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Application of spline functions m adjustment of rail tracks" 

Spline functior.s play an important role in many technical applications. The paper presents 
some potential possibilities of their application in adjustment of railway tracks as a versatile tool of 
track axis approximation. Methods of determination of cubic interpolating and approximating 
splines are presented in detail. Splines are easily determined and they have satisfactory 
co□ verge□ce to the desired curve. 

INTRODUCTION 

Spline functions have become quite popular in recent years as a perfect tool which could 
be used in many sciences and technology. They could be helpful in approximation with 
huge exactness of searched functions, which is appreciated in modelling of various physical 
processes, car bodies or aircraft profiles, designing and stock-taking of coating structures. 
Railroad engineering, and especially its branches connected with the process of rail track 
adjustment, may become the next domain in which spline functions will be used. A rail track 
is in fact a set of rectilinear and curvilinear sections, which in the point of connection 
preserve curvature continuity, so they are ideal to be represented by spline functions. 
Usefulness of application of these curves is usually reduced to comparison of periodical 
control measurement results before physical adjustment of rail tracks when one has a set of 
measurement points and has no information on the exact location of points which are the 
connection points for particular rail track sections. Parameters of functions which 
determine those sections are also unknown. In designing of rail routes, parameters of lines, 
connecting curves and circular arcs are known, so application of spline function can not be 
justified in such cases. Periodical control rail track measurements (GPS-RTK. electronic 
tacheometry) allow to determine a discrete set of points distributed not necessarily at 

* The study was done under a research project no. 9 Tl 2C00318 financed by KBN in the years 2000-2003. 
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permanent distances. A comparison of results of such measurements may cause some 
difficulties because observations performed periodically using the above mentioned 
methods will never relate to the same points on rail track axis. A way out of the situation is to 
transform the discrete model into a continuous one, assuming additionally continuity of 
curvature in each point of such a model. These requirements are fulfilled by spline functions 
and the representation of rail track axis obtained using them allows to determine differences 
between two periodical measurements in any its point, independent on the place of 
observation. The information obtained in such a way facilitates detection of possible 
deviations from track axis coming from the project or determined during the last adjustment 
and making a decision on necessity of another adjustment. There is also another possibility 
of spline curves application: this concerns the very adjustment process. The primary 
activity during it is recognition of initial points and final points of particular track sections 
(lines, connecting curves and circular arcs). Independent on the method of identification, its 
accuracy depends on density of measured points. During measurements of track axis, 
observations are made, usually every some, unnecessarily permanent distance, without 
knowing where exactly extreme K points of sections are situated. Generally, such points 
will lie between some measurement points P (Fig. 1). During identification of sections [9] 
such situation forces to substitute unknown K points with P points. Depending on which of 
P points is chosen, there will be different lengths of L sections. As one can estimate on the 
drawing, exactness of L length which is determined in this way will be limited on average to 
the length of one measurement interval (average distance between successive measurement 
points). 
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Fig.I 

During observation carried out using GPS receivers applying a kinematic method 
(registration takes place at short ti me intervals during cart movement), any density of points 
may be achieved, e.g. one point per meter and in such situation inaccuracy of identification 
is of no importance. Nevertheless. as far as tacheometrie observations or GPS observations 
using a stop-and-go method are considered (recording takes place only on cart stops), the 
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measured points are situated every few or a dozen meters depending on the type of section. 
In such situation with unfavourable distribution of points, accuracy of section length 
recognition may go down even to circa 20 meters. New methods of rail tracks adjustment 
[9] are mainly based on execution of axis design for parameters determined on the basis of 
sections identified before. The design is compared with existing points and then changed till 
the moment when they satisfactorily fit. Such solution depends on precision of 
identification of sections, the higher accuracy, the closer to an optimum the initial 
parameters of adjustment are and by that a desired design may be easily determined. During 
preparation of a design, the length of connecting curve is the factor which allows to have 
greatest changes. Inaccuracy of determination of the length of curve section, as explained 
above, may be relatively high, which is unfavourable, especially, when the curve length is 
below 100 m. In such situation, when work is based on deformed information, it is difficult 
to prepare a design of adjustment well fitted to the points. Then one has to search, quite often 
many times, and by method of experiments find design parameters. Densification of the set 
of measurement points and identification of sections on data complemented in such way 
would be an ideal solution. When a continuous description of rail track is given, any 
densification of points is possible which favours application of spline curves. 

