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General solution of pseudorange equation system for GPS positioning

In this paper the general solution of nonlinear satellite pseudorange equation system has been
given. This solution was obtained by the application of the new positional transformation
determining relations between the points in three-dimension space.

It has been proved that computation of the position does not require knowledge of the light
speed, occuring in pseudorange measurements, or determination of approximate coordinates.

The general solution allows one to obtain all possible solutions including complex conjugate
positions.

This work has also stated that there exists some space regions in which it is not possible to
determine the positions in the domain of real numbers. This is especially important in navigation of
objects moving in the space.

INTRODUCTION

Determination of the position is one of the fundamental problems in geodesy and
navigation. Position can be obtained using four pseudoranges measured simultaneously to
four GPS satellites of which ephemerides are known.

The pseudorange measurements to four satellites give, known in literature, nonlinear
satellite pseudorange equation system. In this system there are four unknowns. Three of
them are coordinates of the point and one is a clock error caused by a lack of
synchronization between GPS system time and the receiver clock.

The mathematical model is set up of nonlinear equations and the solution of this system
is carried out iteratively, Seeber (1993), Hofmann-Wellenhof, Lichtenegger and Collins
(1994), Leick (1995). 1t should be noted that iterative methods require knowledge of
approximate coordinates.

Various approaches and their associated mathematical concepts upon which the
closed-form and direct solutions of the nonlinear pseudorange equation system have been
established and can be found in the literature, Bancroft (1985), Krause (1987), Abel and
Chaffee (1991), Kleusberg (1994), Grafarend and Shan (1996). In the approaches based on
geocentric and barycentric coordinates, Grafarend and Shan (1996), two solutions are
produced and it has been proved there that the solution space is not unique.
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In our considerations, all possible solution sets of nonlinear pseudorange equation
system together with unknown complex conjugate position have been given. Position
computation requires neither knowledge of approximate coordinates nor the speed of light,
which must be known for pseudorange measurements and computation of the clock
error.

This general solution has been obtained owing to the application of the positional
transformation (Martusewicz (2000)). Establishing all possible solution sets for any
relations between observation stations and the satellites is especially important in space
navigation.

1. Pseudorange equations

Let four pseudoranges between four satellites and the observing point P, be measured
simultaneously. Denoting the satellites by 1, 2, 3 and 4, the components of the geocentric
position vectors of these satellites can be written as follows 1(X,,Y,.Z)), 2(X,,Y,.Z,),
3(X,,Y5,Zy) and 4(X,,Y,,Z,), respectively. If now we denote four pseudoranges, for
simplicity, by the symbols p,, p,, p, and p,, three unknown ECEF (Earth-Centered-Earth-
Fixed) coordinates of the point P by P(X,, Y., Z,) we have the following system of
equations

Py = X X+ (V= Y+ (Z, = Z,) — cdr
Py = N =X, + (V= Yo +(Z,— Z,) — cdt
Py = NG =X + (V= Yo P +(Z—Z,) — cdt )
Pi = NXe— X+ (Vo VoV +(Z— Zp) — cdt

where dr is the receiver clock error, and c¢ is the speed of light.
In order to solve this system of nonlinear equations, we put the expression p and cdt
together on the right sides of (1), and having squared both sides, we obtain

X, =X, + (Y, =Y. +(Z,-Z,)* = (p, + cdr)’
K= Xp) + (Yo=Yl +(Z,~ Z,)* = (py+cdi)?
X=X+ (Y=Y +(Z,-Z,)" = (py+cdr)’ ()
X=X+ (Y, = Yo )2 +(Z,— Z,)* = (p,+cdr)?

The above equations have definite geometrical interpretation. The left sides of
equations are the squares of the distances between the satellites and the point P, and the
right sides are the squares of sum of two distances being the diiferences between the
pseudoranges and the receiver clock offset. Because the distances are independent of
coordinate systems, or more precise, are invariants of isometric mapping, the system of
equations does not change when we write these equations in another coordinate system. To
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do this, we first introduce a transformation of the pseudorange equations based on the
positional transformation, Martusewicz (2000).

