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Algorithm for rigorous adjustment of modular networks 

Mathematical torrnulacs for rigorous adjustment of surveying modular networks are presented 
in the paper. The method is based on the idea of multigroup transformation. The solution leads to 
general problem of non-I i near adjusting of conditional equations with unknowns by the least square 
method. Il is a modification or the classical way of approximate adjustment of the modular 
networks. 

INTRODUCTION 

The numerical working out of modular network (according to [ 10]) consists 
of transformation adjustment and accuracy analysis for the points being determined. 
This algorithm gives possibility of approximate adjustment of network. At present, 
however, having at one's disposal computer programs and hardware, there is no 
obstacle to apply of the rigorous adjustment. To rigorous adjustment of a horizontal 
network we need to know the approximate coordinates for every point being determined. 
In the past. cost (time) of calculation was the essential barrier for this task. For 
the sake of it, the relatively high accuracy of approximate coordinates was being 
assumed. Network adjusting in one calculation cycle was the main goal. The repeating 
of whole the adjustment process when updating approximate coordinates, at present 
not involves expenses of computation. Such attitude to this issue gives us certainty, 
that the influence of systematic observational error will be considerably limited. 
Thus working out of modular networks could include two stages: I) evaluation 
of approximate coordinates, 2) rigorous adjustment by parametric method. 

Working out the methodology of determining approximate coordinates for any 
angular-linear network is not an easy task. The difficulty results from the fact. that varied 
structures of networks are unique. However, a geodetic program that is used for this type of 
computation. must be based on an universal predetermined algorithm. One could solve this 
task by analogy to block aerial triangulation (analytical photograrnmetry), where the full 
working out consists in group transformation of the models or photographs [9]. However, 
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the problem of undeterminate elementary modules appears in construction of algorithm for 
calculation of approximate coordinates. This issue is considered in works [3. 7]. 

The method shown in present paper is a suggestion of the rigorous adjustment of 
modular networks without necessity of calculating of approximate coordinates. It is based 
on transformational computation and it 1s a modification of the classical method of 
approximate adjustment for this type of geodetic nets. The rigorous solution of problem of 
modular network with evaluation of the transformation parameters of modules (2 
translation parameters and I rotation parameter for each of modules) and corrections to 
direct observations of directions and distances, leads to general issue of nonlinear 
adjustment of the conditional equations with unknowns [l] by the least square method. 

Classical modular networks on principle should be applied as the geodetic surveying 
nets [10]. However, practical and accuracy considerations (choosing the surveying station 
point in any place, elimination of centring error) cause that they can be also used as special 
nets (geodetic maintenance of production halls in industrial plants) or as the precision 
set-out nets. Thus criteria of rigorous adjustment will be diversified depending on the way 
of network using. In agreement to technical rules [5] we should assume the mean positional 
error< 0.20 m (for horizontal surveying net) and « O.OS m (for vertical net). The errors after 
adjustment would not exceed these values, irrespective of method of working out the 
measuring data. Adjustment of observations by the transformation method following on 
algorithm presented in existing now guidelines G-4. l [10], gives possibility of getting the 
measures of accuracy mentioned above (when complying with the surveying parameters 
shown in technic rules G-4 [5]). However when doing geodetic maintenance of the objects, 
that need higher accuracy, the rigorous adjustment by the least square method is more 
relevant procedure for working out the measuring data. 

l. Application of transformation computation to the modular network working out 

The classical method of modular network working out [ 10] is based on generally known 
formulas for linear transformation: 

f X - Xo = (x - xo) f cosa - (y - Yo) f sina 
V- Yo= (y- )'o)f cosa+ (x - x0)fsina, (l) 

where: (x, y); (X, Y)-point coordinates in original and secondary system (respectively); (x0, 
y0); (X0, Y0) - coordinates of a point freely placed (transformation pole) in original and 
secondary system (respectively); a - angle of rotation between original system and the 
secondary one; f - scale factor. 

