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Assessment of Deformation Properties of Coal Measure Sandstones  
Through Regression Analyses and Artificial Neural Networks

The deformation properties of rocks play a crucial role in handling most geomechanical problems. 
However, the determination of these properties in laboratory is costly and necessitates special equipment. 
Therefore, many attempts were made to estimate these properties using different techniques. In this study, 
various statistical and soft computing methods were employed to predict the tangential Young Modulus 
(Eti, GPa) and tangential Poisson’s Ratio (vti) of coal measure sandstones located in Zonguldak Hardcoal 
Basin (ZHB), NW Turkey. Predictive models were established based on various regression and artificial 
neural network (ANN) analyses, including physicomechanical, mineralogical, and textural properties of 
rocks. The analysis results showed that the mineralogical features such as the contents of quartz (Q, %) and 
lithic fragment (LF, %) and the textural features (i.e., average grain size, d50, and sorting coefficient, Sc) 
have remarkable impacts on deformation properties of the investigated sandstones. By comparison with 
these features, the mineralogical effects seem to be more effective in predicting the Eti and vti. The per-
formance of the established models was assessed using several statistical indicators. The predicted results 
from the proposed models were compared to one another. It was concluded that the empirical models 
based on the ANN were found to be the most convenient tools for evaluating the deformational properties 
of the investigated sandstones.
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1.	I ntroduction

Rocks have been used as construction and building material since the dawn of civilisation. 
Various engineering structures such as bridges, tunnels, and underground caverns have been 
built in/on rock masses, necessitating detailed investigations on host rock’s physicomechanical 
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properties, particularly for stability concerns. For the determination of rock properties, the mod-
est method is to obtain core samples. However, high-quality core samples with regular geometry 
cannot always be extracted from weak, highly fractured, thinly bedded, foliated, and block-in-
matrix (bim) rocks [1,2]. Besides, in some cases, drilling operations can be challenging in such 
rock formations associated with underground mines. In these cases, such predictive models help 
relevant engineers practically analyse their engineering geological problems.

The most commonly measured or estimated mechanical property of rocks is the uniaxial 
compressive strength (UCS, MPa), as it is a consistent relative measure indicating the resistance 
of rock materials under axial loading conditions. The UCS varies remarkably with changing pa-
rameters such as lithological variances, rock mineralogy, texture, and degree of weathering [3-13]. 
Nevertheless, the deformation properties of rocks (i.e., tangential Young Modulus (Eti, GPa) and 
tangential Poisson’s ratio (vti)) are other crucial rock properties in performing numerical model-
ling of rock masses [14-16]. In terms of underground coal mines, the Eti and vti have mainly been 
considered to investigate the strata control issues. They have also been adopted to estimate the 
stability and fracture evolution of rock mass formations [17-19].

Typical rock types have such specialities that control their behaviour from the point of 
fracture mechanics. For instance, sandstones including, economic coal and hydrocarbon reserves 
[20-23], have been mainly identified and investigated using their mineralogical and textural 
features [24,25]. The degree of breakage in sandstones is controlled by grain size, provenance, 
maturity, and geological age [26]. When the geological and depositional features are similar in 
lithofacies, coarser-grained mineral associations cause more fragmentation in sandstones [27]. 
Retrospectively, earth scientists have long been fascinated by the problem of extracting geologic 
information from grain-size analyses [26].

As a result, there is immense literature on quantifying the rock texture (RT) and rock min-
eralogy (RM). The RT is about variables covering the shape, roundness, size, and fabric of rock-
forming minerals. In practical engineering geological approaches, the RT is handled by mineral 
size and distribution of constituents. One of the methods to quantify the RT was proposed by 
Howarth and Rowlands [28]. It was called Texture Coefficient (TC) that was correlated with 
the UCS of rocks [8,29,30]. However, the implementation of TC is sometimes a challenging is-
sue due to the difficulties in detecting mineral boundaries, distinguishing the matrix or cement 
from rock-forming minerals, and orientations of grains during thin-section analyses. As another 
textural feature of rocks, the microfracture density is associated with the weathering degree of 
rocks [31-33]. In practical approaches, the main conclusion obtained from the RT analyses is that 
increasing grain size poses heterogeneity and thus decreases the rock strength [34-40]. Although 
the grain size is a critical phenomenon for the evaluation of rock strength, no direct correlations 
are obtained between these coupling variables [41].

