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Mathematical modelling of post-mining dislocations kinetics 
as a quasi-random process* 

The paper presents the problem of determination of one- and multi-stage prognosis of 
post-mining surface dislocations. The finite and chronologically ordered vector of geodetic surveys 
is the describing variable herein. Completed surveys show that the analyzed process can be written 
as a composition of both deterministic process and singular one. 

Hence the quantitative description of the kinetics of the process of dislocation forming has been 
assigned to the class of the stochastic model. An adequate series sum in which time is the argument 
and random variables are the values makes up the formal definition of the model. The optimization 
of one-stage prognosis has been carried out for utility purposes. The Durbin-Levinson algorithm is 
the applied numerical procedure. 

The utility fragment of this is based on verification of the defined model for certain 
mining-geological conditions and surveying results. The obtained analytical representation and 
optimal prognosis of the kinetics of vertical dislocations correspondend to surveying results, which 
can be testified by adequate measures of the quality of description of the process. 

I. Introduction

Underground exploitation forces dislocations of parts of the rock mass, generally 
towards the selected volume of the deposit. It is not possible to forsee accurately that, 
at a certain moment, the selected point of the rock mass will find itself at 
a pre-determined place of the space-time. In this sense the dislocating process touched 
off by underground exploitation is a random movement of the point, hence a certain 
representation (time being the argument random variables - values) might be 
assumed as the mathematical model. 

The problem of the definition of the current prognosis of post-mining dislocations 
is the subject-matter here; a chronologically ordered vector of the survey of 
dislocations of a given point of the rock mass within the area affected by mining 
exploitation is the describing variable here. 

• This work has been elaborated within the framework of research project by the Committee of 
Scientific Research No 9 Tl2A 036 12. 
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Appropriate discussion will pertain to a certain class of stochastic models. 
Specification of the optimal prognosis of dislocations of the point will be a particular­ 
ly significant issue. In order to analyze the formulated problem, selected elements of 
mathematical analysis, theory of probability and theory of stochastic processes will 
be quoted. 

2. Formulation of the problem

The stochastic process may be presented as each representation of the following type: 

X: Tx f.l-m. 
where: 

T- time, 
Q - non-empty set; f.lEI:, 
I: - family of subsets of set Q, 
fil - a certain function, 

in which Vt ET Xe= X(t;) is the random variable. 
Each representation of the following form: 

(I) 

X(·, r,): T-m. (2) 

will be called realization of process X= { Xe} ET.
If process { X1} is a stationary one in a broader sense, the following autocovariance 

function will be the characterizing quantity of process (1): 

R( t- s) = cov(Xe, X.)- E(Xe - EXe)(X. - EX.) 

for process {X1LET function (3) assumes the following properties: 

R(O)~O 

I R(h) I ~R(O) 

R(t-s) =R(s- t) for optional t, s ET

(3) 

(i) 

(ii) 

(iii) 

Stochastic process { Xr} IE T is called the Gauss one if 

n

Z= LcxiXei
i=l 

is the Gauss random variable. 

lt has been proved [I] that an optional stationary process may be described as the sum 
of linear and singular processes. If process {Xe} is a stationary one in a broader sense, 
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for an optional t ET the following equality comes about:

(4)

where:
tp, r, - p and n degree multinomials respectively
{Ze} - stochastic process (white noise); {Ze}~ WN(O, a2). 

The main goal of this is to define the linear prognosis for process {Xe} if part of
realization of process {Xp··· Xe) is given i.e.:

t
X,,,= L 4>;Xe-i 

i=O

(5)

Besides, the volume of prognosed quantity Xr+k should satisfy the following criterion:

(6)

3. Analysis of the problem

Specification of optimal linear prognosis according to (5), condition (6) being
taken into consideration, resolves itself down to extremum of a certain expression to
be determined. Note that it will be convenient to apply here estimators of spectral
density [3].

If process {XkheT(T-totaJJ is a stationary one, then

(7)

where:
X/ - conjugate,
{ Rą} ąe r - autocovariance function.

