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A model of deformation of a rock mass with respect to relations
of a subsidence coefficient and a time co-ordinate and spatial co-ordinates

According to analyses of results of surveying measurements, description of undefined
subsidence, performed with the use of S. Knothe’s model is characterised by the sufficient coherence
with results of measurements since the moment when the full subsiding trough becomes visible on the
terrain surface. Lower coherence with results of measurements appears in the initial period after
commencement of exploitation. In order to improve the quality of description within the initial phase of
subsidence, a mathematical model has been developed, which is based on relations between the
coefficient of the velocity of subsidence and the time co-ordinate, and from geometric co-ordinates.
Obtained solutions have been verified basing on results of surveying measurements, with the use of a
special computer software.
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Lists of symbols

— the roof control factor

— tangent of an angle of the range of basic influences

— exploitation periphery

— momentary subsidence

— the final subsidence

— the time interval, when momentary subsidence assumes values, which
are practically equal to asymptotic values

— the spatial co-ordinate, x& R

— the time variable

— the starting moment of the process

— the integration permanent

— the coefficient of subsidence velocity

— the area of deformation
— the edge of the area of deformation
— the function of the edge of the area of deformation

— subsidence conformed by measurements (symbols on drawings)

— asymptotic (final) subsidence confirmed by measurements (symbols on
drawings)

— calculated subsidence (symbols on drawings)
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wo stat — calculated asymptotic subsidence (symbols on drawings)
P; — a set of points

INTRODUCTION

The solution concerning calculation of momentary deformations of a rock mass, which is
mostly applied in Poland, is the proposal [2], which is based on a differential equation,
expressing the velocity of subsidence of a point located above an area of mining exploitation:

dw
E=C'(Wk(t)—wl) ¢!

where:
wy(t) — the final (asymptotic) value of subsidence
w, —a momentary value of subsidence
¢ — a factor of subsidence velocity (time) of a permanent value.

Obviously, due to the progress of exploitation, the asymptotic value of subsidence
changes in time (a continuous model). This results in considerable complications of the solution
of the equation (1). Therefore, for practical purposes, it is very convenient to assume that the
sufficiently small background field has been assumed. Then, it may be also assumed that
exploitation has been performed for the time approaching zero; this considerably simplifies the
solution, since w; = const. may be assumed. For such assumption, the solution of the equation
(1) is obtained in the following form (the initial condition w(0) = 0 is met):

w,=w, -(1-e™) )

For the real mining exploitation the excavated field may be divided into elementary belts,
for which momentary subsidence is calculated basing on the formula (2). Then, the total value
of subsidence is calculated by adding subsidence calculated for particular elementary belts,
selected for the given time horizon. It is the, so-called, discrete model, which is also presented
in [2].

The equation (1) was the base for further investigations concerning mathematical
description of the deformation process in time [1]. In order to make the quality of description
close to results of surveying measurements, many scientists have proposed introduction of the
function of time variable instead of the coefficient of subsidence velocity [3], [4], [9]. Another
solution used for the similar purpose is the proposal specified in [5], which consists of
distinguishing of four phases of the subsidence process, for which calculations are performed in
a separate way. Own investigations [7], [8] point that the coefficient of subsidence velocity c is
not characterised by constant values within the time of the deformation process. This is
confirmed by the above works, as well as in the, so-called, adaptation model [6], which
assumes the constancy of the parameter between measurement cycles and step changes of its
value at the moment of measurements.
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1. Examples of analysis of results of measurements basing on a model
which assumes the constancy of the ¢ parametr

In order to present the consistency of S. Knothe’s model with results of measurements,
examples of calculations of undetermined subsidence have been performed (the, so-called, re-
forecast). As an example, analysis of results of surveying measurements performed within the
area of the “Czeczott” Coal Mine has been performed. Exploitation was performed in a rock
mass, which was not disarranged by mining activities, at the depth of 500 m, by means of the
wall system with fall of roof at the height of 2.7 m. Measurements (technical levelling) were
performed for earth benchmarks, stabilised at the depth of about 1.5 m; the average interval
between benchmarks equalled to 30 m. Accuracy of measurements equalled to 1 cm per 1 km.
The time interval between measurements was 14 days.