2. Transformation of pseudorange equations

In order to transform pseudorange equations let us introduce a new a rectangular
Cartesian coordinate system, xyz, based on satellites, which we consider as points.
Transformation of the coordinates of the points to the new coordinate system, xyz, is carried
out using the positional transformation.

Let us assume that the three points, 1, 2, and 3, are not lying on the same straight line. Let
the point 1 be the origin of the new Cartesian xyz coordinate system, the x-axis passes
through the points 1 and 2, and the xy-plane contains the point 3, Fig. 1.

= N

Fig. 1. Cartesian xyz coordinate system

Denoting vectors starting at point 1 and ending at point 2 and 3 by a and b respectively,
and establishing the axis vectors of new coordinate system, for which the axes x, y, z are
denoted by u, v, w, we write

u=a
v = (axb)xa 3)
w=axb

From these vectors and their modules
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and also unit vectors of axes XYZ system e, = [1., 0, 0]; e, = [0, 1, 0]; e, = [0, O, 1], we
obtain an orthogonal transformation matrix

which elements are as follows
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where AX,,, AY,, AZ,, are coordinate differences between any point k and the point 1 being

the origin of xyz coordinate system.

From (7) we can determine the coordinates of the points 2, 3 and 4 in xyz system

B oA x ul

_| 0
0 ¥ yi|=|V,;
0 0 gz w?

'<€o v.co Fo

<
o

(2
MO O N

w

AX12 AX13 AXl-ft
AY,, AY, A¥Y, ®)
Ale AZ13 AZM

where the coordinates y, = z, = z; = 0 is the result of introducing the new coordinate

system.

Now it is possible, taking into account (8), to express the left sides of equations (2),
which are the squares of the distances independent of coordinate system, by x;, ¥, z;» i =

=1,2, 3,4, and x;, yp, 2.

Then finally we can write the equations (2) in the most suitable form
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xp o+ yp o+ oz} = (p+cd)
(g—xa)* + Ve +  zp = (pytedt)
(x3_«\'p)2 *t 05 _}’p)z T Zfz’ = (P3+Cd[)2 )
(xy=xp)" T =) T (2,=2p) = (py+cdi)

where the coordinates, in xyz system, are obtained from (8).
In this way we have a new set of four equations which are equivalent to the starting
equation (1).

3. Determination of the clock error

Now, let us consider the determination of the unknown dr. Squaring the expression
in brackets in (9), and subtracting the first equation from the three remaining equations,
having transformed them and taking the first equation in its original form, we finally
write

X+ yp + zp = (p +cdr)
X,Xp = q,cdt+c,
X3Xp + Y3)p = a,cdt+c, (10)
X Xp + YiVp T 42p = axcdi+ ¢y

where coefficients are

a, =p,—p,;
a, = p;—ps (1D
a; =p;—pP,

and

¢, = (pi-p3+x3)/2
¢, = (Pi-pi+x3+y)I2 (12)
¢y = Pi-pi+xi+yi+z))/2

The last three equations, in which dr is taken as a parameter, can be written in matrix
form

x, 0 0]|x a,cdt+c,
X ys O]y |=]|acdt+c, (13)
Xy Yo || Zp ascdt + ¢,
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solving these equations, we have

-1

X x, 0 0 acdt+c,
Ypl=|x3 y3 0 a,cdt+c, (14)
Zp Xg Y4 2 ascdt+c,

where x,y;z, # 0.

The obtained results can be expressed as the function of two systems of equations
having the same matrix of coefficients.