For Rą3 F [ -1, n--.R that

2 
'rfąeTRą= J exp(2 ·n· q · 9)dF(9) 

_}

2 

(8)

assuming that F'(9) =f(9), the following will be obtained:

1
2 

Rą= J exp(2 ·n· q · 9)f(9)d9 
_}

2 

(9)

As it has been mentioned before, autocovariance function is an important quantity
characterizing process (I); the process is also characterized by autocorrelation function



24 Wiesław Piwowarski

- in the mathematical sense equivalent to autocovariance function. It is possible to 
prove [2] that if the autocorrelation function of process {Xr} is an analytical one, the 
future status of process X1+, (prognosis) might be determined on the basis of current 
vector of the value of the status of process { Xr} and its derivatives. 

Herein, in order to forecast process X1+, the Durbin-Levinson algorithm has been 
applied, its tentative proceeding scheme looking thus. 

If process { Xr} is a stationary one with its mean m and autocovariance function 
R(·), then process { Yr} ={Xr-m}, for processes {Xr} and { Yr} the following 
dependence comes about: 

(I O) 
where: 

sp {l,Xl' ... ,X"} - the smallest closed subspace H; of the Hilbert space 
U (Q, I:, p) for n"?; 1 

Q - non-empty set; QE I: 
I: - family of subsets of set Q 
P - normalized measure 
h - number of steps of prognosis of the process, 
Xn+h; Yn+h - prognoses of processes (X) and (Y). 

,,One-step" prognoses will be defined thus: 

for n"?; I 

On the basis of (5) the following may be written down: 

(11) 

(12) 

Applying the projection theorem [1] the folowing will be obtained: 
If Mis a closed subspace of Hilbert space Hand x EH, then: there is the only such 

element x EM that 

11 x - x 11 = inf 11 x- y 11 (13) 

and 

xEMand llx-.xll =infllx-yll<=>xEMand (x-x)xEM1. (14) 

x - orthogonal projection of element x onto subspace M, 
M1. - orthogonal complement of subspace M. 
M1.:{xEH I \fyEM:xl_y}. 
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Equation (12) will be referred to as the one-step prognosis equation; it may be 
written down also in the following way: 

n 

< L cpni · Xn+l-i, Xn+l-j> = < Xn+I, Xn+l-j>; j= 1, ... ,n 
i=I

where < .,. > scalar product. 
Equations (15) - applying the linearity of scalar products - will assume the 

following form: 
n 

Lep ni· R(i-j) = R(j); J= 1, ... ,n 
i=l 

or 

where: 

(15) 

(16) 

(17) 

The Cramer theorem implies that system of equations (16) has just one solutin 
=- if 5 is a nonsingular matrix - then 

(18) 

For a stationary process, in accord with (12), the following will be obtained: 

X,+ h = Iaj · Xi+h-i 
j=I 

for h> 1 (19) 

t hence for n~ I there are real constants a~">, .... a~> that will satisfy the following equation: 

X =a(n)Tx 
n r 

(20) 
X -(X X)· (n)_( (n) (n)r- 1,···, r' Q - al , ... ,a, 

Applying (18) and (20); we might write the following: 

(21) 

where: P · pT - identity matrix, 

[

K 
A= I_ •. J ,ł,1 ~ ,ł,2 ~ ... ~ A, - strictly positive own values of matrix 5. 

1, 
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Hence 
n 

R(O)~Ala(n)TppTa<n)=A1 · I(a)"))2 
j=I 

(22) implies that a)"> for each determined value jR(-) is a bounded function for 
variable n. 
Therefore 

R(O)~ I I at> I I R(n-j) I 
j=I 

(22) 

(23) 

Boundedness a y> and inequality (23) make system of equation (18) be uneguivo­ 
cally solved, for matrix E" is a nonsingular one. 

4. Optimization of the prognosis of the process

If there is a given fragment of realization of process {X1d ={Xl' ... ,X,}, it is 
significant to determine the optimal linear prognosis for moment t-i-k, In accordance 
with (5) we have the following: 

t

X,+k= L<l>;Xr-i 
i=O 

(24) 

Taking into account the random character of (24), criterion (6) may be written down 
as follows: 

t 

EI X,+k- L<l>;X,-; l2=min 
i=O 

Further on, applying (8), (25) will assume the following form: 

(25) 

! ! 
2 t 2 

EI Jexp(2·n·i(t+k)·9)d9-Icpj· sexp(2·n·ir·9)f(9)d91
2 

r= I 1 
2 

(26) 
1 
2 

After it has been transformed: 

2 [ J I exp(2·n·i(t+k)·9)d9-Icp,·exp(2n·i·r·9 l2dF(9) (27) 
r=l

2 
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If spectral density occurs, the following may be written: 
1 
2 t 

J I exp(2·n·i(t+k)·9)d9- Lcp,·exp(2n·i·r·9 l
2
J(9)d9 (28) 

-1 
2 

r= 1 

where spectral density will be expressed by the following dependence: 

00 

f ( 9) = L R, · cos(2n · i· 9)
i= -00 

~ 
2 

R, = J cos(2 ·n· i· 9)f(9)d9 
1 
2 

(29) 

(30) 

R, is subject to estimation, defining an appropriate estimator, most effectively by 
means of the periodiagram. 