When it comes to the RM effects on the mechanical properties of rocks, it was determined 
that increasing quartz content leads to an increase in the UCS for several rock types [42,43]. It was 
noted by Tandon and Gupta [44] that the UCS decreases with increasing muscovite content for 
quartzite rocks. Rӓisӓnen M [45] concluded that the abrasion resistance of hybrid granitoids de-
creases with increasing the heterogeneity in hornblende mineral associations. Cantisani et al. [46] 
determined that increasing the clay matrix in Italian sandstones poses heterogeneity and has 
remarkable impacts on the porosity of these rocks. Consequently, researchers have proposed 
numerous empirical models to predict the mechanical properties of rocks from their physical, 
mineralogical, petrographical, and other mechanical properties [47-58]. 



525

Thanks to these empirical models, practical theories have been postulated, making rock en-
gineering judgments much easier. However, the empirical models to predict dependent variables 
are primarily unique for any rock type or dataset and are required to be cross-checked by other 
supportive data and/or quantitative approaches. In this study, several predictive models were 
proposed to evaluate the Eti and vti of coal measure sandstones located in the Zonguldak Hardcoal 
Basin (ZHB), NW Turkey. The Eti and vti were investigated through regression and artificial neural 
network (ANN) methods based on the mineralogical, textural, and physicomechanical properties. 
The established predictive models were evaluated based on several statistical indicators, and their 
performances were compared to one another.

2.	M aterials and methods

Representative rock blocks were obtained from five different underground coal mines located 
in the ZHB for laboratory studies. A total of 32 different sandstones were investigated in this 
context. The sampling locations of the rocks are given in Table 1. The mineralogical composi-
tion of the sandstones was identified through thin-section and X-ray diffraction (XRD) analyses. 
In thin-section analyses, a polarized microscope (Leica DM750P) was used. The abundance of 
rock-forming minerals was quantified based on the point-counting method clearly defined by 
Larrea et al. [59]. Six different images were captured for each thin section scene, considering 
every 60° of microscope table orientation. From this approach, there were attempts to overcome 
or minimise the problems arising from optical orientation. A Bruker Discover D8 diffractometer 
with Cu Kα1 (wavelength 1.54060 Å) radiation source was also utilised in the XRD examina-
tions. These two methods were evaluated together for the determination of sandstone mineralogy. 
Typical thin sections and XRD patterns are shown in Fig. 1.

Table 1

Sampling locations of the sandstones

Longwall mine Depth (m) Number of rock type
Kozlu –485 –560 4

Üzülmez –160 –230 8
Karadon –360 –460 8

Gelik –260 –360 7
Amasra –410 –430 5

As for the textural characterisation, thin sections were digitised using the software ImageJ. 
The boundaries of grains were filtered thoroughly, and the size and shape properties were deter-
mined for each grain. The cementation occupied in thin-section scenes was excluded from the 
digitisation processes. The particles below 63 µm were also restricted in thin-section analyses; 
namely, they should be a maximum of 3% of the total number of digitised grains. As a result, 
the textural characterisation of the sandstones was stated by the average grain size (d50) and sort-
ing coefficient (Sc). The d50 and Sc were determined based on the size parameters of the grains. 
Focusing on the surface area (Ac) and Feret diameters (Fmin, Fmax) of each grain, the equivalent 
diameter (de, mm) of a rock-forming mineral was determined by the following equation [60]:
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where Ac is the surface area (mm2), Fmax, and Fmin are the maximum and minimum Feret diame
ters (mm) of the grain, respectively.

Based on de values, the Sc was determined using the following equations (Eqs (2) and (3)):

	 ϕ = –log2(de)	 (2)

where ϕ is the size value of the grain and de is in mm.

	
84 16 95 5

4.0 6.6cS
    

  	 (3)

where ϕ95, ϕ84, ϕ16 and ϕ5 represent the statistical size values corresponding to 95%, 84%, 16%, 
and 5% of the cumulative density function (CDF) of the analysed grains, respectively. 

The statistical data were analysed by adopting four different CDFs. These were based on 
the Normal, Gamma, Weibull, and Logistic distributions. Adopting these CDFs, four different 
d50 and Sc values were obtained in each textural analysis. The textural characteristics were then 
conducted by averaging these values for each rock type (Fig. 2).