Passing to the first system of equations, which unknowns are denoted by x,, y,, z,, we
write

-1

X, x, 0 0 a,
Yal=1%x y3 0 a, (15)
Z, Xy V4 2 as
and to the second, unknowns of which are denoted by x_, y_, z., we have
=)
X, x, 0 0 ci
Y. |l=1x% y; O , (16)
2. Xy Yo 2 C3

where a., ¢;, 1 = 1, 2, 3, are given by (11) and (12), respectively.
Then, taking into account (15) and (16), equation (14) can be written in the form

Xp X X,
Yp|=cdt |y, | + | . (17)
Zp 7 Z,
Finding the sum of squares of the coordinates, expressed by (17), we obtain
x}+yi+zp = Ac’dt’ +2Bcdr+C (18)

where the following expressions are introduced

A=x2+yl+z
B =xx,+y,y.+2,2 (19)

Late

C=x2+y*+22

and x,, y;, z;, I = a, ¢, we get from (15) and (16), respectively.
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If we now substitute (18) into the first equation of the system (10), we get
Ac’dt* +2Bcdt+C = (p, +cdt)’ (20)
Before solving the above equation, (20), let us express the coefficients A, B and C

as a function of the XYZ coordinates. In order to do that we transpose both sides of the
equation (8)

x, 00 AX,, AY, AZ,||uj v wh
x vy, 0|=|AX,; AY,, AZ, ug), v?, w_?, 21)
Xy Yo % AX,, AY, AZ,||u) vI W]

and having found the inverse of this equation, we write

=1 -1

x, 0 0 u) uy ud||AX, AY, AZ,
% ¥ 0| = | v_ﬁ’, vg AX,; AY,; AZ, (22)
Xy Y4 %L W?c w?, W? AX,, AY,, AZ,

where it is taken into account that the inverse of the orthogonal matrix is equal to the
transpose. Substituting (22) into (15), we have

Xa ?c ? ? AX, AY,, AZ, a;
Yo | = |V VY vL|| AKXy AYy AZg 4 (23)
2, ? ? (3 AX,, AY, AZ, a,

Premultiplying both sides of equation (23) by the inverse of the transformation matrix and
introducing new unknowns, which we denote by X, Y,, Z,, we write

-1

X, AX,, AY, AZ, a
Y, |=|AX,; AY,; AZ, a, (24)
Z, AX,, AY, AZ, as

where the expressions a,, a,, a, are obtained from (11).
By analogy, taking into account equation (16) and introducing new unknowns denoted
by X., Y., Z., we have
X AX,, AY,, AZ, G
Y. |=|AX;; AY,; AZg, %) (25)
Z AX,, AY,, AZ, Cs

C
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where c,, ¢,, ¢,, according to (12), after introducing squares of the distances obtained from
the difference of the coordinates given in XYZ coordinate system, we establish the
expressions given below

¢ = (P%_P§+AX%2+AY%2+AZ%2)/2
¢, = (Pi-pi+AX}, +AYL +AZY)/2 (26)
€3 = (pf—pi+AXf4+AYf4+AZf4)/2

If now we denote the distances between the satellite 1 and the satellites 2, 3, 4 by s,,, 5,3, 5,4,
respectively, we write

¢ = (pf—p§+sf2)/2
¢, = (pl-pi+s5h)/2 27
¢y = (pi-pi+si)/2

where

st = AXL,+AY L +AZY,
5%3 = AX%z"‘Ast'*'AZ%a (28)
st = AX}, +AY], +AZY,

which we can obtain from the matrix (24) or (25) finding the sum of element squares of
the first, the second, and the third row.
Taking into account the obtained expressions X, ¥,, Z,and X, Y, Z_, given by (24) and

(25), respectively, as well as (15), (16), we can write equations being invariants of the
orthogonal transformation

X24yiezl = X2+YE+Z2
XX, 4y Y. +2,2. =X, X +Y, Y +Z,Z (29)
X2+yi+zk = X2+Yi+Z2

Then, in accordance with (19) and (27), we have
A=X2+Yi+Z2
B=XX+Y,Y.+Z,Z (30)
C=X2+Y+Z7?

where
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-1

AX,, AY, AZ, a ¢
= | AX,; AY, AZ, a, ¢, 31
AX,, AY,, AZ, as G

N~ <
N~ X

as a result of putting together (24) and (25).
Taking into account (20) and denoting

b =cdt (32)

after conversion, we obtain
(1-AP*+2(p,-B)b+pi-C=0 (33)
Note that when 1 —A # 0 we have the quadratic equation, if 1 —A =0 we get linear equation.