Analysis shows that the following model is the optimal linear prognosis -Y'n+1: 

n 

Xn+I = LCi?ni · Xn+l-i; n= 1, 2, ... 
i=I

(31) 

where: 

The error mean-square of the prognosis amounts to: 

(32) 

System of equations (16) has just one solution = if En is a nonsingular matrix. 
Conditions for matrix En to be nonsingular for each n: 

If R(O)> O and R(h)-0 if h-oo covariance matrix En=[R(i-j)]?J=ł for measuring 
series { Xl' X2, ..• ,Xn} is nonsingular for optional n. 

It is possible to prove that the foregoing theorem is true applying contradic­ 
tion-proof procedure, which will roughly look thus: 

Assuming that En is singular for a certain n, then E(Xi) = O; if so - there is a k > I 
and such constants a:1' a:2, •.• , a:k that make En be nonsingular. 

k

Besides Xk+h= Iai · X;+k-I for h~ l; then Vn~k+ 13a:\n>, a:tl, ... ,a:j;> to imply 
i=I 

Hence R(O) = a:<n)T Eka:<n) is a bouned function of variable n for fixed value of kand a:l;>; 
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thus it is possible to write the following: 
k 

R(O) = Cov(X,., i= 1 I_atl X;) 

k 

which im plies that R(O) ~ I I aJ•l I I R(n - j) I is contradictory to the assumption, 
j=l 

which in turn marks out the end of the proof. 

5. Verification of the model 

Due to underground exploitation (development scheme of the mining area and 
locations of measuring points of the surface having been presented in Fig.l) an 
undetermined post-mining trough was forming, underground exploitation was 
carried out by means of the fall-of-roof wall system; average thickness of deposit 
3.2 [m]; depth of deposit approx. 315 [m]. Measuring line (bench-marks) ran along 
a railway embankment. Exploitation development direction was roughly parallel to 
the longitudinal axis of the railway line. Deposit was cut into 5 walls, extraction 
differed during exploitation - one, two, sometimes three walls were operated by 
means of fall-of-roof system, the speed of progress of the forehead ranged between 25 
and 80 [m/month]. 

Measuring state 
of exploitation # 34 

500 

400 

300 

200 - 

100 
100 200 300 400 500 600 700 800 900 1000 

Fig. 1. Underground exploitation development scheme at measurement # 34; 

♦ - points of measuring line, -- -- outline of mining area 

Geodesic survey in the area in question resolved itself down to the determination 
of two elementary quantities: length changes of sectors of the line and the height of 
points of the line. Both the measuring groups in each session were referred to a fixed 
point. Levelling measurement was taken according to surveying instructions G-2. 
Length measurement was taken with the use of a steel band hanging on a stand, 
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constant tension having been applied. Geodesic observation and adjustment proce­ 
dure were carried out by a team of specialists the Academy of Mining and Metallurgy. 
Time intervals between adjacent measurements amounted to 13 up to 28 days 
- approx. 21 days on the average. 

Adjustment of the values of measuring results of vertical dislocations has been 
specified with an accuracy of up to O.I [mm]. For the purposes of this work adjusted 
values of subsidence have been rounded up to 1 [mm]; for fragments of the measuring 
line measuring results have been written as respective integers and grouped in Table 
I as absolute values. Modelling results and process prognoses are also of type I wi I; 
appropriate differences have been merely proceded by ,, - " (Tables 2 and 2a). 

