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PCA transformation as a method of compression of experiment results 

The paper presents a method of statistical analysis of multidimensional data by means of the PCA 
transformation (Principal Components Analysis), carried out by means of a neuron network. The PCA 
transformation, connected with the Karhunen-Loeve transformation is used for processing signals 
treated as stochastic processes. The method discussed in the paper, enables the reduction of input data on 
the basis of specified independent principal components with respect to their significance, 

INTRODUCTION 

One of the basic methods of statistical analysis of multidimensional data is 
the method of principal components analysis PCA, used for processing signals treated 
as stochastic processes. A closer look at this problem leads to the conclusion that 
it is a transformation of co-ordinates from a particular system to a system that is 
better adapted to the changeability of existing data. TI1e PCA transformation generates 
new variables called principal components. which are represented by eigenvectors of 
a covariance matrix or correlation matrix. The use of some of the principal components 
enables the reduction of the size of the database with respect to its best representation 
as the maximum covariance matrix in terms of the trace and the determinant of the 
matrix. Useful information in tasks of this type is a description of the system generating 
existing data as a linear or non-linear filter. 

TI1e paper discusses a PCA transformation based on a correlation matrix. carried out by 
means of neuron networks. It deals with the problem of eliminating from the learning set. the 
features that have little influence on the extent of variation of particular objects. 

l. The energetic function of correlation networks 

According to the basic rule by Hebb, a change of the weight vector w;= [w;1, w;2, ... ,w;Nf 
is proportional to the product of the input signal x = [x1.x2, ••• ,x"'] and the learning signal [4]. 
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)'; = f(w'.x). (l) 

which is the output signal of a neuron i.e. a linear weighted adder (Fig. I). The set of joint 
stimulations of a neuron is the domain of the linear activation functionf(w'.x). The increase 
of the weight vector t.w; for the linear model of a neuron consistent with Hebb 's rule is 
described by the dependence 

t.w; = cf(w;x)x, (2) 

where the learning constant cis a positive number. By changing formula (2) a change of the 
weight of a neuron can be expressed as follows 

(3) 

where x0 and y0 are certain constants. On the assumption that the learning coefficient c = l 

(4) 

Fig. I. Adaptation linear weighted adder 

By adopting a system consisting of a single linear neuron and the number of learning 
standards N = 3 (the number of the coordinates of the input vector), the increase of weights 
expressed in the scalar form is 

,'.}Wij= W11X1X1 + W12X2X1 + W13X3X1 + 
W11X1X2 + W12X2X2 + W13X3X2 + 
W11X1X3 + W12X2X3 + W13X3X3 - 

Wi 1X1Xo1 + W12X2Xo1 + W13X3Xo1 - 

W11Xo1X1 + W12Xo1X2 + W1,Xo1X3 + 
Xo. Yo 

(5) 

Therefore, for any number N of learning standards and k neurons, a change of weights of the 
network in time t, can be expressed in the form of the equation [2] 

dw., N N 
= L, w;k Aki + L, C;k \\';k + cft, 

dt k=I k=l 
(6) 
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where Aki is the covariance matrix of the activity of neurons kand j i.e. 

fl 

A - '"'(\_(i) -; ) ('"(i) -; ) kJ - ~ .• ·k - -vk: -~k - -'j ' 
i= I 

(7) 

where: xk - the average value of input vector components, p - the number of input vectors. 
If it is assumed that the change of weights is effected numerically by means of the 

method of the greatest decrease, the minimization of the energetic function Q (the specified 
characteristic value dependent on the condition of the network) progresses in the direction 
opposite to the gradient vector, i.e. 

dQ dwu N N 
- = - - = - Lw;kAkJ - Lc;kw;k - ch. 
dw, dz k = 1 k = 1 

- the second 

1 N N N 

Q2 = - - L LC;kW;kWji - L,d;Wji- 
2 k= I j= \ }=\ 

(8) 

The form of an energetic function will be obtained after the above differential equation has 
been solved. Therefore it 1s possible to say: 

(9) 

Two components can be separated from the form of the function Q (formula 9) 
- the first 

(10) 

(11) 

The first component denotes the variance o-} of the activity i - of that neuron. The proof of 
that statement will be presented in the following part of the paper. The second component of 
the energetic function can be associated with an objective function in the theory of 
optimisation. It is so, because in search of optimum weight values, the gradient vector 'v of 
the function Q2 (w) will be equated with zero, 1.e. 