Assuming that x0 = O and y0 =O.then X0, Y0 are coordinates of system origin in secondary 
system. Thus transformation formulaes (l) will be described in simplified form: 

f X= x, + x f cosa - y f sina 
l Y = Yo + y f cosa + x f sina. (2) 
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Formulaes (2) comply with a single group of points. The issue of working out the modular 
networks. however, concerns multigroup transformation. The task consists in simultaneous 
conversion of coordinates of many groups of points to one common coordinate system 
[2. 6). Every module has the coordinates given in its local system. but global system. 
defined by control points of network. is the target system. 

2. Functional model for modular network 

For any modular network we can specify the functional model leading to system of 
conditional equations with unknowns. The unknown quantities in this system are 
transformation parameters (varied for each of modules). When assuming that every module 
is fully determinable internally (every length of sight line is known), then the basic structure 
of observation system includes: 1) conditional equations for tie (binding) points; 2) 
conditions for control points. 

The third type of conditional equations. also for tie points. but different than mentioned 
above, occurs in the case when existing a module being internally undeterminable (for 
example because of lack of a sight line distance). Creating such a condition consists in 
elimination the missing length from the equation. 

For every tie point k (Fig. 1). being common for two neighbouring modules i.] we create 
2 conditions including 8 unknowns altogether (4 transformation parameters per each of 
modules): 

f x, = Xo; + X;k C; - Yik s, = Xoj + x.jk ej - Yik si 
1 yk = Yo, + Y;k C; + X.;k S; = >'01 + v» ej + X1k S1 , 

(3) 

where: S, e - transformation quantities for both modules (respectively): 

f C; = f; cosa; 
l S; = f; smrz, 

where: 

[C -SJ s. = I I • 

I S; C; ' 

(4) 

Relations between local system (for any module i) and target system, can be expressed in 
matrix form (eq. 3): 

(5) 

and: (X0;. Yo;), (Xoi• Y0J - coordinates of the origin of local system for modules i and j 
(respectively) in global system; X" Y, - coordinates of tie point kin global system; (x;k, y;k), 
(x1k, y1k) - coordinates of tie point k for modules i and j (respectively) in local system; a;, a1 
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-angles of rotation between local and global system for modules i and) (respectively);f;.fj 
- scale factors for modules i and j (respectively). 
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Fig. I 

Two conditions for any control point s we can describe similarly: 

f X.,== Xo; + X;, C; - Yis S; 
l Y, == Yo; + Yis C; + X;5 S; , 

(6) 

where the meaning of symbols is analogous to formulas (3) and (4). 
The full functional model for modular network (in matrix notation) can be shown in 

following way: 

f x, + S; X;k : ~OJ + S1 x1k; 
[x, + s, X,s - X., 

S; S; == I; 
(7) 

Assuming approximate unknowns: C)0l, Sj0l_ x&~l, Y&~J (i== 1,2, .... 111), 111 - number of 
modules, the observation system (7) we can solve easy, because it is linear. It is classic way 
of working out the modular network, being used in analytic photograrnrnetry as well. 
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3. Rigo rolls solution 

The rigorous working out of modular network consists in assigning the corrections to 
direct observations (received on polar station of a module) or assigning relevant covariance 
sub-rnatrixes to pseudo-observations (local coordinates of a module). 

Let us create a functional model including observations. Replacements like 

(8) 

yield the transformed conditions (3): 

f x, + d,k COS(f};k C; - d,k :~i,~<p,k s,: Xo1 + c(k COS(/Jjk ej_- djk sin(f)Jk SJ' (9) l Y0, + a; stn(f),k C, + d,k cos<p,k S, - Y01 + d1k s111<p1k C1 d1k cos<p1k S1 

where: (d;k, <p1k), (djk, (/Jjk) - polar coordinates (distance and angle) of tie point kin local 
system for modules i and j (respectively). 