Fig. 1. Typical thin-sections and XRD patterns of the sandstones
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Fig. 2. Illustration of textural characteristics of the sandstones

3.	L aboratory studies

3.1.	M ineralogical and textural characteristics

Mineralogical analyses showed that the quartz content (Q) varied from 17% to 80%. On 
the other hand, the ones of Feldspar (F) and lithic fragment (LF) were found to be between 
4-28% and 16-68%, respectively (Table 2). Based on the mineralogical data, the sandstones were 
identified as lithic arenite and sublitharenite, according to McBride [61] and Dott [62] (Fig. 3a). 
Furthermore, the sandstones were texturally submature, according to Folk and Ward [63] and 
Folk [64] (Fig. 3b). 
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When it comes to variations in grain sizes, the sandstones were divided into three classes 
in terms of their grain size. Fine-grained (0.125 ≤ d50 ≤ 0.250 mm) sandstones were found to 
be moderately well sorted (0.5 < Sc ≤ 1.0). Medium (0.25 < d50 ≤ 0.50 mm) and coarse-grained 
(0.50 < d50 ≤ 1.00 mm) sandstones were poorly and very poorly sorted in some cases. When increas-
ing the grain size, it seems logical to suppose that the Sc values increase in parallel with grain size 
in the sandstones (Fig 3c). However, the correlation between d50 and Sc is not strong (R2 = 0.43).

Fig. 3. Mineralogical and textural characterisations of the sandstones: a) Lithofacies classification based on 
McBride [61] and Dott [62], b) Sorting classification based on Folk and Ward [63] and Folk [64], c) Relation-

ship between d50 and Sc

3.2.	 Physicomechanical properties

Representative rock blocks were drilled using an NX-type core drill for obtaining core 
samples (Fig. 4a). The core samples were then cut and smoothed following the geometrical 
conditions of the test instructions. For this purpose, core samples with 54.0 ± 0.2 mm diameter 
and a length-to-diameter ratio of 2.0-3.0 were prepared for each rock type (Fig. 4b). The physical 
and mechanical properties were determined in accordance with the methods suggested by the 
International Society of Rock Mechanics [65]. Effective porosity (ne, %) and dry unit weight 
(γd, kN/m3) were determined using a desiccator filled with distilled water at 20 ± 2°C (Fig. 4c). 
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For the determination of deformation properties (Eti, vti), linear variable differential transformers 
(LVDTs) were attached to the core samples (Fig. 4d). The pulse wave velocity (Vp, km/s) of the 
sandstones was also determined using a Pundit Plus ultrasonic testing apparatus (Fig. 4e). For 
each physicomechanical test on individual sandstones, at least three core samples with proper 
dimensions were utilised and average values obtained from laboratory studies were presented 
in Table 2. According to the laboratory test results, the UCS ranged from 54 to 166 MPa, while 
the Eti was between 10 and 34 GPa (Table 2). Considering the UCS values in Table 2, the inves-
tigated sandstones were identified from moderately hard to hard rock, according to Deere and 
Miller [66]. Some of the laboratory studies are illustrated in Fig. 4.

Fig. 4. Laboratory studies: a) Drilling rock blocks, b) Some of the prepared core samples,  
c) Determination of the ne and γd, d) Determination of the UCS, Eti and vti, e) Pulse wave velocity test

Table 2

Laboratory test results

Rock 
type

γd  
(kN/m3)

ne  
(%)

Q  
(%)

F  
(%)

LF  
(%)

d50  
(mm) Sc

UCS  
(MPa)

Vp 
(km/s)

vt  
(-)

Eti 
(GPa)