'v=cw-d=O (12) 

After equation (12) has been solved the vector will be obtained 

(13) 
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2. The PCA network 

The PCA network is a one-layer network with linear neuron activation functions 
(Fig.2), and the analysis of the principal components by means of the PCA network 
without changing the energy of the signals [2] should be treated as the linear 
transformation method y = Wx, which transforms a stationary stochastic process in 
the form of the vector x E RN into the vector y E RKxN_ 

►

Fig. 2. A unidirectional neuron network for data compression 

The transformation process is carried out by means of the non-singular matrix 
WE RMxN for M ś N with the preservation of basic information concerning the progress of 
the process. In other words, the PCA transformation for M ś N is the method of loss 
compression (the Karhunena-Loeve transformation), which in effect decreases the amount 
of information in the input data into a set of statistically independent components with 
respect to their significance. 

A general geometric interpretation of the linear transformation of the vector 
x into the vector y with the participation of a specified matrix of the transformation 
W is shown in Fig. 3. 

When a single random observation vector with the average value zero is marked as 
x = [x1.x2, ••• ,xNf, then the autocorrelation matrix for p observation vectors is 

(14) 

The matrix A is a symmetric. real, non-negatively definite matrix, which can be assigned its 
eigenvalues A;(i = 1.2, ... ,N) and orthonormal vectors of eigenvalues W;= [w;1,w;2, ... ,w;N]. 

The matrix A and the matrix A= (},1,.-1.2 •••. ),,v) are congruent rnatrixes [l], because 

W7AW = A. (15) 
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Fig. 3. The linear transformation of the vector x into the vector y 

If the eigenvalues are put in a series according to the rule 

(16) 

and also the eigenvectors w; corresponding to the eigenvalues A;, and if our interest is 
limited only to M first eigenvalues, then the matrix 

(17) 

and the vector 

y = Wx (18) 

is the vector of principal components. Next, bearing in mind the series of eigenvalues A; 
(i= 1,2, ... ,M) the modules of the coordinates of the vectors y; (i= 1,2, ... ,p )(transformy;) will 
be ordered according to decreasing values. If AN= O, values YN are equal for all i= 1,2, ... ,p. 

From the above, the vector y, being the vector of the principal coordinates PCA, has the 
greatest influence on the reconstruction of the vector x according to the dependence: 

(19) 

which is called the Karhunena-Loeve resolution. The first principal component y1 = w ix 
is a normalized linear combination of those components of the input vectors, which make it 
possible to obtain the greatest variance value equal ),1• 

In order to get more information in this matter the covariance matrix of vectors of 
principal components will be calculated, i.e. 

p 

S = L,IY; - fllJ'; -YL 
i= I 

(20) 
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where:

l " I " y=- L,Y;=- L,Wx;= wr 
/Ji= I pi= I 

The matrix W consists of orthonormal eigenvectors of the matrix A, so

[
Wił

W A W' = "'. A [w,, w, ..... w NI 

WN 

On the basis of dependence (13) of the vectors and eigenvalues of the matrix
A it is possible to say

[
WT]

S = w( [ A, w,.,½ w,, ...• -'NwN] = diag (A,, A,, ... ,AN). 

w~ 

(21)

(22)

(23)

It results from the above equation that the coordinates of vectors y; (i= 1,2 .... ,p) are not
correlated, because the central product moments of the second rank are equal zero. To sum
up, the correlation space matrix y is a diagonal matrix of the eigenvalues of the data
correlation matrix X. 