Basing on determined subsidence values of parameters of S.Knothe’s theory were
determined:

— the coefficient of roof control a = 0.33 (small width of an excavated field comparing to
the radius of the range of influence),

— tangent of the angle of range of the basic influence tgf = 2.2.

Then, the value of the subsidence velocity coefficient ¢ was measured by means of the
gradient-free Powell method basing on subsidence resulting from measurements for particular
points located over cavings. Then calculations of values of subsidence for time horizons, which
corresponded to successive measurements, for the value of the parameter ¢ = 6.57 [1/year]
specified basing on results of measurements, were performed. Figure 1 presents diagrams of
subsidence confirmed by measurements and calculated in successive cycles. The symbol wrz
marks subsidence confirmed by measurements, and wo — calculated subsidence. Numbers place
after the symbols marks the number of the measuring cycle. Asymptotic subsidence is
additionally marked by the “stat” symbol.

It should be stressed, that the exploitation borders d have not been considered in
calculations. It was assumed that although the consistency of calculations with results of
measurements is improved after introduction of this additional parameter, but it is not formally
justified, particularly in the case of calculations of momentary subsidence. Figure 2 presents
values of proportional errors of subsidence obtained in successive cycles.

Basing on analysis of calculations (Fig. 1 and 2) it may be noticed that for the first two
measuring cycles the consistency between results of calculations with results of measurements
is very low. Deeper consideration of this issue results in the conclusion that kinematics of the
process should be different in the initial phase of the deformation process (the start-up period of
the wall) and it should change in the period of causing the complete fall of roof. Considering
this it may be concluded that, in order to increase the consistency between calculations and
results of measurements, the value of the parameter ¢ should vary following the progress of
works, i.e. it should vary in time. This requires appropriate assumption in the initial
equation (1).

2. Assumption concerning the ¢ variability in time

Current works aiming at making the description of momentary values of post-exploitation
subsidence of the rock mass closer to results of measurements, consisted mainly of introduction
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Fig. 1. Comparison of measured and calculated subsidence with the constant value of the time factor ¢
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of some functions instead of the constant coefficient ¢. The form of such functions in the
equation (1) or in its solution (2) was assumed in advance, with the constraints concerning the
initial and the final conditions. The considerable progress in digital processing, which is taking
place recently, was the reason of a slightly different approach to the problem — the variability of
the parameter ¢ in time may be assumed at the very beginning in the equation (1) and then
identification of the parameter basing on results of measurements may be performed. At the
final stage of investigations a function may be sought which would be the best approximation
of the obtained distribution of the parameter, what will allow to apply the model in practice.

Modification of the equation (1), which is based on the assumption that ¢ = ¢(z) leads to the
following relations for the discrete model (wy(#;, x) = const.):

—fe(t)adr

w(t,x) =w,(t,,x)+Ce 3)

where:
w(t,x) — momentary subsidence,
wi(t,x) — final subsidence,

1, — time, for which momentary subsidence assumes values, which are practically

equal to asymptotic values,
x — the spatial co-ordinate, xe R?,

C, — the constant of integration, which value was assumed as C,= 1 for

simplification of further considerations.

3. Verification of the proposed solution

For the needs of verification of the obtained formula (3) the discrete algorithm of
calculation of momentary subsidence has been used.

As a consequence of application in calculations a formula, which considers the variability
of the coefficient c¢ in time, was the achievement of an independent value of this parameter only
for the first cycle of observations, performed for the measuring line. Values of the parameter c,
determined basing on subsidence confirmed by measurements in successive cycles depended
on values specified in all preceding cycles, according to the proposed solution. This required
numerical calculation of the integral, which appears in the formula (3); therefore its values was
calculated by means of Simpson formula. Processes of subsidence, confirmed by measurements
and calculated, are presented in Fig.3 (symbols are the same as in Fig.1). Figure 4 presents
values of the parameter ¢ = J¢(z)dt obtained as a result of optimisation and proportional errors of
subsidence for the same results of optimisation and proportional errors of subsidence for the
same results of measurement as in the previous case, presented in Fig.2.

