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Algorithm for rigorous adjustment of modular networks

Mathematical formulaes for rigorous adjustment of surveying modular networks are presented
in the paper. The method is based on the idea of multigroup transformation. The solution leads to
general problem of non-linear adjusting of conditional equations with unknowns by the least square
method. It is a modification of the classical way of approximate adjustment of the modular
networks.

INTRODUCTION

The numerical working out of modular network (according to [10]) consists
of transformation adjustment and accuracy analysis for the points being determined.
This algorithm gives possibility of approximate adjustment of network. At present,
however, having at one’s disposal computer programs and hardware, there is no
obstacle to apply of the rigorous adjustment. To rigorous adjustment of a horizontal
network we need to know the approximate coordinates for every point being determined.
In the past. cost (time) of calculation was the essential barrier for this task. For
the sake of it, the relatively high accuracy of approximate coordinates was being
assumed. Network adjusting in one calculation cycle was the main goal. The repeating
of whole the adjustment process when updating approximate coordinates, at present
not involves expenses of computation. Such attitude to this issue gives us certainty,
that the influence of systematic observational error will be considerably limited.
Thus working out of modular networks could include two stages: 1) evaluation
of approximate coordinates, 2) rigorous adjustment by parametric method.

Working out the methodology of determining approximate coordinates for any
angular-linear network is not an easy task. The difficulty results from the fact. that varied
structures of networks are unique. However. a geodetic program that is used for this type of
computation. must be based on an universal predetermined algorithm. One could solve this
task by analogy to block aernal triangulation (analytical photogrammetry). where the full
working out consists in group transformation of the models or photographs [9]. However,
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the problem of undeterminate elementary modules appears in construction of algorithm for
calculation of approximate coordinates. This issue is considered in works [3. 7].

The method shown in present paper is a suggestion of the rigorous adjustment of
modular networks without necessity of calculating of approximate coordinates. It is based
on transformational computation and it is a modification of the classical method of
approximate adjustment for this type of geodetic nets. The rigorous solution of problem of
modular network with evaluation of the transformation parameters of modules (2
translation parameters and 1 rotation parameter for each of modules) and corrections to
direct observations of directions and distances, leads to general issue of nonlinear
adjustment of the conditional equations with unknowns [1] by the least square method.

Classical modular networks on principle should be applied as the geodetic surveying
nets [10]. However, practical and accuracy considerations (choosing the surveying station
point in any place, elimination of centring error) cause that they can be also used as special
nets (geodetic maintenance of production halls in industrial plants) or as the precision
set-out nets. Thus criteria of rigorous adjustment will be diversified depending on the way
of network using. In agreement to technical rules [5] we should assume the mean positional
error <0.20 m (for horizontal surveying net) and < 0.05 m (for vertical net). The errors after
adjustment would not exceed these values, irrespective of method of working out the
measuring data. Adjustment of observations by the transformation method following on
algorithm presented in existing now guidelines G-4.1 [10], gives possibility of getting the
measures of accuracy mentioned above (when complying with the surveying parameters
shown in technic rules G-4 [5]). However when doing geodetic maintenance of the objects,
that need higher accuracy, the rigorous adjustment by the least square method is more
relevant procedure for working out the measuring data.

1. Application of transformation computation to the modular network working out

The classical method of modular network working out [10] is based on generally known
formulas for linear transformation:

X = Xo=(x—xp) fcosa — (y — yo) f sincx i
Y—-Yy=(Q — yo) fcosax+ (x = xp) f sincx, ()
where: (x, y); (X, Y) — point coordinates in original and secondary system (respectively); (xo.
Yo): (Xo. Yp) — coordinates of a point freely placed (transformation pole) in original and
secondary system (respectively); o — angle of rotation between original system and the
secondary one; f — scale factor.
Assuming that x, =0 and y, = 0, then X, ¥, are coordinates of system origin in secondary
system. Thus transformation formulaes (1) will be described in simplified form:

X =Xo+xfcosa—yfsinx

: (2)
Y=Yy+yfcosa+ x fsincx.
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Formulaes (2) comply with a single group of points. The issue of working out the modular
networks, however, concerns multigroup transformation. The task consists in simultaneous
conversion of coordinates of many groups of points to one common coordinate system
[2. 6]. Every module has the coordinates given in its local system. but global system.
defined by control points of network, is the target system.