A particular amount of information, corresponding to the energy of the components of
the vector x, is accumulated in the principal components y1,Yz, .. ·,YM of the vector y that
represent the components of the vector x. The eigenvalue ).1 connected to the first and at the
same time the greatest principal component in terms of the module y1 and the eigenvector w1 

can be regarded as a geometrical object called a "concentration ellipsoid". The
orientation of the ellipsoid and the squares of the length of the principal semi-axes
in multidimensional space are determined by the eigenvectors and the eigenvalues
of the autocorrelation matrix A. 

On the basis of this geometrical interpretation it is necessary to say that the component
Yi determines the direction of the greatest variance of the input data, and the smallest
variance should be found along the direction perpendicular to the direction y1• Fig. 4 is
a graphical illustration of the problem in question

With respect to the above the reconstruction of the vector x can be achieved on the
basis of principal components with a loss to the reconstruction corresponding to the
influence of the disregarded least significant components. A reduction of dimensions
consists in restricting the dimension of the matrix W only to M columns, corresponding to
the greatest eigenvalues of the diagonal matrix S. 

A pp l i cat i o n. The vertical deviation of two atmospheric coolers was cal­
culated. Forty metres high cylindrical coolers were placed over a certain area in four rows,
8 coolers in each row. The measurements were carried out on 6 levels excluding the lowest
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Fig. 4. The direction of the greatest and the smallest variance or input data determined by 
principal components 

available level of the shaft of the coolers. 32 input vectors with six components were 
obtained from the measurements. After the input vectors had been normalised ( li x li= 1), the 
correlation matrix A was estimated for the input image x as 

10.5597 5.4957 0.4847 -3.1897 -4.6856 -8.6647 
3.8446 1.3868 -1.5818 -3.5180 -5.6272 

1.9678 0.0885 -1.8419 -2.0858 
A= 1.4725 1.5064 1.7042 

4.0106 4.5286 
10.1450 

The decomposition of the matrix A according to eigenvalues by means of the Jacoby 
method and the eigenvectors associated with them had the following results: 
A1 = 25.9442, A2 = 3.5959, A3 = 2.0778, A4 = 1.2197, As= 0.1625, A;;= O, and the matrix of the 
coordinates of the eigenvectors (direction cosines) 

-0.6037 -0.3718 -0.1099 0.1638 0.3310 0.5906 
0.5434 -0.1408 -0.6531 -0.3188 0.3001 0.2642 

W'= 
0.0495 0.1568 0.1695 -0.3934 -0.6194 0.6371 
-0.4045 0.7187 -0.1557 -0.4316 0.3264 -0.0532 
-0.0865 0.3664 -0.5846 0.6058 -0.3708 0.0778 
0.4083 0.4083 0.4083 0.4083 0.4083 0.4083 

The process of the adaptation of network weights for the adopted value c = 0.07 
was carried out by means of the PCA method with respect to the Sanger rule 
l3], which normalizes weight vectors (li x 112 = 1) according to the formula 

i 

wu(k + 1) =wu+ cy;(k)lx1 - L, w1,1(k)y1,(k)] 
1,~ I 

(24) 
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and the following result was obtained 

i -0.6259 - 0.355 l -0.0841 0.1623 0.3004 0.6025 
I -0.5510 0.1378 0.6621 0.3082 -0.3105 -0.2466 

0.0472 0.1512 0.1736 -0.3944 -0.6215 0.6438 
W= -0.4038 0.7232 -0.2092 -0.3896 0.2915 -0.0181 

0.0959 -0.3584 0.5111 -0.5848 0.3988 -0.0625 
0.125 l 0.5914 0,4305 0.0052 0.6002 0.2986 

where the initial choice of a weight vector was a random choice. The process of adaptation 
of weights can be regarded as completed if increase of the coordinates of the weight vector 
is small (li 6. w li= O). The result of the numerical solution of the task being one vector of 
principal components y and correspondingly the input vector x and its reconstruction i have 
been shown below, i.e.: 

y = [-0.9559. 0.1873, -0.1212, 0.0120, -0.1484. or 
X= [7.6, 8.1, 28.9, 37.3. 62.2, 85.6]7 
i= [5.9, 10.l, 31.0, 36.0, 60.7, 85.9)7 

Looking at the above data it is possible to notice that a complete consistency between 
the coordinates of the weight vector W determined by means of the Jacoby method and the 
PCA method was not achieved. In the author's opinion, the reason for the inconsistency is 
specific character of the method. 