Tab Ie I 
Vertical dislocations for 14 time horizons and for 11 measuring points 

Number of measuring points 

Time 208 15 207 14/21 206 14 205 14/19 204 13 203 
[days] 

SUBSIDENCES W [mm] 

405 133 119 104 96 88 80 78 76 75 78 78 
433 141 129 116 109 102 98 98 97 96 100 100 
455 150 140 128 121 115 111 114 114 114 119 121 
481 158 148 140 133 129 128 133 134 136 146 150 
496 160 150 143 138 134 136 145 148 152 170 181 
509 164 161 156 152 150 154 168 174 183 206 224 
521 176 168 166 163 163 172 184 206 216 254 271 
544 181 185 188 187 193 210 247 267 285 342 367 
564 211 210 219 222 238 266 319 346 369 431 451 
584 238 248 264 271 289 328 386 414 436 491 500 
605 284 300 336 351 377 426 486 511 528 568 560 
626 377 410 471 494 526 577 623 637 643 652 624 
647 

I 
506 558 638 661 591 727 744 742 736 718 673 

! 670 709 770 843 859 870 871 850 833 814 772 712 
! 

Graphic representation of measuring results, approximation and appropriate 
differences (Table 2 and 2a) for two measuring points has been presented in 
Fig. 2 and 3. 

While analyzing the characteristics of the subsidence of an optional point of the 
surface due to mining exploitation, deterministic part W0; may be specified alongside 
the so called random part of vertical component of dislocation si, thus the following 
may by written: 

(iv) 

Wf - measuring result of dislocation of a point due to exploitation. 
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Table2 
Approximation and one-step prognosis results (according to 31) of post-mining vertical dislocations 

of points of surface W [mm] 

Time Point 208 Point 16 Point 207 

[days] 
measure- 

model difference 
measure- 

model difference 
measure- 

model difference ment ment ment 

405 133 136.9 3.9 119 123.9 4.9 104 109.8 5.8 
433 141 141.1 O.I 129 126.0 3.0 116 110.9 -5.1 
455 150 147.4 -2.6 140 137.3 -0.7 128 128.4 0.4 
481 158 156.7 -1.3 148 148.1 O.I 140 141.3 1.3 
496 160 166.5 6.5 150 153.9 3.9 143 153.4 10.4 
509 164 169.5 5.5 161 155.8 -5.2 156 147.9 -8.1 
521 176 170.4 -5.6 168 168.4 0.4 166 168.6 2.6 
544 181 179.7 -1.3 185 176.7 -8.3 188 177.1 -10.9 
564 211 187.8 -23.1 210 199.8 -IO.I 219 210.7 -8.2 
584 238 220.1 -17.9 248 235.8 -12.2 264 253.4 -10.6 
605 284 262.9 -21.1 300 289.9 -IO.I 336 316.0 -20.0 
626 377 326.3 -50.7 410 361.5 -48.5 471 423.1 -47.9 
647 506 451.3 -54.7 558 537.1 -20.9 638 648.4 12.4 
670 709 651.1 -57.9 770 766.4 -3.6 843 861.8 18.8 
688 1024 985.6 -39.6 1098 1068.8 -30.8 1143 1121.8 -22.8 

prognosis 

Table2a 
Approximation and one-step prognosis results (according to 31) of post-mining vertical dislocations 

of points of surface W [mm] 

Time Point 14 Point 204 Point 203 

[days] 
measure- 

model difference 
measure- 

model difference 
measure- 

model difference 
ment ment ment 

405 80 88.5 8.5 75 84.8 9.8 78 88.3 10.3 
433 98 98.0 O.O 96 88.1 -7.9 100 90.9 -9.1 
455 Ill 120.1 9.1 114 120.0 6.0 121 125.6 4.6 
481 128 136.0 8.0 136 137.4 1.4 150 147.6 -2.4 
496 136 156.8 20.8 152 162.7 10.7 181 185.3 4.3 
509 154 166.6 12.6 183 173.3 -9.7 224 219.6 -4.4 
521 172 188.6 16.6 216 217.0 I.O 271 276.0 5.0 
544 210 210.7 0.7 285 255.3 -29.7 367 329.2 -37.8 
564 266 257.3 -8.7 369 364.8 -4.2 451 485.7 34.7 
584 328 325.9 -2.1 436 476.2 40.2 500 563.6 63.6 
605 426 401.8 -24.2 528 528.8 0.8 560 569.8 9.8 
626 577 521.9 -55.1 643 639.7 -3.3 624 629.6 5.6 
647 727 706.8 -20.2 736 781.9 45.9 673 696.7 23.7 
670 871 890.6 -19.6 814 857.5 43.5 712 731.5 19.5 
688 1049 1066.0 17.0 1028 1057.8 29.8 963 928.4 -34.6 

prognosis 
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EXPONENTIAL MODEL 
Description of post-mining dislocations W [mm]; point =#= 208 
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Fig. 2. "axis t" 2: =405 [days]; 3: =433 [days], , 15: = 670 [days] -- P208 measurement 
······· Description results -- Differences 

