (12)
After equation (12) has been solved the vector will be obtained

w'=c'd (13)
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2. The PCA nenvork

The PCA network is a one-layer network with linear neuron activation functions
(Fig.2). and the analysis of the principal components by means of the PCA network
without changing the energy of the signals [2] should be treated as the linear
transformation method y = Wx, which transforms a stationary stochastic process in
the form of the vector x € R" into the vector y € R,

Y1
>
Yo
>
Yk
>

Fig. 2. A unidirectional neuron network for data compression

The transformation process is carried out by means of the non-singular matrix
W e R for M < N with the preservation of basic information concerning the progress of
the process. In other words, the PCA transformation for M < N is the method of loss
compression (the Karhunena-Loeve transformation), which in effect decreases the amount
of information in the input data into a set of statistically independent components with
respect to their significance.

A general geometric interpretation of the linear transformation of the vector
x into the vector y with the participation of a specified matrix of the transformation
W is shown in Fig. 3.

When a single random observation vector with the average value zero is marked as
X = [x},x5,...,x5]", then the autocorrelation matrix for p observation vectors is

/7
A= Exkx[ = XX7, (14)
k=1

The matrix A is a symmetric, real, non-negatively definite matrix, which can be assigned its
eigenvalues A; (i = 1.2,...,N) and orthonormal vectors of eigenvalues w; = [W;,Wp,....Wiy].
The matrix A and the matrix A = (4,.4,.....Ay) are congruent matrixes [1]. because

WIAW = A. (15)
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Y

Fig. 3. The linear transformation ot the vector x into the vector y
If the eigenvalues are put in a series according to the rule
A>A>.>Ay20 (16)

and also the eigenvectors w; corresponding to the eigenvalues A;, and if our interest is
limited only to M first eigenvalues, then the matrix

W = [wi, Wy’ (W € RN (17)

and the vector
y=Wx ¥ =y.Y5Im)s (18)

is the vector of principal components. Next, bearing in mind the series of eigenvalues A;
(i=1,2,....M) the modules of the coordinates of the vectors y; (i = 1,2,...,p) (transform y;) will
be ordered according to decreasing values. If Ay = 0, values yy are equal for all i = 1,2,...,p.
From the above, the vector y, being the vector of the principal coordinates PCA, has the
greatest influence on the reconstruction of the vector x according to the dependence:

¥=Wly =Wl (W'W = LW = W), (19)

which is called the Karhunena-Lo¢ve resolution. The first principal component y, = wix
is a normalized linear combination of those components of the input vectors, which make it
possible to obtain the greatest variance value equal A,.

In order to get more information in this matter the covariance matrix of vectors of
principal components will be calculated, i.e.

S=> i~ ¥lli—¥l, (20)

=1
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where:

Ly L2
F=- Y y=- 3 Wr, = Wr. 21)
y=2 > ; > W, (

i=1 1=1

The matrix W consists of orthonormal eigenvectors of the matrix A, so
= oy
Wl |

|
- ] ) 1
WAWT = W2 A [w, wo...wy] (22

|
| & |
|
|
|

o

|
Wy |

On the basis of dependence (13) of the vectors and eigenvalues of the matrix
A 1t is possible to say

(wT]
| s |
S = i 2 ' [Alwl,;Lz‘V2 ..... A’N“’N] = diilg()»l.;»z....,;tlw'). (23)
| e
W

It results from the above equation that the coordinates of vectors y; (i = 1,2....,p) are not
correlated, because the central product moments of the second rank are equal zero. To sum
up, the correlation space matrix y is a diagonal matrix of the eigenvalues of the data
correlation matrix X.

A particular amount of information, corresponding to the energy of the components of
the vector x, is accumulated in the principal components yi,y,,....vy of the vector y that
represent the components of the vector x. The eigenvalue A, connected to the first and at the
same time the greatest principal component in terms of the module y, and the eigenvector w,
can be regarded as a geometrical object called a “concentration ellipsoid”. The
orientation of the ellipsoid and the squares of the length of the principal semi-axes
in multidimensional space are determined by the eigenvectors and the eigenvalues
of the autocorrelation matrix A.

On the basis of this geometrical interpretation it is necessary to say that the component
y1 determines the direction of the greatest variance of the input data, and the smallest
variance should be found along the direction perpendicular to the direction y,. Fig. 4 is
a graphical illustration of the problem in question

With respect to the above the reconstruction of the vector x can be achieved on the
basis of principal components with a loss to the reconstruction corresponding to the
influence of the disregarded least significant components. A reduction of dimensions
consists in restricting the dimension of the matrix W only to M columns, corresponding to
the greatest eigenvalues of the diagonal matrix S.

Application. The vertical deviation of two atmospheric coolers was cal-
culated. Forty metres high cylindrical coolers were placed over a certain area in four rows,
8 coolers in each row. The measurements were carried out on 6 levels excluding the lowest
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Fig. 4. The direction of the greatest and the smallest variance of input data determined by
principal components

available level of the shaft of the coolers. 32 input vectors with six components were
obtained from the measurements. After the input vectors had been normalised (|| x ||=1), the
correlation matrix A was estimated for the input image x as

{10.5597 5.4957 0.4847 -3.1897 -4.6856 -8.6647
3.8446  1.3868 -1.5818 —3.5180 -5.6272

1.9678 0.0885 —-1.8419 -2.0858

1.4725  1.50064  1.7042

4.0106  4.5280

|
A=|
i 10.1450

The decomposition of the matrix A according to eigenvalues by means of the Jacoby
method and the eigenvectors associated with them had the following results:
A1=25.9442, 1,=3.5959, A;=2.0778, A, =1.2197, A;=0.1625, A4 =0, and the matrix of the
coordinates of the eigenvectors (direction cosines)