During approximation of track axis with spline functions one may make use of two 
models: interpolation and approximation models. Interpolation forces to draw the spline 
curve exactly through all measurement points, which may cause axis waving, if there are 
some measurement errors and there is high density of points, and in effect the picture might 
be not too clear. Approximation provides more possibilities: when the size of measurement 
errors is assumed and a parameter of adjustment to measurement data is established at 
a given level, a compromise between the smoothest curve and the most adjusted one can be 
reached. The methods of determination of interpolating and approximating curves are 
explained below. 

1. Methods of determining one-dimensional cubic spline curves 

I.I.Basic assumptions 

Track axis should be presented as a continuous line which additionally has a continuous 
curvature. Line continuity is identical with (spline) function continuity and the curvature is 
determined by first two derivatives of the function: 

f" K= ------ 
[ l + ( f' )2 ]~ 

(l) 

Therefore, it is necessary to use function in class C2
. that is. a double continuously 

differentiable function, in order to meet the assumed requirements. Such requirements are 
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met by cubic spline curves which consist of sections of third degree polynominals. This 
degree is sufficient to preserve curvature continuity and it also does not cause undesirable 
waving of function typical of high degree polynominals. If one operates on a given interval 
[a, b] and determines its division: t,,. ={a= x0 <Xi< ... < x11 = b}, a third degree spline 
function could be determinedS: [a, b] ~ R with the following properties: 

l) function S belongs to C2 class, that is, it is double continuously differentiable on 
[a, b] 

2) function Sis a third degree polynominal on every subinterval [x;, X;+il, i= 0,1...n 
If function S assumes in nodes {x0, Xi ... x11} values S(x;) = Y;, {y0, Yi .. ·Yn} this is a case of 
interpolation, on the other hand, if it assumes values only approximate to these S(x;) = Y;, 
{y 0, f i ... f11} it is a case of approximation. Equations which allow to determine spline 
functions are set making use of the fact that function value with their two first derivatives 
must be equal in nodes X;· In order to define spline functions unanimously it is necessary to 
determine two degrees of freedom which requires additional conditions out of which 
equating of second derivatives on section ends to zero: S"(a) = S"(b) = O, is the simplest and 
a very universal one. 

1.2. I n ter po 1 at i o n u s 1 n g o n e - di me n si o n a 1 cub i c sp 1 i n e 
curves 

Interpolating spline functions [l,10], as was indicated before, are functions which in 
{x0, Xi .. x11} achieve some required values {y0, Yi ... y11}. Assuming as:!',,.= {x; I i= O, l...n} 
- a determined division of interval [a,b] with nodes a= x0 <Xi< ... < x11 = b, Y = {Y; I i= O, 
l...n} - a set (n + 1) of required real numbers and also defining: 

i= O, l...n (2) 

as M moments of function S, that is the values of second derivatives of searched function in 
nodes X;, and: 

i= O, l. .. n - l (3) 

one may begin determining parameters of a spline function. Second derivative S"(x) is 
a continuous function in the interval [a,b] and a linear one in its every subinterval [x;, X;+il, 
so one may present it as follows: 

S"(x) = M; (4) 

Integration by sides of this expression will result in: 
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S'(x) = M; (x;+1 - x)2 

2h;+1 

S(x) = M; (x;+1 - x)3 
6h;+1 

(x -x;)2 

2hi+I 

(x - x;)3 

6hi+I 
+ A;(x - x;) + B; 

(5) 

(6) 

If one imposes on (5) and (6) interpolation conditions: 

S(x;) = Y; = M; h;+i + B; 

integration constants A;, B; determined: 

6 
(7) 

- (Mi+I - M;) 
6 

(8) 

These constants are used to determine parameters of function S in every subinterval 
[x;, X;+il in the following equation [10]: 