2. Functional model for modular network

For any modular network we can specify the functional model leading to system of
conditional equations with unknowns. The unknown quantities in this system are
transformation parameters (varied for each of modules). When assuming that every module
is fully determinable internally (every length of sight line is known), then the basic structure
of observation system includes: 1) conditional equations for tie (binding) points; 2)
conditions for control points.

The third type of conditional equations, also for tie points. but different than mentioned
above, occurs in the case when existing a module being internally undeterminable (for
example because of lack of a sight line distance). Creating such a condition consists in
elimination the missing length from the equation.

Forevery tie point k (Fig. 1), being common for two neighbouring modules 7, j we create
2 conditions including 8 unknowns altogether (4 transformation parameters per each of
modules):

Xi = Xoi + X Ci = yuu Si = Xoj + x4 G =y § 3)
YA = Yo, <+ Y,k C,‘ + Xy S,' = Yo, + Vik Cj + Xjk Sj,
where: S. C — transformation quantities for both modules (respectively):
C; = f; cos; C; = fj cosq; @)
S,‘ —_—ﬁ SinO(; Sj :ﬁ Sirla/' .

Relations between local system (for any module i) and target system. can be expressed in
matrix form (eq. 3):

X(:X().;‘*‘S, Xik o (5)
where:
X Xoi Ci -S; Xk
X, = /L o e 0 - Cox, = k
Yy Yo S G Vik

and: (Xon Yo). (Xo. Yo) — coordinates of the origin of local system for modules i and j
(respectively) in global system; X;. Y; — coordinates of tie point & in global system; (x ., vi),
(X yu) — coordinates of tie point & for modules 7 and j (respectively) in local system: ¢, ¢;
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—angles of rotation between local and global system for modules i and j (respectively): fi. f;
— scale factors for modules 7 and j (respectively)

[’f/, / modulc /-

¥ Yy (V]

® - control point
o - Station point in a module
o-l1¢ point

Fig. 1

Two conditions for any control point s we can describe similarly:

Xs = Xoi + x5 Ci — ¥is Si 6)
YA = YOi +_V1J Cl + Xis Sl s
where the meaning of symbols is analogous to formulas (3) and (4).
The full functional model for modular network (in matrix notation) can be shown in
following way:

- . TQ - TQ —

X(),'+S,' x,-k=)koj+S, xj';\-, S,‘ S,‘-—[, Sj Sj—[ (7)

XOi + Si Xis = X\’

Assuming approximate unknowns: C”, S X, Y (i = 1,2....m), m — number of

modules, the observation system (7) we can solve easy, because it is linear. It is classic way
of working out the modular network, being used in analytic photogrammetry as well.
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3. Rigorous solution

The rigorous working out of modular network consists in assigning the corrections to
direct observations (received on polar station of a module) or assigning relevant covariance
sub-matrixes to pseudo-observations (local coordinates of a module).

Let us create a functional model including observations. Replacements like

Xiw = dy cos@y;  yu = di SINQ (8)

yield the transformed conditions (3):

X(),' + dik COS(I),‘A- C,' - d,‘/\. Sin(p[k S,' = Xo/' + dj/\' COSQ)]'/\» Cj — djk Sin(pjk Sj (9)
Yo,' + (11,'/( Sin(D,-k C,' + d,’k COSQ S,' = YQ,‘ g djk Sinqa‘,»k q b djl\ COSQDJ-;; S/' ’
where: (dy, @u), (du. @) — polar coordinates (distance and angle) of tie point & in local
system for modules i and j (respectively).
The same stage can be described in matrix notation. Inserting the following matrix into
formula system (7):

Xit dy cos@y COSQ i
Xig = =1 ; = dy " = dy Ky, (10)
Vie dy sin@y SN

results in:

Xoi + di Si Ky = X + dit S; Ky

11
Xoi + dy S Ky = X, (1

In formula (9) next we replace the unknowns and the observations with their relevant
approximate values along with their corrections:

dy = dy + Sy; Pix = Qi + Vi (12)
dyp=d+ Ois Qi = (77/1» + Ujk’
jXO[ = XE)OI) < (SXO/ o = a(()) 4 5&. (13)

Yor = Y& + 0 Yo

where: X@, Y. o — approximate values. d, ¢ — quantities being observed (measured).