Then we have to consider two cases.
If A # 1, the roots of the equation, (33), can be written in the form

_B-p,+\E

1-A (4
where the discriminant of the quadratic equation
E = (p,~B)’~(1-A)(p1-0) (35)
or in determinant form
-B 1-A
et 1
and A, B, C are given by (30).
Taking into account (32), we write
dt = bc™ (37)
then, the clock error, after substituting (34) into (37), has the form
dr = B_%jﬁc" forA #1 (38)

where E we obtain from (35) or (36).
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If A = 1, equation (33) has the form

2(p,~B)b+p?~C =0 (39)
hence
2
pi-C
Bl = 40
2B=p) “0)

Substituting (40) into (37), we write
pf—C -1
dt = ——c forA=1 41
2B-p) (1

which determines the clock error in case when A = 1.

In conclusion of the above considerations we state that the clock error is the quantity
which can be determined independently of the position of the point.

4. Determination of the positions

The coordinates of the point P in xyz coordinate system, according to (7), have the form

X, ud wd W AX,

s l=|.0 50 .0
Yo |=|Vr VU, UL||AY, (42)
Zp wy wy wi || AZ,

Premultiplying both sides of above equations by the matrix M™', being the inverse of the
matrix (5), we have

AX,, u) u) u Xp
AYp|=|v) v) 0} Vp (43)
AZ,p wy wy wh Zp
and substituting (14) into (43), we write
-1 =
AX,, S ouy x»x 00 a,cdr+c,
AYypf={v2 o8 vi| |m » O a,cdt +c, (44)
AZ,, wl ow) wh X, Vs 24| | azedt+c,

Notice that as a result of premultiplying both sides of the equation (22) by the matrix
M, we obtain the following expressions
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-1 -1 -1

W) u) ul x, 0 0 AX,, AY, AZ,
vy U_(\)- V) x; y; 0=1AX,; AY, AZ; (45)
w? w_?, w) X, V4 4 AX,, AY,, AZ,

and substituting (45) into (43), we have

-1

AX,p AX,, AY, AZ, a,cdt+c,
AYju | = | AXyy AYy AZg aycdt+c, (46)
AZ,, AX,, AY,, AZ, asedt+c,

Taking into account of the parameter b, (32), and considering the equations bellow

AX,| | X, X,
A= Bl —| E (47)
AZ,p Zp Z,

we get
-1
Xp X, AX,, AY,, AZ, ba, +c,
Y.|=|Y |+ | AX;; AY,, AZ, ba,+c, (48)
Z, Z, AX,, AY,, AZ, ba,+c,

If we now introduce the expressions (24) and (25), the coordinates of the point P, (48), can
be also written in the following form

X, X, bX, +X,
;=L |+ | DE+Y, (49)
Zs Z; bZ, +Z,
or
X, X, X, X,
Yol =|Y | +b|Y, |+ |7, (50)
Zy Z, Z, Z.

where X;, Y., Z., i = a, ¢, are obtained from (31), and b from (34) or (40).

Note that the speed of light does not appear in the expressions X, Y;, Z., i = a, ¢, and the
expression b, so for computation of the position of the point we do not need to know the
speed of light. To avoid misunderstanding we should add that the speed of light is the basic
quantity for pseudorange measurements as well as for computation of the clock error.
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The obtained functions allow us to compute the position of the point without
determination of the approximate coordinates.

