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Mathematical modelling of post-mining dislocations kinetics
as a quasi-random process*

The paper presents the problem of determination of one-and multi-stage prognosis of
post-mining surface dislocations. The finite and chronologically ordered vector of geodetic surveys
is the describing variable herein. Completed surveys show that the analyzed process can be written
as a composition of both deterministic process and singular one.

Hence the quantitative description of the kinetics of the process of dislocation forming has been
assigned to the class of the stochastic model. An adequate series sum in which time is the argument
and random variables are the values makes up the formal definition of the model. The optimization
of one-stage prognosis has been carried out for utility purposes. The Durbin-Levinson algorithm is
the applied numerical procedure.

The utility fragment of this is based on verification of the defined model for certain
mining-geological conditions and surveying results. The obtained analytical representation and
optimal prognosis of the kinetics of vertical dislocations correspondend to surveying results, which
can be testified by adequate measures of the quality of description of the process.

1. Introduction

Underground exploitation forces dislocations of parts of the rock mass, generally
towards the selected volume of the deposit. It is not possible to forsee accurately that,
at a certain moment, the selected point of the rock mass will find itself at
a pre-determined place of the space-time. In this sense the dislocating process touched
off by underground exploitation is a random movement of the point, hence a certain
representation (time being the argument random variables — values) might be
assumed as the mathematical model.

The problem of the definition of the current prognosis of post-mining dislocations
is the subject-matter here; a chronologically ordered vector of the survey of
dislocations of a given point of the rock mass within the area affected by mining
exploitation is the describing variable here.

* This work has been elaborated within the framework of research project by the Committee of
Scientific Research No 9 T12A 036 12.
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Appropriate discussion will pertain to a certain class of stochastic models.
Specification of the optimal prognosis of dislocations of the point will be a particular-
ly significant issue. In order to analyze the formulated problem, selected elements of
mathematical analysis, theory of probability and theory of stochastic processes will
be quoted.

2. Formulation of the problem

The stochastic process may be presented as each representation of the following type:

X:TxQ->R 1)

where:

T — time,

2 — non-empty set; Qe X,

2 — family of subsets of set €2,

IR — a certain function,
in which VteT X,=X(t,) is the random variable.
Each representation of the following form:

X, n):T-IR )

will be called realization of process X={X} e T.
If process { X,} is a stationary one in a broader sense, the following autocovariance
function will be the characterizing quantity of process (1):

R(t—s)y=cov(X,, X,)— E(X,— EX)(X,—EX)) 3)

for process { X,},.r function (3) assumes the following properties:

R(0)>0 ()
| R(h) | <R(0) (ii)
R(t—s)=R(s—1) for optional ¢, seT (1ii)

Stochastic process { X,},.r is called the Gauss one if

Z=Y mXy is the Gauss random variable.

i=1

It has been proved [1] that an optional stationary process may be described as the sum
of linear and singular processes. If process { X,} is a stationary one in a broader sense,
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for an optional € T the following equality comes about:
Xt‘(Ple_l Fe gl (prt—p=Zt+nlzt—l Fos F Hip—n “)

where:

@, n — p and n degree multinomials respectively

{Z,} — stochastic process (white noise); {Z,} ~ WN(0, ¢?).

The main goal of this is to define the linear prognosis for process { X,} if part of
realization of process {X,... X}) is given i.e.:

t
=YX, (5)
i=0

Besides, the volume of prognosed quantity X, ., should satisfy the following criterion:
E| Xpr— AH—k |2 = min )

3. Analysis of the problem

Specification of optimal linear prognosis according to (5), condition (6) being
taken into consideration, resolves itself down to extremum of a certain expression to
be determined. Note that it will be convenient to apply here estimators of spectral
density [3].

If process { X;}xe rir—uwow 1S @ stationary one, then

E(X, X *)=Ry_, )

where:
x* — conjugate,
{R,};er — autocovariance function.