Assuming that systematic observation error had been eliminated earlier, we can
take f = 1 (invariability of scale). Then factors C and § (from formula (9)) can
be expressed as follows



148 Tadeusz Gargula

C,=cos(a + dar)

N ; (14)
S =sin(a” + da)
Further development of the formula leads to the following form
C: = cosa® — sina® Sa; = CO - 59 S (15)
S; = sina® + cosa® Sa; = S@ + CP Sa;
The ,,new” transformations factors
CO =cosa®; 3§ =sina®, (16)
can be evaluated by approximate adjustment, in following way:
) ()
7~ (0) _ Ci . E(O) = S_ (17)

e R Ik
b =
where
C?O) :f;’O) COS&iO); S?O) :f;'O) sinaf—o’; fEO) = 1}(C(O))Z g (S(O))l .
As a result, the condition equation for X coordinate can be written at this stage as:

XO + 0Xoi + dy cos@y (6;0] - 59 8a) — dy SINg SO+ 650) oay) =

L e e W 1
= Xoj -+ 5X0j + djk COS(ﬂ/k (Cj(-o) - S}O) 5&,) = djk SmOljk (SJ(-O) + C}(O) OO(J) ( 8)

Further progress of development is been presented below. Our aim is the linear form of
conditional equations with unknowns.

dy cos@y = (dy + Oy) cos(Py + Vi) = dy cOsPy + Oy COSPy — dy SINPy Vg

: ~ i B o = & . (19)
dy sin@y = (dy + ) Sin(@u + Va) = dy SNy + Sy SINQy + dix COSP i Vi
Hence, after mathematic rearrangement, we finally obtain:
(5X0,' = 50, + Oy 5“1,‘ = O([,- 50(1 =
= - Xéﬁ) + ng) - :\V','k C;O) - 51k COS@M\. C,' + Vi 5;,'/\ CEO) + .’f}k CJ(O) +
(20)

+ 8 cos@Py C¥ =0y 54 C¥ + 54 SO + S cos@y SO +
~ QO ~ < ~ < ~ <0
Vi Xz S — Jine S0 — O cos@e ST — v X S

In formula (20) we put together the known quantities (observations, approximate
unknowns):
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<57 L ~ (0 ~ @ T
(co;\(of;‘ SV - C=a,: Fu CP =%, 89 = ay,

A el (U < 0 _ = 3T
IC()‘\W‘“’ (€ = S](O) = oy Vi Cj7 — Lk S‘(rm =das; (21)

£(0) 7(0) ~  ~(0) ~ CO ~ A~ ~ T _
- Xoi +Xof X C +Fu S+ X €7 = S = @y

what leads to final form of conditional equation with unknowns for X coordinate, where left
there are corrections to unknowns, and right there are corrections to observations:

5X0j = (SXOJ + ay; (SO./, - ay 5&1 =y 51( + dy; Vy + ay; (S‘/';\- — s Uj;\ + (l)[,j, (22)

where: ay;, a;; — coefficients of unknowns: a.. ay;, as. as; — coefficients of corrections to
observations: @,; — free term.
Similarly we can derive the equation for Y coordinate:

(SY(),' I (SY()j T bli (50(, - bl_/ (Sa/ = 1)_)_, 5,‘ + []3, Vy+ bgj (Sjk 3 /];] U]-;\ o Cl)zj, S (23)
By the same principle we will obtain the conditional equations for control points (Eq. 6).

These equations together with equations (22) and (23) make up the functional model of
modular network. In matrix form we can it describe as:

ASX -CV=W, (24)

0X = [0 X01.0 Xo2000 Xm0 Y51.0 Yoeoon 8 Yo 0t 0 a8 1) (25)
X9 =[X0.X0 XD VOV .Y a® al.. . .a®, (26)

V= [V, V5. V7, 27)
Vi=[01.0i1,012,92..., 0 V] ¥, (28)

where: m — number of modules; & — index of tie point; A — matrix of coefficients of
unknowns; C — matrix of coefficients of corrections to observations; W — vector of free
terms; 60X — vector of corrections to unknowns: V — vector of corrections to observations;
X'@ — vector of approximates values.

The equation system (24) can be solved by inserting pseudo-observations V:

ASX=W+CV, (29)
ASX=W+v: (v=CV), (30)
vQ;' . v’ = min (31)

By the principle of variance propagation [8] we can describe

Q,=C0. 7, (32)
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‘ 1
Q,=P": P=|— (33)
IL((‘.II
and finally
0X =(ATQ7 A)TATQY W, (34)

where: v — vector of pseudo-corrections; Q, — covariance matrix of observation vector;
P — matrix of weight observations; u;, — mean errors of observations (of distance or angle).