5. Cases of obtained positions

The necessary condition of position determination, which is the result of finding the
inverse of matrix, (48), has the following form

AXlZ AYIZ AZlZ
D=|AX, AY, AZ,|#0 (51)
AXM AYM AZH

The above expression is a sixfold volume of tetrahedron which vertices are determined by
satellites. It means in geometric terms that the satellites are not lying on the same plane.
Irrespective of the given condition, D # 0, which will be not mentioned in each
consideration of the further part of the work, there are other conditions. These conditions are
determined by the expressions A and E. The said expressions have definite geometric
interpretation, but it is not the subject of our study.
Considering the problem of all solutions, we state the following.

1. One real position
If in the square equation, (33), coefficient 1 — A equals zero, then

A=1 (52)

and we have one real position.
This position is obtained as a result of substituting (40) into (48).

2. Two real positions
In case when

A#1l, E>0 (53)

we get two roots of the equation and therefore we have two positions.
Note that when applying an iterative method, improper choice of the approximate
coordinates when positions are convergent may result in a false position.

3. A real double position
For

A#1l, E=0 (54)

we have two equal roots of square equation. Then we obtain a real double position.
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4. Complex conjugate positions
If

A#1l, E<O0 (55)

then there is no real solution of the quadratic equation and so we obtain two positions
expressed by complex conjugate roots. Because in the determined positions there are
complex conjugate roots, we call them complex conjugate positions.

The fact that there are other solutions, beside the set of real numbers, indicates the
existance of space regions in which it is not possible to establish positions in real number
domain. This limitation has special meaning when the positions of the flying objects are
determined, which are in any relation to navigation satellites.

6. Numerical considerations

We now discuss how the functions obtained as a result of the solution of pseudorange
equations, given in literature, work in numerical computations. Bearing in mind the general
character of considerations we take arbitrary satellite constellation. Moreover, the
pseudorange observations are carried out from any position in relation to navigation
satellites.

In the examples below we use the same ephemerides only changing the quantities of
measured pseudoranges. For computation we apply full numerical expressions, without
approximations, which leads to absolute control of the obtained results.

Example 1

Geocentric coordinates of four satellites
13,4, 4), 2(5,3,4), 3(5.4,5), 44,54
and pseudoranges measured simultaneously to four GPS satellites
=2 =3 py=3 p;=2

give the following pseudorange equation system

2=NG-X) +@-Y,) +(4—-Z,) —cdt
3=NG-X)+B-Y, P +(@—-Z,) —cdt
3= Y- P AP+ (5 T —cd
i N — Y (5= B + =T — it
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Compute the clock error, dr, and the coordinates P(X,, Y,, Z,).
Solution

Stating that

AX, AY, AZ, 2 -1 0
D=det|AX,, AY, AZ,|=det|2 0 1|=-3%0
AX,, AY,, AZ, 1 10

and finding the expressions

a,=2-3=-1 ¢, =(4-9+5)/2=0
a,=2-3=-1 ¢,=(4-9+5)/2=0
a,=2-2= 0 ¢ =(4-4+2)/2=1

we obtain
X, X, 1 0 11(|-1 O -1 1
Y, Y, =% -1 0 2||-1 O :% 1 2
Z, Z -2 3 2 0 1 -1 -2
hence

A=X+Y+Z:=1/3
B=XX+Y,Y.+Z,Z =1/3
C=X+Y+Z:=

Because A = 1/3 # 1 we determine

-B 1-A
E:)pl I_

pi—C p—B|
and state that we have two real positions, £ > 0.