[ =0.6037 -0.3718 —0.1099 0.1638 03310 0.5906
0.5434 —0.1408 —-0.6531 -0.3188 0.3001 0.2642
0.0495 0.1568  0.1695 -0.3934 -0.6194 0.6371

=1 -04045 0.7187 -0.1557 -0.4316 0.3264 —0.0532

% -0.0865 0.36064 -0.5846  0.6058 -0.3708  0.0778

[ 04083 04083 04083 04083 04083 0.4083

W*

The process of the adaptation of network weights for the adopted value ¢ = 0.07
was carried out by means of the PCA method with respect to the Sanger rule
[3]. which normalizes weight vectors (|| x ||* = 1) according to the formula

i

wilk + 1) = wy + cyi(k)lx; — 21'1"/,/'(!\')}’/1(/\'.)] (24)

h=1
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and the following result was obtained

T-0.6259 —03551 —0.0841  0.1623 03004 0.6025
—05510  0.I378 06621 03082 —0.3105 —02466
C 00472 01512 01736 —0.3944 —0.6215 0.6438
W= 04038 07232 -02092 -03896 02915 —0.0181 |°
00959 —03584 05111 —05848 03988 —0.0625 |

LO.JZSI 0.5914 04305 00052 0.6002  0.2986

where the initial choice of a weight vector was a random choice. The process of adaptation
of weights can be regarded as completed if increase of the coordinates of the weight vector
is small (| Aw || = 0). The result of the numerical solution of the task being one vector of
principal components y and correspondingly the input vector x and its reconstruction ¥ have
been shown below, i.e.:

y =[-0.9559. 0.1873, —-0.1212, 0.0120, —0.1484, 0]”
x =[7.0, 8.1, 28.9, 37.3, 62.2, 85.6]"
¥ =59, 10.1, 31.0, 36.0, 60.7, 85.9]"

Looking at the above data it is possible to notice that a complete consistency between
the coordinates of the weight vector W determined by means of the Jacoby method and the
PCA method was not achieved. In the author’s opinion, the reason for the inconsistency is
specific character of the method.

The speed of convergence of the algorithm depends on the choice of the learning factor
¢. A good choice of ¢ can be achieved on the basis of the author’s suggestion according to
the formula

O<cx< 2/2111;17( (25)

where A, is the greatest eigenvalue of the matrix A. The Hebb network in question is
a linear network, but the learning algorithms are non-linear. Because of unspecified weight
restrictions the factor ¢ should be chosen in such a way that the increase of weights in terms
of value stay within the linear model. In this way the Lagrange remainder

1 1
Elmin “ Aw ”2 < Rl(w) < ;)'m:lx H Aw “2 (26)
Marking
[Aw |2
c= (27)
Ry(w)

and bearing in mind that the eigenvalue 4,;, of the matrix A equals 0, formula (206) is
transformed into formula (25).
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4. CONCLUSION

The linear transformation y = Wx is an adaptation transformation, which functions
on the basis of the generalized Hebb algorithm.

The transformation process progresses in the on-line mode and is passed on the series of
two vectors x, whose way of acquisition excludes the possibility of an overt form of
autocorrelation matrix. Nevertheless, adaptation methods are indispensable while determi-
ning eigenvectors in cases when the vector x has large dimensions. because the accuracy of
results obtained by means of the QR method or the Jacoby method is usually insufficient.

12

10

=]

standard deviation
[=2]

1 2 3 4 5 6
number of principal components

Fig. 5. The characteristics of the accuracy of data reconstruction with respect to the number
of principal components

The basic numerical characteristic feature of data of reconstruction error is the variance
of the random variable v, defined as the expected value of the square of the deviation of the
random variable from its expected value

v(x) = Elx - E@)]. (28)

Figure 5 shows the standard deviation value o= \[IT(;) for an increasing number of
principal components. The standard deviation o of data reconstruction is within
11.0+ 2.8 mm. The compression quality depends on the number of principal components of
the PCA transformation.
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Transformacja PCA jako metoda kompresji wynikéw eksperymentu

Streszczenie

W pracy przedstawiono metod¢ analizy statystycznej wielowymiarowych danych za pomoca transformacji
PCA (Principal Components Analysis), zrealizowanga za pomoca sieci neuronowej. Transformacja PCA, zwiazana
z transformacja Karhunena-Loeve jest stosowana w przetwarzaniu sygnaléw traktowanych jako procesy
stochastyczne. Omawiana w pracy metoda, umozliwia redukcje¢ przestrzeni danych wejSciowych na podstawie
wyznaczonych niezaleznych skladnikéw gléwnych z uwzglednieniem ich znaczenia.

103ed T'unb

Tpancopmanus PCA kak MeToji KOMIOPECCHH Pe3y/IbTaToB IKCHePHMEHTa

Peswome

B paGote npencraBieH METOA CTATHCTHYECKOTO aHAJIH3a MHOTOMEDHLIX JAaHHLIX C MOMOILBIO
TpaHcdopmauun PCA (Principal Components Analysis), peaJlM30BaHHON C MOMOLILIO HEHPOHOBOH CETH.
Tpancdopmauust PCA, cBszannas ¢ tpancopmauneii Karhunena-Loéve, npumensieTcs ans o6padboTku
CHTHAJIOB, pacCMaTPUBAEMbLIX KaK CTOXacTHYeCcKHe npouecchl. IlpencrapnenHtniii B pabote Metoa oaét

BO3MOXHOCTL PE€AYKUHH NPOCTPAHCTBA HCXOOAHLIX HAaHHLIX Ha OCHOBC OﬂpCHCHéHHle HE3aBHUCUMDIX
rIaBHLIX KOMIIOHCHTOB C y‘l(fTOM HX 3HAYCHUHSA.