The same stage can be described in matrix notation. Inserting the following matrix into 
formula system (7): 

_ [x;kl _ [d;k cos tp ikl _ _ [cos <p ;kl _ X;k - - . - d,k . - d;k K;k' 
Yik d, Slll(f};k Stn(f};k 

results in: 

f X o, + d;k s, K;k : x, + a, s, Kjk. 
[x, + d., S, K15 - X., 

(10) 

(11) 

In formula (9) next we replace the unknowns and the observations with their relevant 
approximate values along with their corrections: 

f X o; = X ó91 + 5 X o; 
l Yo; = Yó9l + c5 Yo; 

(pik = qJ ik + D ik 
(f} jk = qJ jk + D jk 

(12) 

(13) 

where: Xó9l, Yó9J; aj0l - approximate values, d. q;- quantities being observed (measured). 
Assuming that systematic observation error had been eliminated earlier, we can 

take f = l (invariability of scale). Then factors C and S (from formula (9)) can 
be expressed as follows 
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f C; = cos(af1 + c5a;) 
l S; = sin(a)0l + c5a;) 

(14) 

Further development of the formula leads to the following form 

jC; = cosa\0> - sinaj0> Sa, = C\0> - S;0> Sa, 
S = Sina<O) + COSO'.(O) ÓC( = 5(0) + C(O) ÓC( 

I I I I I I I 

(15) 

The ,,new" transformations factors 

c;(oi = cosa\0> · 
I I ' 

(16) 

can be evaluated by approximate adjustment, in following way: 

- C(O) 
C(O)=-'. 

t !)0)' (17) 

where 

As a result, the condition equation for X coordinate can be written at this stage as: 

X(O) ""x d cc-(0> s-(0> , ) d · cs-<0> c-<0> "" ) - i + u Oi + ik COS(f};k i - i ua; - ik Sin(f};k i + i ua; - 
= Xoj + c5Xoj + djk COS(f)Jk cc;°> - s;°> c5aj) - djk sinajk cs;°>+ CJ°) c5aj). 

(18) 

Further progress of development is been presented below. Our aim is the linear form of 
conditional equations with unknowns. 

f d;k cos<p;k = (d;k + ó;k) cos(qJ;k + D;k) = d;k cosqJ;k + ó;k cosqJ;k - d;k sin(f};k D;k 09) 
ld;k sin<p;k = (d;k + ó;k) sin(qJ;k + U;k) = d;k sinqJ;k + ó;k sinqJ;k + d;k cosqJ;k U;k, 

Hence, after mathematic rearrangement, we finally obtain: 

c5x0; - 60; + a1; Sa; - CX11 So; = 
= - xs~) + Xb~) - X;k ct) - Ó;k COS(f);k C; + u., Yik C;0) + Xjk CJ°)+ 

, - c-<O> - c-<O> - 5-(0) , - 5-co> (?O) + Ujk COS(f}Jk j - U1k )'1k j + )'Jk ; + U;k COS(f};k ; + - 
~ s-(o> ~ s-<o> , ~ s-co> --; s-<O> U;k Xik ; - )'Jk i - Ujk COS(f}Jk ; - U1k Xjk i . 

In formula (20) we put together the known quantities (observations, approximate 
unknowns): 
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{

COSC/J,k (S~O) - C~0)) = 0 21; )',k C'.0) - \,, s:0) = a,, 
-rń cc-(o, - s-(0) - . ..., c-1oi - - s-10) - cos~, Jl J J - O 21 • ) ,l J x.Jk J - {[ 3j

- XIOJ + XIO) - i c<O> + )"" S-(OJ + \ C-(0) - )' 5-<0> = CV ..o, 01 ,k , ,l , ,k J Jk J I I)

(21) 

what leads to final form of conditional equation with unknowns for X coordinate, where left 
there are corrections to unknowns. and right there are corrections to observations: 

where: o1;, alJ - coefficients of unknowns; a2;, 021, o3;, a31 - coefficients of corrections to 
observations; CV1u - free term. 

Similarly we can derive the equation for Y coordinate: 

By the same principle we will obtain the conditional equations for control points (Eq. 6). 
These equations together with equations (22) and (23) make up the functional model of 
modular network. In matrix form we can it describe as: 

Ac5X - CV= W, (24) 

8X = [8 Xo1,8 Xoz, ... ,8 X011,,8 Y01,8 Yoz, ... ,8 Y011,,8a1,8a2 •... ,8a,,,]r, (25) 

where: 111 - number of modules; k - index of tie point; A - matrix of coefficients of 
unknowns; C - matrix of coefficients of corrections to observations; W - vector of free 
terms: 8X - vector of corrections to unknowns: V - vector of corrections to observations; 
x<0l - vector of approximates values. 

