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General solution of pseudorange equation system for GPS positioning 

In this paper the general solution of nonlinear satellite pseudorange equation system has been 
given. This solution was obtained by the application of the new positional transformation 
determining relations between the points in three-dimension space. 

It has been proved that computation of the position does not require knowledge of the light 
speed, occuring in pseudorange measurements, or determination of approximate coordinates. 

The general solution allows one to obtain all possible solutions including complex conjugate 
positions. 

This work has also stated that there exists some space regions in which it is not possible to 
determine the positions in the domain of real numbers. This is especially important in navigation of 
objects moving in the space. 

INTRODUCTION 

Determination of the position is one of the fundamental problems in geodesy and 
navigation. Position can be obtained using four pseudoranges measured simultaneously to 
four GPS satellites of which ephemerides are known, 

The pseudorange measurements to four satellites give, known in literature, nonlinear 
satellite pseudorange equation system. In this system there are four unknowns. Three of 
them are coordinates of the point and one is a clock error caused by a lack of 
synchronization between GPS system time and the receiver clock. 

The mathematical model is set up of nonlinear equations and the solution of this system 
is carried out iteratively, Seeber (1993), Hofmann-Wellenhof, Lichtenegger and Collins 
(1994), Leick (1995), It should be noted that iterative methods require knowledge of 
approximate coordinates. 

Various approaches and their associated mathematical concepts upon which the 
closed-form and direct solutions of the nonlinear pseudorange equation system have been 
established and can be found in the literature, Bancroft (1985), Krause (1987), Abel and 
Chaffee ( 1991 ), Kleusberg ( 1994 ), Grafarend and Shan ( 1996). In the approaches based on 
geocentric and barycentric coordinates, Grafarend and Shan (1996), two solutions are 
produced and it has been proved there that the solution space is not unique, 
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In our considerations, all possible solution sets of nonlinear pseudorange equation 
system together with unknown complex conjugate position have been given. Position 
computation requires neither knowledge of approximate coordinates nor the speed of light, 
which must be known for pseudorange measurements and computation of the clock 
error. 

This general solution has been obtained owing to the application of the positional 
transformation (Martusewicz (2000)). Establishing all possible solution sets for any 
relations between observation stations and the satellites is especially important in space 
navigation. 

1. Pseudorange equations 

Let four pseudoranges between four satellites and the observing point P, be measured 
simultaneously. Denoting the satellites by 1, 2, 3 and 4, the components of the geocentric 
position vectors of these satellites can be written as follows l(X1, Yi,Z1), 2(X2, Y2,Z2), 

3(X3, Y3,Z3) and 4(X4, Y4,Z4), respectively. If now we denote four pseudoranges, for 
simplicity, by the symbols Pi, p2, p3 and p4, three unknown ECEF (Earth-Centered-Earth­ 
Fixed) coordinates of the point P by P(Xp, Yp, Zp) we have the following system of 
equations 

P1 = ✓(X1-Xp)2+(Y1-Yp)
2+(Z1-Zp)2 - cdt 

p2 = ✓(X2-Xp)2+(Y2-Yp)2+(Z2-Zp)2- cdt 

p3 = ✓(X3-Xp)2+(Y3-Yp)
2+(Z3-Zp)2 - cdt 

p4 = ✓(X4-Xp)2+(Y4-Yp)
2+(Z4-Zp)2 - cdt 

(1) 

where dt is the receiver clock error, and c is the speed of light. 
In order to solve this system of nonlinear equations, we put the expression p and cdt 

together on the right sides of (1), and having squared both sides, we obtain 

(X1 -Xp)2+(Y1 -Yp)2+(Z1-Zp)2 = (p1 +cdti' 
(X2-Xp)2+(Y2-Yp)2+(Z2-Zp)2 = (p2+cdr)2 
(X3-Xp)2 + (Y3- Yp)2 + (Z3-Zp)2 = (p3 + cdt)

2 

(X4-Xp)2 +(Y4-Yp)2 +(Z4-Zp)2 = (p4 + cdt)2 
(2) 

The above equations have definite geometrical interpretation. The left sides of 
equations are the squares of the distances between the satellites and the point P, and the 
right sides are the squares of sum of two distances being the differences between the 
pseudoranges and the receiver clock offset. Because the distances are independent of 
coordinate systems, or more precise, are invariants of isometric mapping, the system of 
equations does not change when we write these equations in another coordinate system. To 
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do this, we first introduce a transformation of the pseudorange equations based on the 
positional transformation, Martusewicz (2000). 