EXPONENTIAL MODEL 
Description of post-mining dislocations W [mm]; point =#= 15 
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Fig. 3. "axis t" 2: =405 [days]; 3: =433 [days], , 15: =670 [days] -- PIS - measurement 
······· Measuring results -- Differences 
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For measuring series n the following will be obtained: 

WP={ Wf, Wf, ... , W:} (v) 

According to (iv) dependence (v) is generally a random variable, hence correlation 
coefficient or correlation matrix is a significant measure determining relationship 
between two random variables for a set of random variables - dependence (vi) [2]. 

N 

I(x;-x)(yi-P)
(vi) 

i=l i=I 

Correlation matrix for measuring results of vertical dislocations (fable 1) has been 
presented in Table 3 - it implies that these are strongly correlated random variables. 

Table3 

Correlation matrix - subsidence measuring results W (x, 1) 

Variables 208 15 207 14/21 206 14 205 14/19 204 13 203 

208 1 1 1 0.99 0.99 0.98 0.95 0.94 0.92 0.88 0.84 

15 1 1 1 0.99 0.98 0.96 0.95 0.93 0.89 0.86 

207 1 1 1 0.99 0.97 0.96 0.95 0.91 0.87 

14/21 1 1 0.99 0.98 0.97 0.95 0.91 0.88 

206 1 1 0.99 0.98 0.96 0.93 0.90 

14 1 1 0.99 0.98 0.95 0.93 

205 1 1 1 0.98 0.96 

14/19 1 1 0.99 0.97 

204 1 0.99 0.98 

13 1 1 

203 1 

Subsidence of observation points measuring results - as sets of dislocations of 12 
measuring series - are strongly correlated (Table 3). Therefore estimators of 
regression equations have been determined, subsidence results of point 208 having 
been assumed as the "independent variable", subsidences of point 15 having been 
assumend as "dependent variables" (Fig. 4), for point 207 respectively (Fig. 5). 
Regression equations have the following form: 
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Linear regression equation W (15:ti=28.889+ l.1423*W (208:t) 
Correlation coefficient: r, 99951 

o 
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-400 i- 

-500 

-600 

-700 

-800 

-900 '---'---'-----'---'----'--'---' 
-750-650-550-450-350-250-l 50-50 

Fig. 4. Diagram of regression equation -e-- - Regression 95 confidence percentage 

Regression equation - subsidences measuring results W (207;ti=60.201 + l.3246*W (208;1) 
Correlation coefficient: r, 9968 I 
O~-------~ 
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Fig. 5. Diagram of regression equation 
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Estimators and correlation coefficients determined for the analyzed set of measure­ 
ments by means of the STATISTICA pack have been listed in Table 4. 

Table 4 

·------·- 

Points 15 207 14/21 206 14 205 14/19 204 13 203 
- 
estimator a 1.142 1.325 1.382 1.434 1.473 1.451 1.420 1.382 1.276 1.140 

estimator b 28.9 60.2 71.2 70.1 71.6 45.2 28.3 12.7 33.4 65.8 

correlation 
coefficient 0.99 0.99 0.99 0.98 0.976 0.952 0.937 0.922 0.877 0.843 

Pą

distance 20 36 52 72 90 110 130 146 162 182 
d=X,+X,08 

Note that the deliberations presented herein concerning mathematical modelling 
have been verified upon the example of vertical post-mining dislocations. Similar 
verification and prognosis of an adequate process might be practically carried out for 
an optional set of measuring results of characteristic quantities in the line of 

a Ar 
1.5 7 

14 ~ 

1.3~ 

1.2 ~ 

distribution of estimator "a" 

I. I 

I.O 

0.9 

0.8 

correlation coefficient "r" 

(distance) 

-+---~~-------~-~~----~~--.---~~~►
20 30 40 50 60 70 80 90 JOO 110 120 130 140 150 160 170 180 190 

Fig. 6. Values of regression equations estimators and correlation coefficients for different configurations of 
variables according to Table 4 
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environmental protection, particulary in the sphere of approximation and current 
prognosis of transformations of geometry of an area. 