Obtained values of the parameter ¢, were approximated by the following function:

t
d = 6.35tg h(——~1.18),[1/ 4
Jeds B gy IO yed ()

where: f — time [days],
for the value of the coefficient of multiple correlation R = 0.992. Figure 4 also presents values
of ¢, calculated basing on the equation (4).



-300

-400

w [mm]

-500

-600

-700

-800

100 200

900 1000

49 'point no.

—&— wrz 1
—— wrz 2
—a— Wz 3
—e— wz 4
—*— wz 5

—¥— Wrz 6

—wWz7 e

—wrzstat - =

BN X

/
/
y

| 1

Fig. 3. Comparison of measured and calculated subsidence, with the assumption ¢ = ¢(t)



c. [1/year]

—a— values determined basing on results of surveying
measurements

values calculated with the use of the empirical relation

50 100 150 200 time [days] 250

Fig. 4. Comparison of ¢, values determined basing on measurements and calculated according to the proposed empirical formula (4)



A model of deformation of a rock mass... 83

4. Relation between the coefficient of and spatial co-ordinates and time co-ordinates

It results from performed analysis that the value of the coefficient ¢ depends on the time
co-ordinate as well as on geometric co-ordinates of the discussed point.

Considering this, the standard equation used for description of undetermined subsidence
by S.Knothe [2] may be modified in the following way:

DD _ (1)~ ) ”
dt

where:
¢ is a function (z;x); ¢ = c(t,x),
1 — time, for which momentary subsidence assumes values, which are practically equal
to asymptotic values,
wi(t, x) — the final value of subsidence. Further consideration were performed for wy(f;,x) =
const. (the discrete model).
x — spatial co-ordinates, xe R

The equation (5) may be also written as the partial differential equation of the first order:

ow
-aT(t, x) =c(t,x)[w, (¢, ,x) —w(t,x)] (6)
The equation of characteristics has the form:
dw
c(t,x)dt = —— @)

w,(t,X)—w
By integration of the equation (7), the following formula is obtained:
Tinew(t,x) = w, (¢, ,x)) + [ et x)dt |= 0 @®)

where: I" — a function, which meets some initial conditions.

Introduction of the function /" is connected with the necessity to specify the borders of the
area of deformations; without such specification the mathematical model would e incomplete.
This issue is reviewed in more details in further parts of the elaboration. After solution of the
equation (8) the following formula is obtained:

W(t, X) = Wk (tk ,X) o Cle“jc(t..r)dt o

for C, = const. >0.

As a result of analysis of the equation (9) the following comments may be noticed:
We expect that for the time ¢ - f; the condition w(t,x) = wi(t,x) will occur. Therefore the
following relation must occur:

fc(t,x)dtﬁ o (10)
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Specification of the initial condition leads to the following relation, for r = 0:

w(0,x) =w,(¢,,x)+ Cle_jr("x)mzo (11)

Assuming the starting point of the process as the initial condition (i.e. lack of depression), i.e.
w(0,x) = 0, the following relation is obtained:

w, (fk i .X') — _Cle—j':(t,x)dz/tzl) (12)

Basing on the equation (12) ¢(0,x) should be determined with the use of the relation:
Infw, (2,,%) |~ InC, ==[c(s.x)ddl,_, (13)
It should be explicitly stressed, that the relation (13) is not sufficiently physically
justified, since the issue of the border of the area of deformation (the issue related to the border

of the trough in the plane x = {x', x*}), for which the following relations may be written with
the use of Fig.5, has not been considered:

w(tx) = 0 for x = O(2)
w(0,x) =0fort=0 (14)
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Fig. 5. Area of the deformation edge in the plane x = {xi, x;} for the moments r and #

The function ®(r) describes the motion of the border of the area of deformation — Fig.6.
Therefore the relation (14) is useful for determination of the function ¢(0,x), which would be
carried by the point x = 0 at the moment ¢ = 0. Since we cannot talk about a function in a point,
so this leads to inconsistency with the formula (12). So the analysis of the initial issue would
lead to a paradox.