2. Transformation of pseudo range equations 

In order to transform pseudorange equations let us introduce a new a rectangular 
Cartesian coordinate system, xyz, based on satellites, which we consider as points. 
Transformation of the coordinates of the points to the new coordinate system, xyz, is carried 
out using the positional transformation. 

Let us assume that the three points, 1, 2, and 3, are not lying on the same straight line. Let 
the point 1 be the origin of the new Cartesian xyz coordinate system, the x-axis passes 
through the points 1 and 2, and the .xy-plane contains the point 3, Fig. 1. 
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Fig. I. Cartesian AYZ coordinate system 

Denoting vectors starting at point 1 and ending at point 2 and 3 by a and b respectively, 
and establishing the axis vectors of new coordinate system, for which the axes x, y, z are 
denoted by u, v, w, we write 

u=a 

v = (axb)xa 
w= axb 

(3) 

From these vectors and their modules 
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(4) 

and also unit vectors of axes XYZ system ex= [l, O, O]; ey = [O, 1, O]; e2 = [O, O, l], we 
obtain an orthogonal transformation matrix 

u~ o u~Uy 

M = Vo o V~ X Vy 
wo o wo 

X wy z

(5) 

which elements are as follows 

UO = ux o = u,, 
u~ = u, X u Uy u u 

Vo = vx o = Vy V~ = v, 
X V Vy V V 

wo = wx o = 
w,, wo = w, 

X w wy w z w 

(6) 

Finding the coordinates for any point k in xyz coordinate system, we finally have 

Xk UO o UO Mik X Uy z
Vo o 

V~ L1Ylk (7) Yk = Vy X

z, wo o wo i'.1Zlk X wy z

where Mik, L1Y1k 2'Z!k are coordinate differences between any point kand the point 1 being 
the origin of xyŹ coordinate system. 

From (7) we can determine the coordinates of the points 2, 3 and 4 in xyz system 

Xz X3 X4 UO o UO M12 M13 M14 X Uy l

o = Vo o Vo 2'Y12 L1Y13 2'Y14 (8) Y3 Y4 X Vy l

o o Z4 wo o wo 2'212 i'.1213 i'.1214 X wy l

where the coordinates y2 = z2 = z3 = O is the result of introducing the new coordinate 
system. 

Now it is possible, taking into account (8), to express the left sides of equations (2), 
which are the squares of the distances independent of coordinate system, by X;, Y;, Z;, i = 
= 1, 2, 3, 4, and Xp, yp, Zp-

Then finally we can write the equations (2) in the most suitable form 
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x2 + ? + ? (p1 + cdt)
2 v; 7- = p ~p 

(x2-Xp)2 + y~ + z~ (p2 + cdt)
2 

(X3 -Xp)2 + ()13 -yP)2 + ? (p3 + cdt)2 (9) z; = 
(X4 -Xp)2 + (y4-yP)2 +(z4-Zp)2= (p4 + cdt)

2 

where the coordinates, in .,\,)'Z system, are obtained from (8). 
In this way we have a new set of four equations which are equivalent to the starting 

equation (1). 

3. Determination of the clock error 

Now, let us consider the determination of the unknown dt. Squaring the expression 
in brackets in (9), and subtracting the first equation from the three remaining equations, 
having transformed them and taking the first equation in its original form, we finally 
write 

x~ + y; + z~ = (p1 +cdty: 
x2xp = a.cdt+ c1 

where coefficients are 

a1 =p1-P2 
a2=P1-PJ 
a3 = P1 -p4 

and 

C1 = (pi-P~+x~)/2 
C2 = (pi-P~+x~+y~)/2 
C3 = (pi-P~+xi+y~+d)/2 

(10) 

(11) 

(12) 

The last three equations, in which dt is taken as a parameter, can be written in matrix 
form 

Xp a.cdt+c, 
YP = a.cdt + c2 (13) 
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solving these equations, we have 
-I 

Xp X2 o o a.cdt+c, 

YP = X3 Y3 o a.cdt + c2 (14) 
Zp X4 Y4 Z4 G3Cdt+ C3 

where x2y3z4 -:f. O. 
The obtained results can be expressed as the function of two systems of equations 

having the same matrix of coefficients. 
Passing to the first system of equations, which unknowns are denoted by xa, Ya, Za, we 

write 
-I 

xa X2 o o QI 

Ya = X3 Y3 o Gz (15) 