The equation system (24) can be solved by inserting pseudo-observations ~: 

Ac5X=W+CV, 

A 8X =W+ u; (~=CV), 

~ Q~1 
• ~ 

7 = min. 

By the principle of variance propagation [SJ we can describe 

(29) 

(30) 

(31) 

(32) 
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Ql):::: p-1: 
[ 1 l P= - 
P:ta 

(33) 

and finally 

c5X:::: (ATQ~I Atl ATQ~I w,
- - 

(34) 

where: '!:! - vector of pseudo-corrections: Q L - covariance matrix of observation vector; 
P- matrix of weight observations; µda - mean errors of observations (of distance or angle). 

The relevant submatrices Q<il of covariance matrix Q, of the vector of unknowns are 
useful to evaluation of transformation accuracy for particular modules: 

Q(I) Q(l.2) Q(l.m) 

Q,:::: ,LL5(ATQ~I Ar1 = 
Q(2.I) Q(2) Q(2.m) 

Q(m.1) Q(m.2) ... Q(m) 

lQ. Q., .. Qwl 
Q<il = Q" Q, ~:a ; (i= l,2, ... ,m). 

o; o.. 

(35) 

(36) 

The algorithm written in agreement with formula (34) can be performed by iterative 
way, when updating of each of matrixes (as the functions of current vector of unknowns). In 
this way the i tera ti ve Gauss-Newton procedure of solving the nonlinear task by the least 
square method is formally realised. 

4. Heights' modular network working out by transformation adjustment

Each of the modules has its local height h;k (i = 1, 2, ... , 111; m - number 
of modules; k - index of tie point), that are base to computation of the particular 
tie points in global system: 

(37) 

where: Z; - altitude of the module (origin of local coordinate system) i in global system. 
Functional model of the heights' modular net working out is based (similarly to 

situation solution) on the conditions of two types: for tie points and for control points. 

Hk = h» +Z;= hi,+ z1: (for every tie point k), (38) 
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Hs= h;, +Z.;; (for every control points).

In every conditional equation we replace the observations with their corrections instead
of the unknown heights (height differences):

h;k = h,k + U;k; h;, = h;, + U;s, 

what leads to the system of condition equations with unknowns:

fEk + u., + _z;: h1k + u1k + z1. 
lh,s + U,5 + <., - Hs 

hence

(39)

(40) 

(41) 

(42)

We can solve the system (42) in similar way as it was done for the horizontal net
(formulae 24 and 34). Adjustment results (parameters Z;. z1 and observation corrections) are
useful to final calculation of point altitudes in global (reference) coordinate system:

(43)

CONCLUSIONS

The authors of current geodetic rules in area of situation and height measurement
[5] recommend the rigorous adjustment for every type of net, even in case of
surveying net. Until now, modular networks as the geodetic surveying networks
were adjusted by approximation (in agreement with (10]). This was caused by difficulties
associated with the need to determine approximate coordinates. This task was problematic
if some modules were undeterminable in their local systems. However, the method
of rigorous adjustment, presented in this paper, is based on transformation calculation.
It requires the creation of two type conditions: one for tie (binding) points and
one for control points. The rigorous formulation of the problem leads to solution
of the system of conditional equations with unknowns. As a result we obtain adjusted
observation and coordinates. and also information about mean transformation errors
for particular modules. The formulae shown here can be helpful when working
out the computer algorithms for adjustment of this type of network.
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Tadeusz Garguła

Algorytm wyrównania ścisłego sieci modularnych

Streszczenie

W pracy przedstawiono wzory obliczeniowe wyrównania ścisłego sieci modularnych. Metoda oparta jest na
idei trasforrnacji wielogrupowej. Rozwiązanie zadania sprowadza się do ogólnego problemu nieliniowego
wyrównania obserwacji zawarunkowanych z niewiadomymi metodą najmniejszych kwadratów. Proponowana
metoda obliczeniowa jest modyfikacją klasycznej metody wyrównania przybliżonego sieci modularnych.
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