S(x) =a;+ /3; (x - x;) + Y;(x - x;)2 + ó;(x - x;)3 (9) 

where: 

/3, = S'(x;) = Yi+I - y 

-: 
(10) 

ó = I 

S"(xn 
6 

Mi+I -M; 

6h;+1 

Moments M; could be determined imposing on function S a condition that its first 
derivative is continuous in interval [a, b] in nodes X;- Using (5) and (8) one-side limits are 
calculated in points: 
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S'(x;-) = 

S'(x;) = 

+ ~ M+ _5_M I 3 I 6 1- 

b.: M hi+I M - --
3
- i - --

6
- i+l 

and in accordance with continuity condition they are equated: 

h 
-'-Mi+ 6 I- 

h;+hi+I M+~M = Y;+1-Y; 

3 I 6 t+I hi+I 
( 11) 

which results in a system of (n - 1) equations for (n + 1) moments. 
Such equations may be expressed in the following way: 

where: 

A;= __ h_i_+I_ 
h; + hi+I 

i= O, l...n - 1 (12) 

i= O, 1... n - I (13) 

In order to determine the other two equations one should use one of exemplary conditions: 

S"(a) = S"(b) = O (14a) 

S'(a) =y~, S'(b) =y:, 

S"(a) = y'~, S"(b) = y':, 

for known y ~ i y ,,' 

for known y~ i y ,," 

(14b) 

(14c) 

Each of these conditions ensures a unanimous determination of all parameters of a spline 
function. Equations which result from the above conditions may be expressed as ( 12), and in 
particular for S"(a) = S"(b) = O they will be expressed as follows: 
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(15)

assuming that: A0 = O, d0 = O,µ,, = O, d,, = O

Having a full system of linear equations which determines coefficients of interpolating
spline function, it may be presented as a matrix form:

2 Aa o o Mo da 
µI 2 A 1 o o Ml dl 
o µ2 2 A2 o (16)

X = 
o µn-1 2 An-I 
o u, 2 Mn dn 

Figure 2 presents the course of function Son [a, b], which is determined on the basis of the
above method with particular subfunctions S; determined on subintervals [x;, X;+ 1] and node
points.
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Fig. 2. Interpolating cubic spline curve 

Ability to fit best to searched function and minimisation of total curvature are very
important features characteristic of spline functions. Considering sets K"'[a, b] of real
functions f projecting [a, b] ---+ R, which have absolutely continuous derivatives f"'-1 on
[a, b] to the order (m - l) inclusive and integrable with square on [a, b]:f"' E L2 [a, b] and
determining m = 2, one can introduce the following norms:
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b 

IIJII 
2 
= flf"(x)I 

2
dx (17) 

n 

It is connected with total curvature of function f in [a, b ], which is defined by a formula (1). 
When/' is small in comparison with the unity, the curvature will be approximately f", so 
li / li will determine the size of total curvature. Based on the basic Holladay's identity: If 

/E K2 (a, b) and 11 = {a =x0 <x1 < ... <xn = b} is a division of interval [a, b] and Sis a spline 
function with nodes X; then: 

ll1-sll
2
=ll1ll

2
-\\sl\

2
-2[crcx)-S'(x))S"(x) :-tl(f(x)-S(x))S"(x) ::,_] 

(18) 

which with given values Y = {y0, y1 •• y,J and when f(x1) = Y;, and when one of conditions 
(14) is fulfilled, is reduced to the following form: 

l\f-S(Y)l\ 2=1\f\1
2
-\I S(Y)ll 2~0 (19) 

This is the so called first integral relation which has the property of minimum norm. 
With assumptions from Holladay' s theorem and additionally condition (14a) one may 
conclude that it is the spline function S(Y) that minimises an integral (17) and for this very 
condition (14a), S(Y) is called a natural spline function. Such function is the smoothest of 
functions which interpolate a given set of points. From the point of view of usefulness of 
approximation of a searched function/, convergence of a spline function S to it is an 
interesting issue. It is particularly important for a function with a quickly changeable 
curvature which has additionally local extremes. The convergence problem was precisely 
discussed in studies [2, 10], here it is only reminded that it is essential that conditions (14) 
are always precisely fulfilled, otherwise, the convergence may be very weak or there might 
be no convergence at all. If there are sudden changes of function curvature, instead of cubic 
curves it is better to use rational spline curves in the following form: 

r (x) = p,,,(x) 
m.n q"(x) (20) 

where p111(x), q11(x) are relatively prime polynominals of m and ndegree, that is, they are not 
divisible by the same polynominal of a positive degree. 