Then, setting coefficients of square equations, 1 —A =2/3; 2(p, - B) = 10/3; p?-C=3,
we write

20 +10b+9 =0

thus
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b=(-5+7)/2

what gives two solutions.
For the first solution the clock error is

dr, = (-5++7)/2¢

and the coordinates

A NEIE 5-7+2 : 257
Yo | = |4 | *5 —5++[7+4 = 23 447
Z 4 5-\7-4 25 7

For the second solution, we have
di, = (-5-+/7)/2¢

and the following coordinates

% 3 5-7+2 25+47
Y, |=|4 +é —5+7+4 =é 23 47
zZ, 4 Y 25+4/7

what determines the second position of the point.
Control

Substituting the obtained solutions into the right sides of initial equations, and
introducing the sign of the square root, for the first solution plus and for the second minus,
we obtain sequently 2, 3, 3, 2. Therefore, we conclude that the left and the right sides of
equations are equal, what is the control of the solution.

Example 2
Geocentric coordinates of four satellites
13, 4.4), 25,3, 4), 3(54,5), 44,54
and pseudorange measured simultaneously
=2 p,=2, p;=3 p,=2

determine the pseudorange equations



26 Janusz Martusewicz

2 = -+ BT+l -2 —edr
3=NG-X)+B-Y,)+(4 -2 —cdt
3 = W1 - A PP (S ) —eds
2 = VA=X 2+ (5= Yo +(4 -Z ) —cdt

Compute the clock error, dt, and the coordinates P(X,, Yy, Z,).
Solution

Stating that

AX,, AY,, AZ, 3 =1 §
D=det|AX,, AY,; AZ,|=det|2 0 1|=-3%0
AX,, AY,, AZ, 1 10

and establishing expressions

a,=2-2=0 ¢, = (4-4+5)/2 =52
a,=2-3=-1 ¢,=(@4-9+5)/2=0
a,=2-2=0 = (@4-4+2)/2=1

we obtain
X, X, q 1 0 0 5 { 0 7
Y, Y. |= P -1 0 2|2 0 G 0 -1
Z, Z -2 3 =2 0 2 -6 14
Determining

A=X:+Y+Z2=1
B=XX+Y,Y +Z,Z =1/3
C=X2+Y:+Z2=41/6
we state that A = 1, thus we have only one real solution.
Coefficients of linear equations are 2(p, — B) = —2/3; pi—C = -17/6, then the equation

has the form

4b+17 =0

and hence
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b=-17/4
For the clock error, we have
dt = -17/4¢
and finding the coordinates, we write
X, 3 i 14 i 50
Yo|=14|+—=|-2|=-=% |46
12 12

Z, 4 23 71

what determines the position of the point.

Control

Substituting the obtained unknowns into the right sides of equation, and taking the

square root of sign minus, we obtain sequently 2, 2, 3, 2 what checks the solution.

Example 3

On the base of geocentric satellite coordinates

13,4, 4), 2(5,3,4), 3(5.4,5), 44,5 4)

and pseudorange measured simultaneously

pn=2 p,=4 p;=4 p=2

the following equations are obtained

2= VB—XP +(d—Y P + B —Z ) —cdf
4 =YX+ [B— T + B2t
4 = Y(5—KP + [4— B + (5 — B P—cdr
2 =N@=X) +(5-Y,) +(4—2Z,) —cdt

Compute the clock error, dr, and the coordinates P(X,, Y,, Z,).
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Solution

Stating that

AX,, AY, AZ, 2 -1 0
D=det|AX,, AY, AZ,|=det[2 0 1|=-3%0
AX,, AY, AZ, 1 10

and finding the expressions

a,=2-4=-2 ¢, =@4-16+5)/2=-7/2
a,=2-4=-2  ¢,=(4-16+5)/12=-7/2
a;=2-2=0 o =(@4-4+2)/2=1

we have
X, X, 1 0 1|4 -7 i -4 -5
Y, Y. |= é -1 0 2|4 -7 :6 1 1
Z, Z. -2 3 2 0o 2 -4 -11
hence