The speed of convergence of the algorithm depends on the choice of the learning factor 
c. A good choice of c can be achieved on the basis of the author's suggestion according to 
the formula 

O < C < 2 fil max (25) 

where ilmax is the greatest eigenvalue of the matrix A. The Hebb network in question is 
a linear network, but the learning algorithms are non-linear. Because of unspecified weight 
restrictions the factor c should be chosen in such a way that the increase of weights in terms 
of value stay within the linear model. In this way the Lagrange remainder 

(26) 

Marking 

ll6.wll2 c=-- 
R2(w) 

(27) 

and bearing in mind that the eigenvalue ),min of the matrix A equals O, formula (26) is 
transformed into formula (25). 
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4. CONCLUSION

The linear transformation y = Wx is an adaptation transformation, which functions
on the basis of the generalized Hebb algorithm.

The transformation process progresses in the on-line mode and is passed on the series of
two vectors x, whose way of acquisition excludes the possibility of an overt form of
autocorrelation matrix. Nevertheless. adaptation methods are indispensable while determi­
ning eigenvectors in cases when the vector x has large dimensions. because the accuracy of
results obtained by means of the QR method or the Jacoby method is usually insufficient.
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Fig. 5. The characteristics of the accuracy of data reconstruction with respect to the number
of principal components

The basic numerical characteristic feature of data of reconstruction error is the variance
of the random variable u, defined as the expected value of the square of the deviation of the
random variable from its expected value

u(x) = E[x - E(x)]2. (28)

Figure 5 shows the standard deviation value CJ= ✓u(x) for an increasing number of
principal components. The standard deviation CJ of data reconstruction is within
11.0 7 2.8 mm. The compression quality depends on the number of principal components of
the PCA transformation.
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Józef Gil 

Transformacja PCA jako metoda kompresji wyników eksperymentu 

Streszczenie

W pracy przedstawiono metodę analizy statystycznej wielowymiarowych danych za pomocą transformacji
PCA (Principal Components Analysis), zrealizowaną za pomocą sieci neuronowej. Transformacja PCA, związana
z transformacją Karhunena-Loeve jest stosowana w przetwarzaniu sygnałów traktowanych jako procesy
stochastyczne. Omawiana w pracy metoda, umożliwia redukcję przestrzeni danych wejściowych na podstawie
wyznaczonych niezależnych składników głównych z uwzględnieniem ich znaczenia.

Tpancqiopuauun PCA K3K MeTOJl KOMnpeCCIIH pe3yJJhT3TOB )KcnepnMeHT3 

Pe3JOMe

8 patiore npencranneu MeTOJl CTaTHCTW!eCKOro auanma MHOfOMep!·ll.,IX nanuux C 110M01Ubl0
TpaHccpopMaUHH PCA (Principal Components Analysis), pearnuoaanuoń c noM0IULJO ueńpoxosoti ce'ru.
Tpaucrpopr-iauua PCA, cnaaannas c Tpa11ccpopMauHeii Karhunena-Loeve, npnr-ieuxercn JlJlll o6pa6oTKH
CHrHaJl0B, paccssarpaaaecn,rx KaK CT0XaCTH'-!eCKHe npoueccu. Ilpencranneuaun B pafiore MeT0Jl naer
B03M0)KH0CTb peziyxuau npocrpaucrna HCX0JlHb[X Jl3HHI.,IX Ha 0CH0Be onpenenenuux He33BHCHMI.,[X
r.namu.rx K0MTI0HeHT0fl C yc1eT0M HX 3H3°\el-llHI.