Such curves assure smaller maximum errors of approximation and quicker convergence 
to function/ If applied in rai I tracks approximation, application of ordinary cubic splines is 
fully sufficient. In such cases curvature changes have such a mild character that one could 
try to apply polynominal spline curves of a higher degree (4,5), which at once interpolate 
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a bigger set of points, that is, when every section of a 3rd degree curve is contained between 
every pair of points, a section of a 4th degree curve can be drawn through three points, and 
a section of a 5th degree curve - through 4 points. In such cases it is sufficient to provide 
conditions of continuity of function and of its two first derivatives only in extreme points 
which are connectors of successive sections of a spline curve. A negative influence of 
oscillation of higher degree polynominals on section extremes should not be noticeable 
when this method is applied; additionally, it will allow to save considerably on the total 
number l of coefficients needed for determination of all sections of spline curve on interval 
[a, b]. These numbers for n measurement points are as follows: 

- for 3rd degree 13 = (n -1) curves x 4 coefficients, 13 = 4(n - 1) coefficients 

(n - 1) - for 4th degree 14 = --- curves x 5 coefficients, 14 = 2.5(n - 1) coefficients 2 

(n - 1) - for 5th degree ls = --- curves x 6 coefficients, ls = 2(n - 1) coefficients 
3 

1.3. App ro xi mat i o n us i n g o n e - di me n si o n a 1 c ub i c 
spline curves 

Modem measurement points allow to determine location of rail track axis with high 
degree of precision, nevertheless, every observation is burdened with an error which makes 
it impossible to locate points precisely. Having some, most probable co-ordinates 
calculated on the basis of measurement results and related mean errors o, a spline function 
may be drawn not necessarily through given points {y0, y1 ... yn} but through their 
correspondent points {:y0, y1 ••• yn} which are determined in such a way that they meet 
conditions of lowest squares method and make it possible to determine a possibly smooth 
function which minimises the following expression [2, 3]: 

(21) 

Its first member is responsible for mean square approximation and the second member is the 

above presented value of the standard li ff which determines minimum curvature of 

function S. When the required value of parameter p, O ::; p ::; 1 is chosen, the result is 
a possibly smooth curve alternately with a curve which is best fitted in a set of points. The 
size of error cr> has also an impact on function course; the higher the impact, the bigger 

I 

a relative value of the error. 
Now, an algorithm which allows to determine approximating spline function S which in 

nodes {x0, x 1 ••• x11} assumes values S(x;) = .Y;, {y0. y1 ••• y11} with superimposition of the 
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condition S"(a) = S"(b) = O characteristic of natural spline function, will be presented. 
Using for this purpose a system of equations (11) which defines an interpolating spline 
function and remembering to substitute value Y; with Y;, one can write: 

Y; - Y;-i ) i =0, l...n - 1 (22) 
h; 

M" = O 

In a matrix form the following expression will result: 

(23) 

where: Risa symmetric tridiagonal matrix with size (n - 2) x (n -2) which in every row has 
expressions: h;, 2(h; + h;+i ), h;+i M is a vector with size (n - 2) which clusters searched 
moments M;, Q is a tridiagonal matrix with size (n - 2) x n and comprises rows: 

-t, - \ -,!-- , +, Y is a vector with size n which contains elements Y;· 
11 l t+l l+l 

Linearity of second derivative of function Sallows to put a part of the equation (21) 
which is responsible for curvature minimising in the following form [3]: 

x" 

f (S" (t))2dr = -1-f\+1 (M; + M;M;+i + M~+J 
x1 3 i=l 

and the whole equation (21): 