The foregoing regression equations imply that once a nonstationary distribution 
of post-mining vertical dislocations of a given observation point is at our disposal, it 
is possible to approximate distributions of dislocations of "surface points" within 
a neighbourhood of the point. This is a significant property which makes it possible to 
restrict the number of the set of measuring points or determine subsidences at 
hypothetical points. 

Table5 

AUTOCORRELATION FUNCTION Point 15 
Model White noise evaluation 

Delay Autocorre- W. noise Box Ljung p 
lation evaluation Q 

I 0.620057* 0.240906* 6.6247* 0.0101 * 

2 0.348553* 0.231455* 8.8925* O.Ol 73* 

3 0.157877* 0.221601 * 9.4001 * 0.0244* 

Tab Ie 5a 

AUTOCORRELATION FUNCTION Point 207 
Model White noise evaluation 

Delay Autocorre- W. noise Box Ljung p 
lation evaluation Q 

I 0.653317* 0.240906* 7.3545* 0.0067* 

2 0.379073* 0.231455* 10.0368* 0.0062* 

3 0.174812* 0.221601* 10.6591 * 0.0137* 

Albeit the values of regression equations estimators are practically insignificant, 
equations of that kind - providing that they have been properly constructed - make 
it possible to minimize error, to be more precise - te determine the probability that 
an error bigger than the admissible one will not occur more often than it is implied by 
confidence level, which is quite significant. Autocorrelation function in turn makes it 
possible to estimate the so called random factor superimposed additively upon the 
values of generated subsidences - although the influence is remarkable, prediction of 
the subsidence process is by all means satisfactory. 

6. Final remarks 

The main objective of this article was to construct an appropriate process model for 
the determination of the optimal prognosis if part of observation results of 
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a phenomenon is given, duration time of the phenomenon being the argument. It has 
been determined that the analyzed process in its formal sense is a random one, 
a certain class of stochastic models being the quantitative description. Actually, 
non-stationary processes, in most cases, may be analyzed as stationary in a broader 
sense - hence the stochastic process has been analyzed by means of autocovariance 
function and spectral density estimators. The so defined model makes it possible to 
predict the physically diversified phenomena that satisfy the mathematical conditions 
of the stochastic process. 

The utilitarian part of the article pertains to mathematical modelling of dis­ 
locations of points of the terrain and rock mass within the area of the impact of 
underground exploitation. These are post-mining movements that by their mere 
nature are a menace to many components of environmental protection; thus this is an 
important problem both in cognitive sphere and in respect of application. 

Deliberations presented herein provide grounds to set forth the following 
conclusions: 

I. Analysis of surveying results of non-stationary condition of post-mining 
vertical dislocations implies that - in the sense of quantitive representation - an 
exponential convergent series may be an adequate mathematical describing model of 
the kinetics of subsidence of a points of the rock mass. 

2. Probabilistic space and stochastic process have been defined for the defor­ 
mation area. Autocovariance function is the characterizing quantity of a given 
process; minimum square criterion of the expected value of difference between 
estimated value and measuring result has been applied at determination of optimal 
prognosis. 

3. Numerical proceeding of a defined description of dislocations area has been 
carried out with the use of the Durbin-Levinson algorithm. In order to obtain a high 
accuracy of the prognosis of the process condition: ów:( ciwdop. prediction has been 
limited down to one-step prognosis. 

4. Verification of the formulated description has been carried out for a definite 
physical process - post-mining dislocations were being modelled. 14 cycles of 
measuring dislocation results arranged chronologically assigned to each of the 11 
observation points make up the matrix of the value of the state of the analyzed process. 

5. Basic deliberations pertain to determination of the stochastic relationship: 
deformation of the base determined due to measurements __. process modelling results. 
Deformation of the base is represented here by sets of measuring results of 
geometrical transformation of the terrain. Modelling - this is application of an 
appropriate operator with assigned parameters in the set of measuring results. 

6. Random disturbances having been additively superimposed upon both the 
groups of sets of descriptive variables provided a significant assumption for statistical 
analysis. Optimal regression model estimators have been determined for the so 
formulated problem. 