Za X4 Y4 Z4 G3 

and to the second, unknowns of which are denoted by xe, Ye, Ze, we have 
-I 

X X2 o o Cl C 

Ye = X3 Y3 o Cz 

Ze X4 Y4 Z4 C3 

(16) 

where a;, C;, i= 1, 2, 3, are given by (11) and (12), respectively. 
Then, taking into account (15) and (16), equation (14) can be written in the form 

X p 

YP = cdt Ya + Ye 

Zp 

(17) 

Finding the sum of squares of the coordinates, expressed by (17), we obtain 

(18) 

where the following expressions are introduced 

A = x~+y~+z~ 

B = XaXc + YaYe + Za Ze 
C = x; +y;+z; 

(19) 

and X;, Y;, Z;, i = a, c, we get from (15) and (16), respectively. 
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If we now substitute (18) into the first equation of the system (10), we get 

Ac2dt2 + 2Bcdt + C = (p1 + cdt)2 (20) 

Before solving the above equation, (20), let us express the coefficients A, B and C 
as a function of the XYZ coordinates. In order to do that we transpose both sides of the 
equation (8) 

X2 o o M12 1'.Y12 1'.212 

X3 Y3 0 = M13 1'.Y13 1'.213 

X4 Y4 Z4 M14 1'.Yl4 1'.214 

u~ v~ w~ 
o o o 

Uy Vy Wy 

u~ v~ w~ 

(21) 

and having found the inverse of this equation, we write 

-1 

u~ u~ u~ 
= V~ V~ V~ 

w~ w~ w~ 

M12 1'.Y12 1'.212 

L1X 13 L', Y13 1',Z I 3 

M14 1'.Y14 1'.214 

-1 

(22) 

where it is taken into account that the inverse of the orthogonal matrix is equal to the 
transpose. Substituting (22) into (15), we have 

-1 
xa UO UO UO M12 1'.Y12 1'.212 QI X y z 

= Vo o Vo M13 1'.Y13 1'.213 Gz (23) Ya X Vy z 

Za wo o wo M14 1'.Y14 1'.214 03 X wy z 

Premultiplying both sides of equation (23) by the inverse of the transformation matrix and 
introducing new unknowns, which we denote by Xa, Ya, Za, we write 

-I 

(24) 

where the expressions al' a2, a3 are obtained from (11). 
By analogy, taking into account equation (16) and introducing new unknowns denoted 

by Xe, Ye, Ze, we have 
-1 

Xe M12 1'.Y12 1'.212 C1 

Ye = M13 1'.Y13 1'.213 C2 (25) 
ze M14 1'.Y14 1'.214 C3 
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where c1, c2, c3, according to (12), after introducing squares of the distances obtained from 
the difference of the coordinates given in XYZ coordinate system, we establish the 
expressions given below 

C1 = (pi-p;+hlfz +~Yfz +ó.Zfz)/2 
Cz = (pf-p~ + hl73 + ~Y73 + ó..273)/2 
C3 = (pf-p~ + hl74 + ~Y74 + ó..274)/2 

(26) 

If now we denote the distances between the satellite 1 and the satellites 2, 3, 4 bys 12, s 13, s 14, 
respectively, we write 

c1 = (pf-p~+s72)/2 
Cz= (pi-P~+s73)/2 
C3 = (p7-pi+s74)/2 

(27) 

where 

sf2 = hlf2 + ~Yi2 + ó.Zf2 
5i3 = hl73+~Y73+ó.Z73 
s74 = hl74 +~Y74 +ó..274 

(28) 

which we can obtain from the matrix (24) or (25) finding the sum of element squares of 
the first, the second, and the third row. 