11

B - = |- t

For R, F[ > 2} R tha
1
2

V,erR, = Iexp(2-n-q-9)dF(9) (8)

-1
2

assuming that F'(9)=/(9), the following will be obtained:

R,= | oxp2 7 q- 9/ (9)d ©

As it has been mentioned before, autocovariance function is an important quantity
characterizing process (1); the process is also characterized by autocorrelation function
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— in the mathematical sense equivalent to autocovariance function. It is possible to
prove [2] that if the autocorrelation function of process { X,} is an analytical one, the
future status of process X, . (prognosis) might be determined on the basis of current
vector of the value of the status of process { X,} and its derivatives.

Herein, in order to forecast process X, . the Durbin-Levinson algorithm has been
applied, its tentative proceeding scheme looking thus.

If process { X} is a stationary one with its mean m and autocovariance function
R(:), then process {Y}={X,—m}, for processes {X,} and {Y,} the following
dependence comes about:

Poiix, xyXnsn=m+Poyy vy Yain (10)
where:

sp {1.X,,....,X,} — the smallest closed subspace H, of the Hilbert space
L2 (Q, X, p)forn>1

Q — non-empty set; Qe X

z — family of subsets of set Q2

P — normalized measure

h — number of steps of prognosis of the process,
Xoin Yoin — prognoses of processes (X) and (Y).

,,One-step” prognoses will be defined thus:

ifm::{o 11

Py, X, for n>1
On the basis of (5) the following may be written down:
Xoi1=0u Xt oo+ 0m X,  n>=1 (12)

Applying the projection theorem [1] the folowing will be obtained:
If M is a closed subspace of Hilbert space H and x € H, then: there is the only such
element Xe€ M that

| x—% |l =inf || x—y I (13)
yeM
and
xeM and || x—x|| =inf|| x—y || <+xeM and (x—X)xe M* (14)
X — orthogonal projection of element x onto subspace M,
M* — orthogonal complement of subspace M.

M*:{xeH|VyeM:xly}.
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Equation (12) will be referred to as the one-step prognosis equation; it may be
written down also in the following way:

< Z¢ni ' Xn+l—ia Xn+l—j> . <Xn+l, Xn+l—j>;.j= 1,...,7’1 (15)
i=]

where <.,.> scalar product.
Equations (15) — applying the linearity of scalar products — will assume the
following form:

i=1
or
n.(pn:Rn (16)

[x)

where:
En = [R(i—j)]i./=1n’ Rn = (‘R(l)= L ’R(n))s QD,, = ((pnla' . 's(pnn) (1 7)

The Cramer theorem implies that system of equations (16) has just one solutin
< if £ is a nonsingular matrix — then

¢, =E"1R, (18)

For a stationary process, in accord with (12), the following will be obtained:
Xoow=20a; X for h>1 (19)
i=1

hence for n > 1 there are real constants a{,...,a®™ that will satisfy the following equation:

X =gy
(20)
X, = e o X dM=(a?,....a"
Applying (18) and (20); we might write the following:
R(0)=a"™T - 5 a"=a"TPAPTq" 21

where: P-PT — identity matrix,

K . an .
A :l: g ]; A, <4,<...<A, — strictly positive own values of matrix Z.
2

r
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Hence

R(0)>2,a"TPPTa" =2 - ¥ (a’)? 22)

Jj=1

(22) implies that a{” for each determined value jR(') is a bounded function for
variable n.
Therefore

R(0)<i | & | | R(n—)) | (23)

Jj=1

Boundedness a ¢ and inequality (23) make system of equation (18) be uneguivo-
cally solved, for matrix Z, is a nonsingular one.

4. Optimization of the prognosis of the process

If there is a given fragment of realization of process { Xz} ={X,,...,X}}, it is
significant to determine the optimal linear prognosis for moment ¢+ k. In accordance
with (5) we have the following:

t
Xr+k=z(piXt—i (24)

i=0

Taking into account the random character of (24), criterion (6) may be written down
as follows:

t
E| Xisx— Y. ®X,_; |=min (25)

i=0
Further on, applying (8), (25) will assume the following form:

E| fexp(z-n-i(z+k)-9)d9—i<pj- fexp(z~n-ir~9)f(9)d9 K (26)

1
2

After it has been transformed:

j: | exp(2-m-i(t+k): )dI— i(p,-exp(2n-i-r-9 I’dF(9) (27)

r=1
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If spectral density occurs, the following may be written:

[ | exp2-m-i(t+k)- $)d9— iqo,pexp(Zn iore 8 121(9)d9 (28)

where spectral density will be expressed by the following dependence:

1(9)= i R, cos(2n-i- 9) (29)

i=—c0

R.:

1

cos2- - i+ 8)f(8)dS (30)

1

2

| e i

R; is subject to estimation, defining an appropriate estimator, most effectively by
means of the periodiagram.
Analysis shows that the following model is the optimal linear prognosis X, :

5(,,+1=§n:1<p,,,~'X,,+1_,»;n=1,2, (€3))
where: _
E,=[R(E—jTj=1, Ry=R(1),....,R(M); ¢, =(@Pnis--:Pnn)
The error mean-square of the prognosis amounts to:
5,=R(0O0)—RIE 'R, (32)

System of equations (16) has just one solution < if =, is a nonsingular matrix.
Conditions for matrix Z, to be nonsingular for each n:

If R(0)>0 and R(h)—0 if h— co covariance matrix 5, =[R(i—)]};-, for measuring
series { X, X,...,X,} is nonsingular for optional n.

It is possible to prove that the foregoing theorem is true applying contradic-
tion-proof procedure, which will roughly look thus:

Assuming that =, is singular for a certain », then E(X,)=0; if so —thereis a k> 1
and such constants o, a,,..., o, that make Z, be nonsingular.

k
Besides Xy p=Y.a;" Xi1x_, for h=1; then Vnzk+ 130, of’,...,of" to imply

i=1
— (T
X, =a"TX,

Hence R(0)=a™TZ,4™ is a bouned function of variable n for fixed value of k and of”;
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thus it is possible to write the following:

k
R(0)=Cov(X,, i=13 X))

k
which implies that R(0)< Y | o | | R(n—j) | is contradictory to the assumption,
j=1
which in turn marks out the end of the proof.

S. Verification of the model

Due to underground exploitation (development scheme of the mining area and
locations of measuring points of the surface having been presented in Fig.l) an
undetermined post-mining trough was forming, underground exploitation was
carried out by means of the fall-of-roof wall system; average thickness of deposit
3.2 [m]; depth of deposit approx. 315 [m]. Measuring line (bench-marks) ran along
a railway embankment. Exploitation development direction was roughly parallel to
the longitudinal axis of the railway line. Deposit was cut into 5 walls, extraction
differed during exploitation — one, two, sometimes three walls were operated by
means of fall-of-roof system, the speed of progress of the forehead ranged between 25
and 80 [m/month].

Measuring state
of exploitation # 34

500

400

300

200

100

100 200 300 400 500 600 700 800 900 1000

Fig. 1. Underground exploitation development scheme at measurement # 34;

4  points of measuring line, ———— — outline of mining area

Geodesic survey in the area in question resolved itself down to the determination
of two elementary quantities: length changes of sectors of the line and the height of
points of the line. Both the measuring groups in each session were referred to a fixed
point. Levelling measurement was taken according to surveying instructions G-2.
Length measurement was taken with the use of a steel band hanging on a stand,
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constant tension having been applied. Geodesic observation and adjustment proce-
dure were carried out by a team of specialists the Academy of Mining and Metallurgy.
Time intervals between adjacent measurements amounted to 13 up to 28 days
— approx. 21 days on the average.

Adjustment of the values of measuring results of vertical dislocations has been
specified with an accuracy of up to 0.1 [mm]. For the purposes of this work adjusted
values of subsidence have been rounded up to 1 [mm]; for fragments of the measuring
line measuring results have been written as respective integers and grouped in Table
1 as absolute values. Modelling results and process prognoses are also of type | w; |;
appropriate differences have been merely proceded by ,,—* (Tables 2 and 2a).