In this context analysis of variability of the parameter c=c(#,x) should lead to a conclusion
that the starting moment of the process t, = > 0. For this assumption the carrier of the initial
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o (1)

Fig. 6. Function of the edge of the deformation area

condition is not the point x = 0 but a certain spatial area W x (¢,), where the initial condition is
reasonable for ¢ =1¢,, so: ‘

Infw, (2,, )| ~InC, = [ e(z,, %)t (15)

So, the solution (9) must meet the initial condition (15) within a certain area 2 N {z,}# and
for the areas which is assigned in this way (for ¢ > f,) identification of c(f,x) should be
performed basing on results of surveying measurements. However, the problem arises which is
related to consideration of the edge of the trough, which delimits the area where the equation
(9) occurs. Let us consider the problem from the formal point of view, in order to obtain the
description of the fact that some points are not involved in the process of subsidence of the
medium, before it crosses the edge of the trough. Analysing the process of decrease of points of
the medium for times ¢ > ¢, we should consider that the area of the trough belongs to the certain
set, which is delimited by the edge 0. The edge may be determined by the function ®(z).
Therefore, for ¢ > ¢, some points are included in the area 2, and other points are not included
within this area. So, in the vicinities of the edge 09, we have the set of points P; € 2 N {t},
the edge P; € Q2 M {1,} (the logical product of the area £2 and the moment £,). Some points P; at
the moment 7 > £, will be included in the set 2 N {r}, for which |w(z,x)| > 0. So, at the moment
t,, Pi esupp (w M1, {t}). Therefore, determination of the starting parameter c(t,x) for points P;
is not possible (besides, there is no need for such determination, since points are located outside
the area of deformation). So (due to obvious reasons), the process of identification will be
related to the limited area £ = supp(w M {;}) for successive t;, for which successive points P;
will be included within the area of deformation, so they will become elements of the set P,

5. Verification of the presented description basing on results of surveying measurements
Verification of obtained solution has been performed for the same results of

measurements, which were used previously. Values of the parameter ¢ have been determined in
accordance to the formula described by the equation (9), assuming C; = 1. In order to make the
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parameter ¢ as a variable of geometric co-ordinates, the observation line has been divided into
three sections for each cycle:

1) c(x1,t) when x ¢ P,

2) c(x,t) when x is located in the permanent edge of the mining field,

3) c(x3,¢) when € P,
where: P — the mining field.

Considering, that n = 7 measurement cycles were analysed, the matrix ¢;; was obtained
for a line, where: k= 1,2,3 and i=1,2, ..., 7.

For a measurement line, divided onto three sections, according to the above method,
identification of the parameter value was performed basing on subsidence, stated for each
measurement cycle, by means of the same computer software, which was previously used.
Results of calculations are presented in Fig. 7, with the use of the same symbols, which are
used in Fig. 1 and 3. Values of proportional errors of calculated subsidence are presented in
Fig. 2.

CONCLUSIONS

This paper presents an original way of analysing the issue related to variability of the
coefficient ¢, which occurs in the equation proposed by S. Knothe: first, as the variable of the
time co-ordinate and then of geometric co-ordinates. Performed analyses enable to formulate
the following conclusions:

1. In order to achieve the high consistency of calculations with results of measurements, the
parameter, which describes kinematics of the process of deformation, should assume values
changing in time. This is confirmed in works of other authors: [3], [4], [9]. Assumptions
accepted in the presented work are also conformed by values of proportional errors of
calculated subsidence, presented in Fig.2.