Taking into account the obtained expressions Xa, Ya, Za and Xe, Ye, Ze, given by (24) and 
(25), respectively, as well as (15), (16), we can write equations being invariants of the 
orthogonal transformation 

x;+y~+z; = X~+Y~+Z~ 
xaxe + YaYe + Za Ze = XaXe + ya ye+ za ze 

x;+y;+z; = X;+ Y;+z; 
(29) 

Then, in accordance with ( 19) and (27), we have 

A= X~+ Y~+Z~ 
B = X, Xe + ya ye+ za ze 
C = X;+ Y;+Z; 

(30) 

where 
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-1
xa Xe ł..X12 LiY12 L1212 al Cl

Ya Ye = t..X13 LiY13 i'.1Z13 az Cz

za ze ł..X14 LiY14 i'.1Z14 a3 C3

19

as a result of putting together (24) and (25).
Taking into account (20) and denoting

b = cdt 

after conversion, we obtain

(31)

(32)

(33)

Note that when 1 -A i:- O we have the quadratic equation, if 1 -A= O we get linear equation.
Then we have to consider two cases.

If A -:t:- 1, the roots of the equation, (33), can be written in the form

(34)

where the discriminant of the quadratic equation

E = (p1 -B)2-(1-A)(pf-C) (35)

or in determinant form

(36)

and A, B, C are given by (30).
Taking into account (32), we write

dt = be:' (37)

then, the clock error, after substituting (34) into (37), has the form

B-pl±ń -I 
dt = 1-A c for A -:t:- 1 (38)

where E we obtain from (35) or (36).



20 Janusz Martusewic; 

If A = 1, equation (33) has the form 

(39) 

hence 

(40) 

Substituting (40) into (37), we write 

pf-C -I 

dt = 2(B-p1) C for A = 1 (41) 

which determines the clock error in case when A = 1. 
In conclusion of the above considerations we state that the clock error is the quantity 

which can be determined independently of the position of the point. 

4. Determination of the positions 

The coordinates of the point Pin xyz coordinate system, according to (7), have the form 

Xp UO o u~ t-.XIP X Uy 

V~ 
o V~ t-.YIP (42) YP = Vy 

Zp wo o wo t-.ZlP X wy z 

Premultiplying both sides of above equations by the matrix M-1, being the inverse of the 
matrix (5), we have 

-I 
i:iXIP UO o UO Xp X Uy z 

t-.YIP = V~ 
o 

V~ YP (43) Vy 

i:iZIP wo o wo Zp X wy z 

and substituting (14) into (43), we write 

-1 -1 

t-.XIP UO o UO X2 o o a.cdt+c , X Uy z 

Li y lP = Vo o 
V~ X3 Y3 o a.cdt +c2 (44) 

X Vy 

sr.; wo wo wo X4 Y4 Z4 a.cdt + c3 X y z 

Notice that as a result of premultiplying both sides of the equation (22) by the matrix 
M-1, we obtain the following expressions 
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-1 -1 -1 
UO o UO X2 o o L1X12 liY12 liZ12 X Uy z 
V~ 

o Vo X3 o = L'1X13 !iY13 liZ13 Vy z Y3 
w~ 

o wo X4 Y4 Z4 L1Xl4 liY14 liZ14 wy z 

and substituting (45) into (43), we have 
-I 

!iXIP L1X12 liY12 liZ12 a.cdt+c, 
!iYIP = L1X13 !iY13 liZ13 a.cdt+c, 
!iZIP i'1X14 liY14 liZ14 a.cdt+c; 

21 

(45) 

(46) 

Taking into account of the parameter b, (32), and considering the equations bellow 

[iXIP Xp X1 

!iYIP = Yp YI (47) 
liZ1p Zp Z1 

we get 
-1 

Xp X1 L1X12 liY12 liZ12 bcc+c, 
Yp = YI + L1X13 !iY13 liZ13 ba, + c2 (48) 
Zp Z1 L1X!4 liY14 liZ14 ba; +c3 

If we now introduce the expressions (24) and (25), the coordinates of the point P, (48), can 
be also written in the following form 

Xp X1 sx.,«, 
Yp = YI + bYa + Ye (49) 
Zp Z1 bZa -z, 

or 

Xp X1 xa Xe 
Yp = YI +b Ya + Ye (50) 
Zp Z1 za ze 

where X;, Y;, Z;, i= a, c, are obtained from (31), and b from (34) or (40). 
Note that the speed of light does not appear in the expressions X;, Y;, Z;, i= a, c, and the 

expression b, so for computation of the position of the point we do not need to know the 
speed of light. To avoid misunderstanding we should add that the speed of light is the basic 
quantity for pseudorange measurements as well as for computation of the clock error. 
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The obtained functions allow us to compute the position of the point without 
determination of the approximate coordinates. 