Tablel
Vertical dislocations for 14 time horizons and for 11 measuring points

Number of measuring points

Time | 208 15 207 | 14/21 | 206 14 205 | 14/19 | 204 13 203
[days]

SUBSIDENCES W [mm)]

405 133 119 104 96 88 80 78 76 75 78 78
433 141 129 116 109 102 98 98 97 96 100 100
455 150 140 128 121 115 111 114 114 114 119 121
481 158 148 140 133 129 128 133 134 136 146 150
496 160 150 143 138 134 136 145 148 152 170 181
509 164 161 156 152 150 154 168 174 183 206 224
521 176 168 166 163 163 172 184 206 216 254 271
544 181 185 188 187 193 210 247 267 285 342 367
564 211 210 219 222 238 266 319 346 369 431 451
584 238 248 264 271 289 328 386 414 436 491 500
605 284 300 336 351 371 426 486 511 528 568 560
626 377 410 471 494 526 571 623 637 643 652 624
| 647 506 558 638 661 591 727 744 742 736 718 673
670 709 770 843 859 870 871 850 833 814 772 712

Graphic representation of measuring results, approximation and appropriate
differences (Table 2 and 2a) for two measuring points has been presented in
Fig. 2 and 3.

While analyzing the characteristics of the subsidence of an optional point of the
surface due to mining exploitation, deterministic part W, may be specified alongside
the so called random part of vertical component of dislocation ¢;, thus the following
may by written:

WE=Wte, @iv)

WP — measuring result of dislocation of a point due to exploitation.
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Table2

Approximation and one-step prognosis results (according to 31) of post-mining vertical dislocations
of points of surface W [mm]

Time Point 208 Point 16 Point 207
[days] & oy model |difference i model |difference RS model |difference
ment ment ment
405 133 136.9 39 119 123.9 49 104 109.8 5.8
433 141 141.1 0.1 129 126.0 3.0 116 110.9 —5.1
455 150 147.4 —2.6 140 137.3 -0.7 128 128.4 04
481 158 156.7 -1.3 148 148.1 0.1 140 141.3 1.3
496 160 166.5 6.5 150 1539 39 143 153.4 10.4
509 164 169.5 5.5 161 155.8 -52 156 147.9 —8.1
521 176 170.4 -56 168 168.4 04 166 168.6 2.6
544 181 179.7 —1.3 185 176.7 —8.3 188 177.1 |—10.9
564 211 187.8 |—23.1 210 199.8 |-10.1 219 210.7 —8.2
584 238 220.1 |—-17.9 248 2358 |—12.2 264 2534 |-10.6
605 284 2629 |[-21.1 300 2899 |-—10.1 336 316.0 |—20.0
626 377 326.3 |—50.7 410 361.5 |—48.5 471 4231 |—47.9
647 506 451.3 |—54.7 558 537.1 |—20.9 638 648.4 12.4
670 709 651.1 |—57.9 770 766.4 —-3.6 843 861.8 18.8
688 1024 985.6 |—39.6 1098 1068.8 |—30.8 1143 1121.8 |—-22.8
prognosis
Table?2a

Approximation and one-step prognosis results (according to 31) of post-mining vertical dislocations
of points of surface W [mm]

Time Point 14 Point 204 Point 203
[days] | TSI odel |difference] TERT® | model |difference TOeAsure- | 1 odel |difference
ment ment ment
405 80 88.5 8.5 75 84.8 9.8 78 88.3 10.3
433 98 98.0 0.0 96 88.1 —-79 100 90.9 -9.1
455 111 120.1 9.1 114 120.0 6.0 121 125.6 4.6
481 128 136.0 8.0 136 1374 1.4 150 147.6 —24
496 136 156.8 20.8 152 162.7 10.7 181 185.3 43
509 154 166.6 12.6 183 173.3 —9.7 224 219.6 —4.4
521 172 188.6 16.6 216 217.0 1.0 271 276.0 5.0
544 210 210.7 0.7 285 255.3 —29.7 367 329.2 —37.8
564 266 257.3 —8.7 369 364.8 —4.2 451 485.7 34.7
584 328 325.9 —2.1 436 476.2 40.2 500 563.6 63.6
605 426 401.8 —242 528 528.8 0.8 560 569.8 9.8
626 577 521.9 —55.1 643 639.7 —-33 624 629.6 5.6
647 727 706.8 —20.2 736 781.9 459 673 696.7 23.7
670 871 890.6 —19.6 814 857.5 435 712 731.5 19.5
688 1049 1066.0 17.0 1028 1057.8 29.8 963 928.4 —34.6
prognosis
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For measuring series n the following will be obtained:
We={W¢§, W3,.... Wi} v)

According to (iv) dependence (v) is generally a random variable, hence correlation
coefficient or correlation matrix is a significant measure determining relationship
between two random variables for a set of random variables — dependence (vi) [2].