1 2 3 4 5 6 7 8 9 10 11 12
S1 24.82 1.25 52 18 30 0.098 1.029 114.29 4.43 0.15 34.20
S2 25.21 1.27 55 6 39 0.229 1.085 93.13 3.48 0.21 15.77
S3 23.82 5.43 31 28 41 0.713 1.841 79.41 2.71 0.24 16.01
S4 25.20 1.80 57 13 30 0.148 0.815 95.56 3.98 0.21 24.74
S5 24.93 1.72 58 15 27 0.164 0.862 92.17 4.05 0.21 25.40
S6 24.77 2.09 54 15 31 0.129 0.894 87.44 3.22 0.20 21.39
S7 23.85 3.94 36 24 40 0.741 2.329 60.27 2.58 0.25 15.13
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1 2 3 4 5 6 7 8 9 10 11 12
S8 24.25 4.23 34 26 40 0.595 1.269 58.74 2.54 0.24 13.27
S9 23.84 6.08 48 11 41 0.374 1.580 54.19 2.99 0.28 12.09
S10 24.02 6.47 46 14 40 0.440 2.345 59.28 2.65 0.25 14.80
S11 26.31 1.95 78 4 18 0.318 0.819 115.09 4.15 0.25 25.32
S12 26.63 1.87 80 4 16 0.244 0.755 140.58 4.22 0.22 32.77
S13 26.07 1.68 75 4 21 0.276 0.826 124.16 3.90 0.26 29.92
S14 25.34 1.46 34 22 44 0.366 1.678 92.25 3.50 0.24 18.57
S15 26.65 0.79 69 11 20 0.116 0.644 139.16 4.33 0.16 25.35
S16 26.38 0.86 72 7 21 0.081 0.679 149.74 4.51 0.15 29.11
S17 25.94 1.27 29 27 44 0.430 0.965 100.25 3.00 0.16 15.76
S18 25.32 3.05 40 15 45 0.699 1.668 73.23 2.93 0.19 14.37
S19 25.88 0.71 62 6 32 0.480 0.847 140.60 4.25 0.20 26.87
S20 25.69 3.23 38 11 51 0.453 1.241 95.14 3.51 0.17 20.57
S21 25.70 5.13 42 14 44 0.283 1.608 74.84 3.08 0.22 13.50
S22 25.63 1.90 64 8 28 0.544 0.712 144.50 4.12 0.14 24.10
S23 25.34 1.57 55 10 35 0.273 0.934 105.69 4.05 0.11 20.36
S24 25.47 5.14 60 5 35 0.560 1.144 81.44 3.17 0.22 16.27
S25 24.20 4.65 17 15 68 0.517 2.047 64.80 2.45 0.22 11.16
S26 25.10 0.94 56 17 27 0.083 1.076 106.54 4.27 0.12 32.08
S27 25.31 3.39 30 7 63 0.211 0.902 72.04 2.68 0.19 14.80
S28 25.47 2.56 52 15 33 0.477 0.896 117.80 3.99 0.10 22.10
S29 25.44 2.83 38 9 53 0.648 1.658 87.54 3.39 0.15 19.10
S30 23.80 3.50 35 28 37 0.622 1.323 69.09 2.75 0.27 13.26
S31 23.68 7.86 34 21 45 0.689 2.056 66.53 2.52 0.25 10.52
S32 26.24 0.92 77 6 17 0.062 0.624 166.57 4.62 0.15 29.61

γd – Dry unit weight, ne – Effective porosity, Q – Quartz content, F – Feldspar content, LF – Lithic fragment content,  
d50 – Average grain size, Sc – Sorting coefficient, UCS – Uniaxial compressive strength, Vp – Pulse wave velocity, 
vti – Tangential Poisson’s ratio, Eti – Tangential Young modulus

4.	R esults and discussion

4.1.	 Prediction models

4.1.1.	Regression analyses

The relationships of coupling variables were stated by Pearson’s correlation matrix (Ta-
ble 3). Accordingly, the ne, Q, LF, Sc, UCS, and Vp are statistically significant, evaluating the Eti. 
Of these variables, the Vp can be declared a highly correlative parameter, which was also stated 
by [52,67-71]. On the other hand, the LF and Q as relative indicators of distinguishing sandstone 
mineralogy seem more influential than textural features on the Eti. This finding is in good agree-
ment with the results of Eberhardt et al. [37] and Sabatakakis et al. [72]. However, Tugrul and 
Zarif [36] controversially stated that the influence of textural characteristics is more significant 
than the mineralogical features for granitic rocks.