5. Cases of obtained positions 

The necessary condition of position determination, which is the result of finding the 
inverse of matrix, (48), has the following form 

M12 LiY12 LiZ12 
D = t..½13 LiY13 Li.213 -:f. O 

M14 LiY14 LiZ14 

(51) 

The above expression is a sixfold volume of tetrahedron which vertices are determined by 
satellites. It means in geometric terms that the satellites are not lying on the same plane. 

Irrespective of the given condition, D -:f. O, which will be not mentioned in each 
consideration of the further part of the work, there are other conditions. These conditions are 
determined by the expressions A and E. The said expressions have definite geometric 
interpretation, but it is not the subject of our study. 

Considering the problem of all solutions, we state the following. 

l. One real position 
If in the square equation, (33), coefficient l - A equals zero, then 

A= 1 (52) 

and we have one real position. 
This position is obtained as a result of substituting (40) into (48). 

2. Two real positions 
In case when 

A -:f. 1, E > O (53) 

we get two roots of the equation and therefore we have two positions. 
Note that when applying an iterative method, improper choice of the approximate 

coordinates when positions are convergent may result in a false position. 

3. A real double position 
For 

A -:f. 1, E = O (54) 

we have two equal roots of square equation. Then we obtain a real double position. 
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4. Complex conjugate positions 
If 

A i:- l, E < O (55) 

then there is no real solution of the quadratic equation and so we obtain two positions 
expressed by complex conjugate roots. Because in the determined positions there are 
complex conjugate roots, we call them complex conjugate positions. 

The fact that there are other solutions, beside the set of real numbers, indicates the 
existance of space regions in which it is not possible to establish positions in real number 
domain. This limitation has special meaning when the positions of the flying objects are 
determined, which are in any relation to navigation satellites. 

6. Numerical considerations 

We now discuss how the functions obtained as a result of the solution of pseudorange 
equations, given in literature, work in numerical computations. Bearing in mind the general 
character of considerations we take arbitrary satellite constellation. Moreover, the 
pseudorange observations are carried out from any position in relation to navigation 
satellites. 

In the examples below we use the same ephemerides only changing the quantities of 
measured pseudoranges. For computation we apply full numerical expressions, without 
approximations, which leads to absolute control of the obtained results. 

Example 1 

Geocentric coordinates of four satellites 

1(3, 4, 4), 2(5, 3, 4), 3(5, 4, 5), 4(4, 5, 4) 

and pseudoranges measured simultaneously to four GPS satellites 

P1 = 2, Pi = 3, PJ = 3, p4 = 2 

give the following pseudorange equation system 

2 = ✓(3-Xp)2+(4-Yp)2+(4-Zp)2-cdt 

3 = ✓(5-Xp)2+(3-Yp)2+(4-Zp)2-cdt 

3 = ✓(5-Xp)2+(4-Yp)2+(5-Zp)2-cdt 

2 = ✓(4-Xp)2+(5-Yp)2+(4-Zp)2-cdt 
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Compute the clock error, dt, and the coordinates P(Xp, Yp, Zp)- 

Solution 

Stating that 

M12 ~Y12 L1Z12 2 -1 o 
D = det M13 ~Y13 L1213 = det 2 o 1 = -3 -:t O 

M14 ~yl4 L1214 1 1 o 

and finding the expressions 

a1 = 2-3 = -1 
a2 = 2-3 = -1 
a3 = 2-2 = O 

Cl= (4-9+5)/2 = 0 
C2 = (4-9+5)/2 = 0 
C3 = (4-4+2)/2 = 1 

we obtain 

xa Xe 1 o 1 
1 

Ya Ye = - -1 o 2 
3 

za ze -2 3 -2 

-1 O 
-1 O 
O 1 

-1 1 
l 1 2 
3 

-1 -2 

hence 

A= X;+ Y;+z; = 1/3 
B = XaXc+ Ya Yc+zazc = 1/3 
C = X~+ Y~ + Z~ = 1 

Because A = 1/3 -::/- 1 we determine 

and state that we have two real positions, E > O. 
Then, setting coefficients of square equations, 1 -A= 2/3; 2(p1 -B) = 10/3; pf- C = 3, 

we write 

2b2+ 10b+9 = O 

thus 
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b = (-5 ±-fi)12 

what gives two solutions. 
For the first solution the clock error is 

di, = (-5 +-fi)l2c 

and the coordinates 

3 
I 

= 4 +- 
6 

4 

5--fi+2 
-5+-{i+4 
5--fi-4 

1 
6 

For the second solution, we have 

di, = (-5--fi)12c 

and the following coordinates 

I +- 
6 

5--fi+2 
-5+-{i+4 
5--fi-4 

25 --fi 
23 +-fi 
25 --fi 

25 +-fi 
= l 23 --fi 

6 
25 +-fi 

what determines the second position of the point. 