The relevant submatrices QY of covariance matrix Q, of the vector of unknowns are
useful to evaluation of transformation accuracy for particular modules:

Q(l) Q(I.Z) Q(l.m)
(2;1) (2) (2,m)

Q =m@AaTQy - Ay =| ¥ QT - QT (35)
Q(m.l) Q(m.l) Q(m)

Q_r Q.\’\‘ Q.\‘D!
Q"={Q. Q Q. |: (=12..m). (36)
Qa,x Qa\ Qa

The algorithm written in agreement with formula (34) can be performed by iterative
way, when updating of each of matrixes (as the functions of current vector of unknowns). In
this way the iterative Gauss-Newton procedure of solving the nonlinear task by the least
square method 1s formally realised.

4. Heights’ modular network working out by transformation adjustment

Each of the modules has its local height Ay (i = 1, 2, ..., m; m — number
of modules; k — index of tie point), that are base to computation of the particular
tie points in global system:

hu +z,=Hy, (37)
where: z; — altitude of the module (origin of local coordinate system) i in global system.

Functional model of the heights’ modular net working out is based (similarly to
situation solution) on the conditions of two types: for tie points and for control points.

Hy=hy+z=hy+z: (for every tie point k). (38)
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H, =l + z; (for every control point s). (39)

Inevery conditional equation we replace the observations with their corrections instead
of the unknown heights (height differences):

/l,‘A'- = };,A + U,A; /1,\ = Ei‘ + U,‘_\. (40)

what leads to the system of condition equations with unknowns:

hik + VUV +2, = /I/'/\ + U/L + Dy
s ) (41)
hi.x + Uf.\' + Zi = H.\
hence
[:.,—:. =—Vy+Vp— hy+ hy.
; j o 4 (42)

lz, =-v;+ H, - I

We can solve the system (42) in similar way as it was done for the horizontal net
(formulae 24 and 34). Adjustment results (parameters z;. z; and observation corrections) are
useful to final calculation of point altitudes in global (reference) coordinate system:

[—1‘\:/111\+Ulk+:l‘:};j‘+U]k+:j (43)

CONCLUSIONS

The authors of current geodetic rules in area of situation and height measurement
[5] recommend the rigorous adjustment for every type of net, even in case of
surveying net. Until now, modular networks as the geodetic surveying networks
were adjusted by approximation (in agreement with [10]). This was caused by difficulties
associated with the need to determine approximate coordinates. This task was problematic
if some modules were undeterminable in their local systems. However, the method
of rigorous adjustment, presented in this paper, is based on transformation calculation.
It requires the creation of two type conditions: one for tie (binding) points and
one for control points. The rigorous formulation of the problem leads to solution
of the system of conditional equations with unknowns. As a result we obtain adjusted
observation and coordinates. and also information about mean transformation errors
for particular modules. The formulae shown here can be helpful when working
out the computer algorithms for adjustment of this type of network.
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Algorytm wyréwnania Scistego sieci modularnych

Streszczenie

W pracy przedstawiono wzory obliczeniowe wyréwnania Scislego sieci modularnych. Metoda oparta jest na
idei trasformacji wielogrupowej. Rozwiazanie zadania sprowadza sie¢ do ogélnego problemu nieliniowego
wyréwnania obserwacji zawarunkowanych z niewiadomymi metoda najmniejszych kwadratow. Proponowana
metoda obliczeniowa jest modyfikacja klasycznej metody wyréwnania przyblizonego sieci modularnych.

Taosyw I'apeyna

AJICOPHTM CTPOroro ypaBHHBAHHS MOJYJIAPHBIX ceTei

Pesziome

B pafote npeacTaBiacHbl BLIMHCIHTEALHBIC (OPMYIILI CTPOTOrO YPABHHBAHHSA MOAYJAPHLIX CETEH.
MeToa ocHoBaH Ha HACH MHOrOrpynmnosoii Tpaicdopmauni. Pemwenne npodiemMnl cBoauTcs K oduwiei
npobrieMe HEIWHEHHOrO ypaBHUBaHMA HaOmMozeHuii, oOyCTOBIEHHLIX € HEH3BECTHLIMH, METOIOM
HAaHMEHLIHMX KBaapaToB. [IpeanaraeMblX € HEHM3BECTHLIM, METOAOM HAMMEHLIIWX KBAIpATOB.
[MpeanaracMulii - BLIMMCAMTCALHLIH  METOA  sBAsCTCS  MoaupMKaUMEH  KJIaCCHYECKOro  MeToad
NpHOAH3NTCALHONO YPABHIIBAHMS MOAYIAPHLIX CCTCH.