A=X4YI+Z:=4/3
B=XX+Y Y +27Z =3
C=X+Y!+Z=89/12

Establishing A = 4/3 # 1, and finding determinate

<0

Ez}pl—B 1—A‘_ 1.12 4.: 5

pi-C p—-B| 12|41 12| 3

we state that there are complex conjugate positions, £ < 0.
Setting coefficients of square equations, 1-A = —1/3; 2(p,-B) = -2; pi—C = 41/12,
we write

4b*+24b+41 =0
and from this

b=(-6+iV5)/2

what gives two complex conjugate solutions.
For the first solution the clock error is

dr, = (-6 +iV5)/2¢
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and the coordinates are

X, 30| 7 i2/5 L ]25- 25
Vo |=|4|*g —1+i245 =2 23+i2V5
Z, 4 1-i245 25245

for the second solution the clock error is
di, = (-6-i~5)/2¢

and the coordinates are as follows

X, 3 7+i25 25+i25
Y |=|a|+2|1-i2v5| =1 | 23-1245
2 6 . 6 .
z, 4 1+24/5 25+i2V5

what gives the solutions in complex conjugate form.

Control

In order to control the obtained results we substitute the found unknowns to the right
sides of equations getting 2, 4, 4, 2. Since the control requires operations on conjugates we
introduce this procedure in Appendix.

8. CONCLUSIONS

The obtained general solution of nonlinear satellite pseudorange equation system leads
to the following conclusions.

For computation of the position one does not need to know the speed of light, which is in
pseudorange measurements and in computation of the clock error.

Determination of satellite positions does not require knowledge of approximate
coordinates of the point.

The general solution of satellite pseudorange equations ensures getting all possible
positions: one real position, two real positions, a real double position, and complex
conjugate positions.

This solution of the pseudorange equation system shows that there exist some space
regions in which it is not possible to determine positions in the domain of real numbers. It is
most important for objects moving in the space which can take any position in relation to
navigation satellites.
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Appendix. Control of Solution

Checking of the solution of Example 3 has been given below
The first equation

Substituting the unknowns obtained from the first solution, Xp» Yp» Zp and dry, into the

first initial equation, we write

\[3-(25-12v3)/6])* + [4- (23 +i2y5)/6]" + [4-(25-i2V5)/6]* = (<6 +i5)/2 =

G a3+ (g3 + (1 23 + (632 =

= §\-9-36v5 +(6- W)r2 = 3 (\1-iav5 +6-iv5)

Because (a+ib)?=a?—b>+i2ab then (-2 +i\5)* = —1 —i4/5 and hence

%(Mm-z\ﬁ) =%(\/(-—z:\/§_)2+6-i\/§) = %(—2+i\/§+6—i\/§) =2

what is identical with the left side of initial equation.

The second equation

When substituting X o Yoo Z and dr, into the second initial equation, we have

\[5-(25-2v3)/6]* + [3-(23+i2y5)/6]* + [4—(25—i25)/6]* - (c6+iV5)/2 =

= é\/(s +i25)" + (=5 i2v/5)" + (-1 +i2v5)* + (6-1/5)/2 =
= 2\-9-136y5+(6-y5)/2 = %(\/—1—i4\/§+6—i\/§) -
=5 (V@+iV5) +6-iv5) = L (2+ W5 +6-1V5) =

what is the same as in the initial equation.
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The third equation

Taking X,,l, Y,,l, ZP1 and dr,, we obtain

\/[5—(25—1‘2\/5)/6]2 + [4-(23+i245)/6]" + [5-(25-i2/5)/6]" - (-6 +i\3)/2 =

= é\/(S +i245) 4 (1-1245)" + (5 +i24/5)* + (6 -i/5)/2 =
= é\/—9+i36\/§+(6—i\/§)/2 = %(\/_1_,-4\/3%_1\/5) =
=%(\/(2+i\/§)2+6—i\/§) =4

what should be expected.
The fourth equation

On the basis Xp» Yo, Zp, and dt,, we write

V[4-(25-2v5)/6] + [5- (23 +i2y5)16]" + [4—(25-i25)/6]" - (~6+i/5)/2 =

= é\/(—l +i2y5) +(7-i2y5)" + (-1 +24/5)" +(6 - i/5)/2 =
V-9-i36\5+(6-i5)/2 = %(\/—1—i4\/§+6—i\/§) =
= %(\/(—2+i\/§)2+6—i\/§) =2

which is the desired result.