Control 

Substituting the obtained solutions into the right sides of initial equations, and 
introducing the sign of the square root, for the first solution plus and for the second minus, 
we obtain sequently 2, 3, 3, 2. Therefore, we conclude that the left and the right sides of 
equations are equal, what is the control of the solution. 

Example 2 

Geocentric coordinates of four satellites 

1(3, 4, 4), 2(5, 3, 4), 3(5, 4, 5), 4(4, 5, 4) 

and pseudorange measured simultaneously 

P, = 2, P2 = 2, P3 = 3, P4 = 2 
determine the pseudorange equations 
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2 = ✓C3-Xp)2+(4-Yp)2+(4-Zp)2-cdt 

3 = ✓(5-Xp)2+(3-Yp)2+(4-Zp)2-cdt 

3 = ✓(5-Xp)2+(4-Yp)2+(5-Zp)2-cdt 

2 = ✓(4-Xp)2+(5-Yp)2+(4-Zp)2-cdt 

Compute the clock error, dt, and the coordinates P(Xp, Yp, Zp)­ 

S o lu ti o n 

Stating that 

11X12 .6.Y12 
D = det LU'13 .6.Y13 

LU'14 .6.Y14 

.6.212 

.6.213 

.6.214 

2 -1 
= det 2 O 

l l 

o 
l = -3 i:- O 
o 

and establishing expressions 

a1 = 2-2 = Q 
a2 = 2-3 = -1 
a3=2-2=0 

Cl= (4-4+5)/2 = 5/2 
Cz= (4-9+5)/2 = 0 
C3 = (4-4+2)/2 = l 

we obtain 

x, Xe l O l 
Y Y = l -1 O 2 
a e 6 
za ze -2 3 -2 

O 5 O 7 
l -2 O - 
6 

O -1 
O 2 -6 -14 

Determining 

A=X;+Y;+Z;=l 
B = XaXc+YaYc+zazc = 7/3 
C = X2+ Y2+Z2 = 41/6 C C C 

we state that A = 1, thus we have only one real solution. 
Coefficients of linear equations are 2(p1 -B) = -2/3; p~ - C = -17 /6, then the equation 

has the form 

4b+ 17 = O 

and hence 
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b = -17/4 

For the clock error, we have 

dt = -17/4c 

and finding the coordinates, we write 

XP 3 14 50 
1 1 

Yp = 4 +- -2 = 46 
12 12 

Zp 4 23 71 

what determines the position of the point. 

Control 

Substituting the obtained unknowns into the right sides of equation, and taking the 
square root of sign minus, we obtain sequently 2, 2, 3, 2 what checks the solution. 

Example 3 

On the base of geocentric satellite coordinates 

1(3, 4, 4), 2(5, 3, 4), 3(5, 4, 5), 4(4, 5, 4) 

and pseudorange measured simultaneously 

P1 = 2, P2 = 4, P3 = 4, P4 = 2 

the following equations are obtained 

2 = ✓(3-Xp)2 + (4-Yp)2 +(4-Zp)2-cdt 

4 = ✓(5-Xp)2+(3-Yp)2+(4-Zp)2-cdt 

4 = ✓(5-Xp)2+(4-Yp)2+(5-Zp)2-cdt 

2 = ✓(4-Xp)2+(5-Yp)2+(4-Zp)2-cdt 

Compute the clock error, dt, and the coordinates P(Xp, Yp, Zp)- 
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Solution 