N
Z (xi—X)»:—P)

Ryy= Ni= : (vi)

-
Z:(xi—fc)"“ Z:(yi—j))z

Correlation matrix for measuring results of vertical dislocations (Table 1) has been
presented in Table 3 — it implies that these are strongly correlated random variables.

Table3

Correlation matrix — subsidence measuring results W (x, )

Variables| 208 15 | 207 |14/21| 206 | 14 | 205 |14/19| 204 | 13 | 203
208 1 1 1 0.99 | 099 | 0.98 | 0.95 | 0.94 | 0.92 | 0.88 | 0.84
15 1 1 1 099 | 0.98 | 0.96 | 0.95 | 0.93 | 0.89 | 0.86
207 1 1 1 0.99 | 0.97 | 0.96 | 0.95 | 0.91 | 0.87
14/21 1 1 0.99 | 0.98 | 0.97 | 0.95 | 0.91 | 0.88
206 1 1 0.99 | 0.98 | 0.96 | 0.93 | 0.90
14 1 1 0.99 | 0.98 | 0.95 | 0.93

| 205 1 1 1 0.98 | 0.96
14/19 1 1 0.99 | 0.97
204 1 0.99 | 0.98
13 1 1
203 1

Subsidence of observation points measuring results — as sets of dislocations of 12
measuring series — are strongly correlated (Table 3). Therefore estimators of
regression equations have been determined, subsidence results of point 208 having
been assumed as the “independent variable”, subsidences of point 15 having been
assumend as “dependent variables” (Fig. 4), for point 207 respectively (Fig. 5).
Regression equations have the following form:
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Linear regression equation W’ (15:1,=28.889+1.1423* 1" (208:¢,)
Correlation coeficient: r, 99951
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-800 | #

-900
-750-650-550-450-350-250-150-50

Fig. 4. Diagram of regression equation —&— — Regression 95 confidence percentage

Regression equation — subsidences measuring results 7 (207;¢,=60.201 + 1.3246* }¥" (208;¢,)
Correlation coefficient: r, 99681

0
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w0 | | £
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900 |7/
-750-650-550-450-350-250-150-50

Fig. 5. Diagram of regression equation
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W(xk+l)=ak+l i W(xk; ti)+bk+l; i=2) 37 < vy 11

Estimators and correlation coefficients determined for the analyzed set of measure-
ments by means of the STATISTICA pack have been listed in Table 4.

Table 4

Points 15 207 |14/21| 206 | 14 | 205 |14/19| 204 | 13 | 203

estimator 4 | 1.142 | 1.325|1.382|1.434 |1.473 |1.451|1.420|1.382|1.276 | 1.140

estimator 5 | 28.9 | 60.2 | 71.2 | 70.1 | 71.6 | 45.2 | 28.3 | 12.7 | 334 | 658

correlation

coefficient 099 | 0.99 | 099 | 0.98 [0.976]0.952|0.937|0.922|0.877 | 0.843
Py
distance 20 36 52 72 90 110 | 130 | 146 | 162 | 182

d=X,+X.

208

Note that the deliberations presented herein concerning mathematical modelling
have been verified upon the example of vertical post-mining dislocations. Similar
verification and prognosis of an adequate process might be practically carried out for
an optional set of measuring results of characteristic quantities in the line of

r distribution of estimator “a”

correlation coefficient “r”’

09

(distance)

R e s WSS e s s, (e A i S SN RN T G S A

20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190

Fig. 6. Values of regression equations estimators and correlation coefficients for different configurations of
variables according to Table 4
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environmental protection, particulary in the sphere of approximation and current
prognosis of transformations of geometry of an area.

The foregoing regression equations imply that once a nonstationary distribution
of post-mining vertical dislocations of a given observation point is at our disposal, it
is possible to approximate distributions of dislocations of “surface points” within
a neighbourhood of the point. This is a significant property which makes it possible to
restrict the number of the set of measuring points or determine subsidences at
hypothetical points.