Considering the above we state that the left and the right sides of the equations are really
the same, and equals 2, 4, 4, 2, respectively.

In case of the second solution, where the unknowns are X Py ¥ Py Z,,,2 and dt,, we have the
same computing operations, so we do not give them here. We only state that we obtain the
same quantities, 2, 4, 4 and 2, respectively.

AN
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Ogolne rozwiazanie ukladu rownan pseudoodlegloéciowych dla wyznaczania pozycji GPS

Streszczenie

W pracy podano ogélne rozwiazanie nieliniowego ukiadu réwnan pseudoodlegtosciowych dla wyznaczania
pozycji satelitarnych. Rozwiagzanie otrzymano w wyniku zastosowania transformacji pozycyjnej, ustalajacej
wzgledne polozenia punktdw w przestrzeni tréjwymiarowe;.

Podane rozwiazanie pozwala na obliczanie pozycji bez znajomo$ci predkosci Swiatla, wystepujacej
w pomiarach pseudoodlegiosci, oraz ustalania wsp6irzednych przyblizonych.

Ogodlne rozwiazanie pozwala na otrzymywanie wszystkich mozliwych pozycji, lacznie z pozycjami
w dziedzinie liczb urojonych.

Wskazano na istnienie pewnych obszaréw przestrzeni w ktérych nie mozna ustali¢ pozycji w dziedzinie liczb
rzeczywistych. Ma to szczegdlne znaczenie w nawigacji obiektéw poruszajacych si¢ w przestrzeni.

Anyw Mapmycesuu

OGuree pemeHHe CHCTEMBI MCEBIOAMCTAHIMOHHBIX YPABHHEHHH iA onpefenenus mo3unuu GPS

PeszomMme

B pabote npenacraBiaeHO ofliee pelIeHHE HEJIMHEHHOH CHCTEMBl NMCEBAOJMCTAHUHMOHHBIX ypaB-
HUEHHH [7s1 ONpelesieHHs TNO3MUMM CIyTHUKA. PelleHue INOMy4eHO B pe3yNbTaTe NPHMEHEHHs
MO3ULHOHHOH TpaHChOpMaLUH, ONPEAEIIAIOMEH OTHOCHTEILHOE NOJIOXEHHE MYHKTOB B TPEXMEPHOM
[POCTPaHCTBeE.

IlpencraBieHHOe pelIeHHE OAET BO3MOXHOCTL BBLIYMCIEHHMS NO3MLMM 6€3 3HAKOMCTBa CKOPOCTH
CBEeTa, MPUCYTCTBYIOLIEH B U3MEPEHHSIX MHHMMBIX DAacCTOsHHH, a Takxe 0Oe3 ompeneneHUs NpHOIH-
3UTEJIbHBIX KOOPAHHAT.

Of1ee peueHye NaET BOZMOXHOCTD ITOTYy4€HUS BCEX BO3MOXHBIX MO3HLUHH, BMECTE C MO3ULHUSIMHU
B 001aCTH MHHUMBIX YHCEJL.

VYKa3aHO NpPUCYTCTBHE TakHX 00JIacTeH NpOCTPAaHCTBA, B KOTOPBLIX ABJISETCS HEBO3MOXHBLIM
omnpeaesieH|e MO3UUKMU B 007aCTH NEHCTBUTENLHLIX YHCEN. DTO HMeEET 0co060e 3HaYeHHE B HAaBUTaLUU
OOBEKTOB ABHUIAIOLIMXCA B MPOCTPAHCTBE.