Stating that 

LU_" I 2 ~Y12 6.212 2 -1 o 
D = det LU."13 ~Yn 6.213 = det 2 o 1 = -3 -:t- O 

LU."14 ~yl4 6.214 1 o 
and finding the expressions 

a1 = 2-4 = -2 
a2 = 2-4 = -2 
a3 = 2-2 = O 

Cl= (4-16+5)/2 = -7/2 
Cz= (4-16+5)/2 = -7/2 
C3 = (4-4+2)/2 = 1 

we have 

1 
1 -1 = - 6 
-2 

O 1 
O 2 
3 -2 

--4 -7 --4 -5 
1 --4 -7 = 1 11 
6 

O 2 --4 -11 

hence 

A= X~+ Y~+z~ = 4/3 
B = XnXc+ Ya Yc+znzc = 3 
C = X!+ ~+Z~= 89/12 

Establishing A = 4/3 -:f:. 1, and finding determinate 

we state that there are complex conjugate positions, E < O. 
Setting coefficients of square equations, 1-A = -1/3; 2(p1 -B) = -2; p;- C = --41/12, 

we write 

4b2+24b+41 = O 
and from this 

b = (-6 ± i-VS)/2 
what gives two complex conjugate solutions. 

For the first solution the clock error is 

dt, = (-6+i-VS)!2c 



General solution of pseudorange equation system ... 29 

and the coordinates are 

x, 3 
I l 

Yp = 4 + - 
I 6 z, 4 
I 

for the second solution the clock error is 

di, = (-6- i -VS)!2c 

and the coordinates are as follows 

7 - i2-VS 
-1 + i2'VS = l 
1- i2-VS 

6 

Xp 3 7 + i2-VS 
2 l -1 -i2-VS l Yp = 4 +- = - 
2 6 

1 + i2-VS 
6 

Zp 4 
2 

25 - i2-VS 
23 + i2-VS 
25 - i2-VS 

25 + i2-VS 
23 -i2-VS 
25 + i2-VS 

what gives the solutions in complex conjugate form. 

Control 

In order to control the obtained results we substitute the found unknowns to the right 
sides of equations getting 2, 4, 4, 2. Since the control requires operations on conjugates we 
introduce this procedure in Appendix. 

8. CONCLUSIONS 

The obtained general solution of nonlinear satellite pseudorange equation system leads 
to the following conclusions. 

For computation of the position one does not need to know the speed of light, which is in 
pseudorange measurements and in computation of the clock error. 

Determination of satellite positions does not require knowledge of approximate 
coordinates of the point. 

The general solution of satellite pseudorange equations ensures getting all possible 
positions: one real position, two real positions, a real double position, and complex 
conjugate positions. 

This solution of the pseudorange equation system shows that there exist some space 
regions in which it is not possible to determine positions in the domain of real numbers. It is 
most important for objects moving in the space which can take any position in relation to 
navigation satellites. 
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Appendix. Control of Solution 

Checking of the solution of Example 3 has been given below.

The first equation

Substituting the unknowns obtained from the first solution, X; , Yp, Z; and di., into the
I I I 

first initial equation, we write

✓[3-(25-i2\f5)!6]2 + [4-(23+i2\15)!6]2 + [4-(25-i2\15)!6]2 -(-6+i\15)!2 = 

= ¼ ✓ (-7 + i2\15)2 + ( 1 -i2\f5)2 + (-1 + i2\f5)2 + (6-i\15)12 =

= ~ ✓-9-i36-y5 + (6- i\15)12 = ½ (✓-1- i4-y5 + 6-i\15)

Because (a+ib)2=a2-b2+i2ab then (-2+i-y5)2 = -l-i4-y5 and hence

½(✓-1-i4-y5 +6-i\lS) = ½(✓(-2+i\f5)2 +6-i-yS) = ½(-2+i-y5 +6-i\lS) = 2

what is identical with the left side of initial equation.

The second equation

When substituting X; , Yp , Z; and dt, into the second initial equation, we have
I I I 

✓[S-(2S-i2\f5)!6]2 + [3-(23+i2\15)!6]2 + [4-(25-i2\15)!6]2 -(-6+i\f5)!2 = 

= ¼ ✓ (s + i2-{s)2 + (-s - i2-{s)2 + (-1 + ż2-{s)2 + (6-i-{s)12 = 

= ¼✓-9-i36-y5 +(6-i\15)12 = ½(✓-1-i4-y5 +6-i\lS) =

= ½(✓(2+ż\f5)2 +6-ż-yS) = ½(-2+i-y5+6-i\15) = 4

what is the same as in the initial equation.
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The third equation

Taking XP, Yp , Z; and dt., we obtain
I I I 

✓[5 -(25 - i2-{s")16]2 + [4-(23 + i2\!5)!6] 2 + [5-(25 - i2\f5)!6] 2
- (-6 + i-{5")12 =

= ¼✓(5 +ż2-{s")2 +(1-ż2-{s")2 +(5 +ż2-{s")2 +(6-ż-{5")12 =

= ¼✓-9+i36\f5+(6-i\f5)!2 = ½(✓-1-i4\i5+6-i\i5) =

= ½(✓(2+i\i5)2 +6-i\!5) = 4

what should be expected.