Table5
Model AUTOCORRELATION FUNCTION Point 15
5 White noise evaluation
Delay Auto.corre- W. no%se Box Ljung P
lation evaluation Q
1 0.620057* | 0.240906* 6.6247* 0.0101*
2 0.348553* | 0.231455*% 8.8925* 0.0173*
’ 3 0.157877* | 0.221601* 9.4001* 0.0244*
TableSa
Model AUTOCORRELATION FUNCTION Point 207
o White noise evaluation
Délay Auto‘corre- W. noi.se Box Ljung P
lation evaluation Q
1 0.653317* | 0.240906* 7.3545*% 0.0067*
2 0.379073* | 0.231455* 10.0368* 0.0062*
3 0.174812* | 0.221601* 10.6591* 0.0137*

Albeit the values of regression equations estimators are practically insignificant,
equations of that kind — providing that they have been properly constructed — make
it possible to minimize error, to be more precise — te determine the probability that
an error bigger than the admissible one will not occur more often than it is implied by
confidence level, which is quite significant. Autocorrelation function in turn makes it
possible to estimate the so called random factor superimposed additively upon the
values of generated subsidences — although the influence is remarkable, prediction of
the subsidence process is by all means satisfactory.

6. Final remarks

The main objective of this article was to construct an appropriate process model for
the determination of the optimal prognosis if part of observation results of
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a phenomenon is given, duration time of the phenomenon being the argument. It has
been determined that the analyzed process in its formal sense is a random one,
a certain class of stochastic models being the quantitative description. Actually,
non-stationary processes, in most cases, may be analyzed as stationary in a broader
sense — hence the stochastic process has been analyzed by means of autocovariance
function and spectral density estimators. The so defined model makes it possible to
predict the physically diversified phenomena that satisfy the mathematical conditions
of the stochastic process.

The utilitarian part of the article pertains to mathematical modelling of dis-
locations of points of the terrain and rock mass within the area of the impact of
underground exploitation. These are post-mining movements that by their mere
nature are a menace to many components of environmental protection; thus this is an
important problem both in cognitive sphere and in respect of application.

Deliberations presented herein provide grounds to set forth the following
conclusions:

1. Analysis of surveying results of non-stationary condition of post-mining
vertical dislocations implies that — in the sense of quantitive representation — an
exponential convergent series may be an adequate mathematical describing model of
the kinetics of subsidence of a points of the rock mass.

2. Probabilistic space and stochastic process have been defined for the defor-
mation area. Autocovariance function is the characterizing quantity of a given
process; minimum square criterion of the expected value of difference between
estimated value and measuring result has been applied at determination of optimal
Prognosis.

3. Numerical proceeding of a defined description of dislocations area has been
carried out with the use of the Durbin-Levinson algorithm. In order to obtain a high
accuracy of the prognosis of the process condition: ,,<d,dop. prediction has been
limited down to one-step prognosis.

4. Verification of the formulated description has been carried out for a definite
physical process — post-mining dislocations were being modelled. 14 cycles of
measuring dislocation results arranged chronologically assigned to each of the 11
observation points make up the matrix of the value of the state of the analyzed process.

5. Basic deliberations pertain to determination of the stochastic relationship:
deformation of the base determined due to measurements — process modelling results.
Deformation of the base is represented here by sets of measuring results of
geometrical transformation of the terrain. Modelling — this is application of an
appropriate operator with assigned parameters in the set of measuring results.

6. Random disturbances having been additively superimposed upon both the
groups of sets of descriptive variables provided a significant assumption for statistical
analysis. Optimal regression model estimators have been determined for the so
formulated problem.

7. Appropriate statistical measures characterizing the variables that describe the
stochastic process and defining their mutual correlations have been sample-determined.