7. Appropriate statistical measures characterizing the variables that describe the 
stochastic process and defining their mutual correlations have been sample-determined. 
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8. Stable estimators of appropriate regression equations imply that it is possible to
approximate non-stationary characteristics of dislocations of "surface points" within
a considerable environment of a point for which distribution of vertical post-mining
dislocations has been determined due to measurements. This is a particularly
important property - as it is, it is possible to reduce the size of a physical set of
measuring points, thickening at the same time the deformation area to be covered by
a considerably accurate prognosis.
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Wiesław Piwowarski

Modelowanie matematyczne kinetyki przemieszczeń pogómiczych
jako procesu quasilosowego

Streszczenie

W pracy sformułowano problem wyznaczania jedno- i wielokrokowej prognozy pogómiczych przemie­
szczeń powierzchni terenu. Zmienną opisującą jest tu skończony i uporządkowany chronologicznie wektor
wyników pomiarów geodezyjnych. Dokonane pomiary wskazują, że analizowany proces można zapisać jako
złożenie procesu deterministycznego i procesu osobliwego. Stąd też opis ilościowy kinetyki procesu
kształtowania przemieszczeń przyporządkowano do klasy modeli stochastycznych. Formalne zdefiniowanie
modelu stanowi tu odpowiednia suma szeregu gdzie argumentem jest czas a wartościami zmienne losowe. Ze
względów użytkowych przeprowadzono optymalizację prognozy jednokrokowej. Aplikacyjną procedurą
numeryczną jest tu algorytm Durbina-Levinsona. Utylitarny fragment pracy to weryfikacja zdefiniowanego
modelu dla konkretnych warunków górniczo-geologicznych i konkretnych wyników pomiarów. Uzyskane
analitycznie odwzorowanie i optymalna prognoza kinetyki przemieszczeń pionowych dobrze przystają do
wyników pomiarów, co potwierdzają odpowiednie miary jakości opisu procesu.
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Buecnae Ilueoeapcxu 

MaTeMaT11'łeCKOC M0D.CJ1llpoea1me KHHeTIIKII uepesreruennii
ewJeamlblX ropnhIMH patiorassa KaK KBaJucJiy'laiinoro upouecca

Pe3IOMe

B paóore npencrannena rrpofinesaa onpeneneuaa OMO- H MHoro111aroeoro rrporaosa nepesaemeaaś
MeCT!lOCTH a peayrrs rare ropnsrx pafior. Onacsraaromea neperaeaaoii aanserca 3,0:eCh KOHe'!Hblli
11 xpOHOJIOflf'!eCKH ynopanoxenasnł sexrop peaynsraron reo,o:e3H'!CCKRX H3MepeHHli. Ilposezreaasre 
113MepeHHll ,O:OKa3bIBaIOT, 'ITO aaanaaapoaaaasrił npouecc MOJKeT 6bITh JanHCaH K:UC cyMMa
nerepcnnurpoaaunoro rrpouecca H oco6oro npouecca, ITo3TOMY KOJIH'!ecTeeHHoe onacaaae KHHeTHKH
npouecca cpopMHpoeaHrrll nepesaeuieaaił orneceao Ha eser xnacca croxacraxecxax Moue,,ea.
cJ)opMa,TuHOe orrpenerieaae MOlleJIH aanaercs aziecs COOTBeTCTBeHHOli CYMMOli pana, rne aprysreaross
HB,Tl!eTCll apexia a 3Ha'!eHHl!MlJ cnyxaiiasre aenaxaasr. ITplJHHMal! BO BHBMaHHe axcnayarauaoaasre
Ka xecr aa npoaeneua onTBMH3aUBl! onaouiaronoro rrporaoaa.

Annnaxauaoaaou uarppoaoii npouenypoii aansercs snecs anroparsa )fyp60Ha-Jlee1JHcoHa.
YTl1,1HTBpHhJll rpparsaear pafiona )TO aeparpaxauas onpeneneaaoił MO,o:e;m nns KOHXpeTHb!X
ropuo-reo.toraxecxax ycnoaaii H KOHKpeTHbIX pe3y;TbTaTOB ll3MepeHali . Ilonyseaaoe aHaJTHTIJ'leCKHM
cnocofior-r oroópaxeaae a onTHMB.Jlhflhlli nporuos KHHen1KH sepraxanaux nepesreureaaił xopouro
cosnaaaior C peaynsrarasra H3MepeHHii, '!TO nozrraepscnasor COOTBeTCTBeHHble Mepw Ka'!CCTBa onacaaas
rrpouecca. 
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