The fourth equation

On the basis Xp , Yp , Zp and dt., we write
I I 1

✓[4-(2s-ż2-{s")16]2 + [5-(23+ż2-{s")16]2 + [4-(25-i2-{s")16]2
- (-6+ż-{s")12 = 

= ¼ ✓ (-1 + i2\i5)2 + (7 -i2\f5)2 + (-1 + i2\i5)2 + (6- i\15)12 = 

= ¼✓-9-i36\f5+(6-i\!5)12 = ½(✓-1-i4\i5+6-i\i5) =

= ½(✓(-2+i\i5)2 +6-i\!5) = 2

which is the desired result.
Considering the above we state that the left and the right sides of the equations are really

the same, and equals 2, 4, 4, 2, respectively.
In case of the second solution, where the unknowns are Xp , Yp , Z; and dt.; we have the

2 2 2 
same computing operations, so we do not give them here. We only state that we obtain the
same quantities, 2, 4, 4 and 2, respectively.
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Ogólne rozwiązanie układu równań pseudoodległościowych dla wyznaczania pozycji GPS

Streszczenie

W pracy podano ogólne rozwiązanie nieliniowego układu równań pseudoodległościowych dla wyznaczania
pozycji satelitarnych. Rozwiązanie otrzymano w wyniku zastosowania transformacji pozycyjnej, ustalającej
względne położenia punktów w przestrzeni trójwymiarowej.

Podane rozwiązanie pozwala na obliczanie pozycji bez znajomości prędkości światła, występującej
w pomiarach pseudoodleglości, oraz ustalania współrzędnych przybliżonych.

Ogólne rozwiązanie pozwala na otrzymywanie wszystkich możliwych pozycji, łącznie z pozycjami
w dziedzinie liczb urojonych.

Wskazano na istnienie pewnych obszarów przestrzeni w których nie można ustalić pozycji w dziedzinie liczb
rzeczywistych. Ma to szczególne znaczenie w nawigacji obiektów poruszających się w przestrzeni.

Huyiu Mapmyceeuu 

Ofiutee peurenne CHCTeMbl nceBAOAHCTaHUIIOHHblX ypaBHHeHHH AllH onpeneneuaa UOJHl{HH GPS

Pe110Me

B paóor e npencranneao oóuiee peweH1-1e Hem,rnei1HOH CHCTeMbl nceBAO)],HCTaHJ..(HOHHbIX ypaa­
HHeHHH )],J151 onpeneneuas Il03HUHH cnyrnaxa. Peureune nonyxeao B peayrn.rare npHMeHeHH51
Il03HUH0HH0H rpaHccpopMaUHH, onpenenmouief 0TH0CHTeJibH0e Il0JI0)l(eHHe nyHKT0B B rpexraepnow
npocrpaHCTBe.

Tipe)],CTaBJieHHOe peurenue naer B03M0)1(H0CTb Bbl'lHCJieHH51 Il03HUHH 6e1 3HaK0MCTBa CK0p0CTH
CBeTa, npncyrcrsyioureił B H3MepeHH51X MHHMblX paCCT051HHH, a TaIOKe 6e1 onpenenenas npH6JIH-
3HTeJJbHbIX K00p)],HHaT.

Ofiinee peureuae naer B03M0)l(H0CTb Il0JI)"leHH51 scex B03M0)1(Hb!X Il03HU11H, sr-recre C Il0311UH51MH
B o6naCTH MHHMblX •mcen.

YKaJaHO rrp11cyTCTBHe TaKl!X ofinacreił npocrpaucraa, B K0T0pbl.X 51BJI51eTC51 HeB03M0)l(Hb[M
onpezieneaue Il0311UH11 B o6JiaCTH )],eHCTBl!TeJibHblX '!11CeJI. 3TO l!MeeT oco6oe 3Ha'leHtte B HaB11rau1111
o6beKTOB )],BHra!OWHXC51 B npocrpaHCTBe.