Mathematical modelling . .. 37

8. Stable estimators of appropriate regression equations imply that it is possible to
approximate non-stationary characteristics of dislocations of “surface points’ within
a considerable environment of a point for which distribution of vertical post-mining
dislocations has been determined due to measurements. This is a particularly
important property — as it is, it is possible to reduce the size of a physical set of
measuring points, thickening at the same time the deformation area to be covered by
a considerably accurate prognosis.
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Modelowanie matematyczne kinetyki przemieszczen pogoérniczych
jako procesu quasilosowego

Streszczenie

W pracy sformutowano problem wyznaczania jedno- i wielokrokowej prognozy pogdrniczych przemie-
szczen powierzchni terenu. Zmienna opisujaca jest tu skonczony i uporzadkowany chronologicznie wektor
wynikéw pomiaréw geodezyjnych. Dokonane pomiary wskazuja, ze analizowany proces mozna zapisac jako
ztozenie procesu deterministycznego i procesu osobliwego. Stad tez opis ilosciowy kinetyki procesu
ksztaltowania przemieszczen przyporzadkowano do klasy modeli stochastycznych. Formalne zdefiniowanie
modelu stanowi tu odpowiednia suma szeregu gdzie argumentem jest czas a wartosciami zmienne losowe. Ze
wzgledow uzytkowych przeprowadzono optymalizacj¢ prognozy jednokrokowej. Aplikacyjng procedurg
numeryczna jest tu algorytm Durbina-Levinsona. Utylitarny fragment pracy to weryfikacja zdefiniowanego
modelu dla konkretnych warunkéw gorniczo-geologicznych i konkretnych wynikow pomiaréw. Uzyskane
analitycznie odwzorowanie i optymalna prognoza kinetyki przemieszczen pionowych dobrze przystaja do
wynikOw pomiarow, co potwierdzaja odpowiednie miary jakosci opisu procesu.
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Buecaag Ilugosapcku

MaremaTiHyecKoe MOJCIHPOBaHHE KHRETHKH UepeMerenHi
BLI3BAHHLIX I'OPHbLIMH PaboTaMA KaK KBa3HCJIY4aHHOI0 npouecca

PeszwomMme

B pabore npencrasnena npofsieMa ONpPeeIeHUs. OJHO- ¥ MHOIOLIATOBOrO IPOrHO3a NEPEeMeELIeHA K
MECTHOCTH B pe3y;JbTaTe TOpHBIX paboT. OmmchiBarolued NepeMEHHOH SBIETCS 3JeCh KOHEYHBIH
4 XPOHOJIOTHYECKH YIOPSOOYCHHBIH BEKTOP pe3yJbTATOB reOe3WYecKkdX maMepeHuil. IIpoBeneHHBIE
MU3MEPEHUs] [IOKA3bIBAKOT, 4YTO aHAJTH3WPOBAHHBIA MPOLECC MOXET OLITh 3amHCaH Kak CymMMma
JEeTePMUHHPOBAHHOrO mpouecca U ocoboro mpouecca. I103ToMy KONMMYECTBEHHOE ONHCAHAE KHHETHKU
npouecca (HOPMHUPOBAHHS MEPEMEUICHHH OTHECEHO HAa CHYeT KJIacca CTOXaCTHYECKHX MOJEIeH.
dopmasibHOE ONpe/IesIeHHe MOIEIH SIBJISETCS 3[4eCh COOTBETCTBEHHOI CyMMOM psiia, rie apryMeHTOM
SBJSETCS BpeMs d 3HAYCHHSMH CIy4aliHble BeMYHHBL. [IpAHAMAas BO BHHMAaHHE IKCILTyaTalHOHHBIE
KayecTBa MpPOBe/IeHa ONTUMH3ALMs OQHOILAIOBOrO MPOTHO3a.

AnnMKauMonnoii wmebpoBoil mpoueaypoil sBsSeTCsS 34ech amropdTM J[lypOuna-JIeBHHCOHA.
Yruidrapsbiii  GparmMesT paboTel 3TO BepudHKAlLMs ONPENeIeHHOH MOJEIH IS KOHKPETHBIX
[OPHO-TEO/IOrHYECKAX YCIOBAI M KOHKDETHBIX pe3y;1bTaToB m3MepeHmii. [losyyeHHOE aHAMTHYECKHM
criocobom OTODpaxeHHe W ONTHMAJIbHBIA MPOTHO3 KHHETHKM BEPTHKAJIHBIX MEpEMElIEHHAH XOpoo
COBNAMAIOT C Pe3y IbTaTaMH U3MEPEHHIH, YTO MOATBEPKIAIOT COOTBETCTBEHHBIE MEPhI KA4ECTBA ONHCAHHAS
potuecca.