P
"." [ )'; - )I; ]2 + 1 n-I ~ -(1 - p) L, hi+I (M; + M;M;+1 + M~+1) 
t=I GY; 3 i=l 

presenting that in a matrix form: 

pVTPV + ! (1 - p) M7RM 
6 

. - · 1 1 where V = Y - Y, and P = diag [-- , ... , --] 
2 ? a,.. ar - 

··11 ·fl 

(24) 

(25) 

(26) 
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Determining M from (23) and substituting it in (26), one will obtain an expression 
which depends only on variables Y;: 

(27) 

which allows to minimise it using smallest squares' method, which results in a system of 
equations: 

(28) 

which after some development and another change of variables frorn y, to M; using (23) will 
have the final form: 

(6(1 - p) Q Tp-l Q + pR)M = 6pQ Ty 

or if one puts it in an abbreviated form: 

AM=L 

for A = (6(1 - p) Q Tp-1 Q + pR) and L = 6pQ ry 

Solution of such system has a known form: 

Determined moments of function S make it possible to determine points v., through which 
an approximating curve is drawn: 

y = y _ 1 - p p-lQM 
p 

(29) 

(30) 

(31) 

(32) 

The value of total distance B of spline function from approximated function could be 
a handy piece of information, which may be determined on the basis of the formula: 

(33) 

Approximating spline curves provide high flexibility in the process of searching for the 
most suitable approximation of measured rail track axis. Parameter p is of crucial 
importance in modelling of such curves, nevertheless, as measurement errors grow, their 
role also becomes important. This situation is explained on the following Fig. 3. 
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Fig. 3. Dependence of approximation on choice of parameter p and the size of error a 

It should be emphasised that during comparison of two periodical track measurements it 
1s necessary to make approximations with the same determined parameter p. In both 
measurements one should also assume similar values of measurement errors. If these rules 
are not followed, effects of comparisons might be unreliable. 

Cubic interpolating and approximating spline curves described in the study are a useful 
tool which has many applications. Issues related to adjustment of rail track axis should be 
added soon to this group. Relatively simple numerical methods necessary to determine 
them and good effects of approximation using such curves are in favour of such application. 
Additionally, track axis has an uncomplicated course, therefore, there is no need to use more 
refined splines in order to get a better convergence. 
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Grzegorz Lenda

Zastosowania funkcji sklejanych w procesie regulacji osi torów kolejowych 

Streszczenie

Funkcje sklejane znalazły poczesne miejsce w wielu dziedzinach techniki. Artykuł ukazuje kilka potencjal­
nych możliwości ich wykorzystania w procesie regulacji torów kolejowych, jako elastycznego narzędzia
przybliżania funkcji opisujących oś toru. Przedstawione zostały także dokładnie metody wyznaczania inter­
polacyjnych i aproksymacyjnych kubicznych krzywych sklejanych, cechujących się łatwością wyznaczenia
i wystarczającą w takich zastosowaniach zbieżnością do szukanej krzywej.

1J1Ce20w JleHOa 

fip11Me11e1111e cKne11na1111bIX cjiy11Ku1111 n npouecce perynsunn oceii )((eJ1e31101.10po)KJ1b1x nyre11 

Pe 3 10 Me

CK!leHB3HHl,Je cpyHKUHH HaWJIH no-reruoe MeCTO B MHOrI-IX oónacrnx TeXHHKH. 8 CT3Tbe
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lKene3HOL!OpOlKHblX nyreii KaK rnóxor-o 11HCTpyMeHTa np116n11lKeHl1/I- ¢YHKUl1H OTil1CbIBalOW11X OCb rryru. 

Ilpencrannenu TOlKe TO'IHbie MeTOL!bl onpenenenaa 11HTepnonllUl10HHb[X 11 annpOKCl1MaTl1BHblX 

CKne11BaHHblX Ky6wieCKl1X Kp11BbIX, xapaxrepaayioutuxca npOCTOTOH onpenerteuus 11 LIOCTaTO'lHOH 

CXOL!l1MOCTblO C onpenenaer-roji Kp11BOH. 