2. The above presented approach to the investigated issue, which consists of assumption of
variability of ¢ = ¢(¢) in the initial equation, has the general form. Due to assumption of a
discrete model for the needs of description of the process of subsidence in time, the applied
method of analysis, consisting of numerical calculation of an integral, which occurs in the
equation (3), allows to obtain the most general form of variability of the parameter. The
achieved variability may be the subject of furthér statistical investigations. With the assumption
of the discrete model, any form of relations may not be directly visible. One of possible
functions, which approximate distribution of the parameter Jc(f)dr is the function
tgh — formula (4).

3. Assumed division of a line onto sections, in the course of verification of a model with
the parameter ¢ (¢ = c(t,x), as a function of time and geometric co-ordinates, resulted from
conditions related to earlier investigations. It seems obvious, that arbitrary — even 100% -
quality of projection may be obtained, with identification of the ¢ value in every point. It is
obvious, that assuming division of a line into three sections, a non-smooth curve of subsidence
has been obtained. However, the aim of presented analyses was to prove the correctness of an
idea concerning the dependence of the parameter from geometric co-ordinates and the time co-
ordinate, what has been achieved.
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Model deformacji gérotworu uwzgledniajacy zaleznos¢ wspoélczynnika predkosci osiadania
od wspolrzednej czasowej i wspélrzednych przestrzennych

Streszezenie

Analizy wynikow pomiaréw geodezyjnych wskazuja, ze opis osiadan nieustalonych przy zastosowaniu modelu S.
Knothego charakteryzuje si¢ dostateczng zgodnoscia z wynikami pomiaréw od momentu ujawnienia sk na
powierzchni terenu peinej niecki osiadania. Mniejsza zgodno¢ z wynikami pomiaréw wystepuje natomiast w
poczatkowym okresie po rozpoczgciu eksploatacji. W celu zwigkszenia jakosci opisu w poczatkowej fazie procesu
osiadania, opracowano model matematyczny, ktorego istof jest uzmiennienie wspotczynnika predkosci osiadania od
wspotrzednej czasowej, a nastgpnie rowniez od wspoirzgdnych geometrycznych. Otrzymane rozwizanie poddano
weryfikacji w oparciu o wyniki pomiaréw geodezyjnych przy zastosowaniu specjalnie opracowanego oprogramowania
komputerowego.
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ITémp Cmwankoscku

Moaenb nedopMaLnii TOPHLIX MOPOA € Y4ETOM 3aBHCHMOCTH KO3 HIHEHTa CKOPOCTH
ocelaHHs OT KOOPAMHATHLI BPEMEHH M NPOCTPAHCTBEHHBIX KOOPAHHAT

PeswomMme

AHanu3 pesyJbTaTOB TFeOAS3HYECKHX H3MEPEHHH TM0Ka3blBAET, YTO ONMHMCAHHE OCENAaHMH, HEONpPEeNEeNEHHBIX C
npumuenvem Mozenn C. KHoTe, OTIHMYAeTCs yNOBJNETBOPHTENbHBIM COOTBETCTBHEM pe3yJibTaTaM H3MEpPEHHH C
MOMEHTa OOHapyKeHHs OCaJKOB Ha MOBEPXHOCTH MECTHOCTH I[OJHOH Mynbjbl. bonee HM3KOe COBNELEHHE C
pe3ynbTaTaMH HM3MHEPEHHH MPOHCXOAMT B TNEPBOHAYalNbHOM MEPHOAE, NOCHe Hayama sSkcrayarauud. C uensto
TOBBILICHHS KayecTBa ONMCAHMs NpOLEecca OCeNaHHs B HauansHOH (aze, paspaboTaHa MaTreMaTHUYECKas MOJENb, CYTh
KOTOpO# 3TO ONpene/eHHe 3aBHCHMOCTH KOI((HUHEHTa CKOPOCTH OCENaHHs OT KOOPAMHAThl BPEMEHH, a 3aT€M OT
reOMETPHYECKHX KOOpAHHAT. [Toy4eHHOE pellieHHEe TPOBEPEHO Ha OCHOBE Pe3yJIbTATOB €0AE3HYECKHX H3MEPEHHH C
PHMEHEHHEM CNIELAILHO Pa3paboTaHHO BHIYMCIUTENLHOH NIPOrpaMMBl.