Table 2. Continued
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Table 3

Correlation matrix of the variables considered in this study

Variable γd ne Q F LF d50 Sc UCS Vp vt

ne –0.697
Q 0.668 –0.535
F –0.650 0.312 –0.699

LF –0.496 0.522 –0.905 0.330
d50 –0.508 0.601 –0.575 0.436 0.501
Sc –0.732 0.760 –0.701 0.500 0.629 0.658

UCS 0.799 –0.751 0.778 –0.526 –0.715 –0.522 –0.765
Vp 0.725 –0.788 0.823 –0.546 –0.763 –0.675 –0.773 0.895
vt –0.474 0.559 –0.201 0.207 0.143 0.342 0.486 –0.551 –0.567
Eti 0.626 –0.743 0.776 –0.442 –0.762 –0.655 –0.712 0.828 0.911 –0.454

Bolded values (e.g.. 0.828) represent highly correlative (R ≥ 0.70, R ≤ –0.70) coupling variables.

In the context of regression analyses, statistically significant relationships are listed in Table 4. 
It can be claimed that the Eti could be estimated by the regression models (M1-M8). However, 
the coefficient of determination (R2) for these models may not be high enough for precise estima-

Table 4

Regression analysis results

Empirical formula Model No Estimate Standard error t value R2

Eti = 27.161n–0.365 M1 27.161 1.385 19.61 0.56–0.365 0.062 5.89

Eti = 2.13 + 0.189USC M2 2.13 2.39 0.89 0.640.189 0.023 8.21

Eti = 35.87 – 1.741ne – 0.286LF M3
35.87 1.99 18.02

0.74–1.741 0.403 4.32
–0.286 0.061 4.69

Eti = 14.20 – 1.683ne + 0.223Q M4
14.20 3.14 4.52

0.75–1.683 0.401 4.20
0.223 0.046 4.85

Eti = –11.11 + 9.052Vp M5 –11.11 2.67 –4.16 0.829.052 0.748 12.10

Eti = 2.45 + 0.147USC – 3.19ln(d50) M6
2.45 2.11 1.16

0.760.147 0.025 5.88
–3.19 1.04 3.07

Eti = 36.66 – 11.861d50 – 0.321LF M7
36.66 2.24 16.40

0.68–11.86 3.93 –3.02
–0.321 0.067 –4.78

Eti = 22.187 – 12.88ln(Sc) M8 22.187 0.904 24.54 0.53–12.88 2.23 –5.77

vti = 32.296LF –0.424USC –0.808 M9
32.296 35.465 0.967

0.52–0.424 0.131 3.23
–0.808 0.144 5.61
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tions. It should also be stated that the lowest R2 (0.52) was obtained when evaluating the vti (M9). 
Therefore soft computing algorithms were attempted to have additional predictive models with 
higher accuracy, some of which are given in the following sections.

4.1.2.	Artificial neural network (ANN) applications

The artificial neural network (ANN) has been widely adopted to predict several dependent 
variables based on complex datasets. It is a well-accepted method in most engineering geologi-
cal problems. In this study, the neural network toolbox (nntool) was utilised to establish several 
neural networks in the MATLAB environment. The dataset was randomly divided into training 
(70/100) and testing/validating (30/100) parts. Various possible network architectures with variable 
hidden layers and neurons were attempted to determine the most reliable structural combination. 
For estimating the Eti and vti, the most convenient ANN architectures were found to be 4–4–1 and 
3–6–1, respectively (Fig. 5). To increase training efficiency, the dataset was normalised using 
the following equation [73,74]: 

	
min

max min
2 1i

N
x x

V
x x

 
   

	 (4)

where xi is the relevant parameter to be normalised, xmin, and xmax are the minimum and maximum 
values in the dataset (Table 2).

The predicted Eti and vti values were also denormalised by the following equation:

	   max min min0.5 1nx x x x x    	 (5)

where xmax and xmin values are given in Table 2.

Fig. 5. ANN architectures considered in this study
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The training of neural networks was conducted using a backpropagation training algorithm 
with Levenberg-Marquardt training function. Tangent sigmoid (tanh) function was adopted to 
transmit the data through neurons, which is given by the following equation:

	 2
2tanh 1

1 xe
 


	 (6)

Different rock properties were adopted in the context of ANN analyses (Fig. 5). In light 
of the above explanations, the ANN analyses were carried out with high accuracy. Once the ANN 
has been trained, predictive equations can be established using the weights and biases. In this 
regard, the empirical models to predict Eti and vti can be derived from the following equation  
[74,75]:

	
0 ( )

1 1

h m

sig k sig hk ik i N
k i

Y f b w f b w X
 

          
    

  	 (7)

where b0 is the bias at the output layer, wk is the connection weight between the kth neuron 
of the hidden layer and the single output neuron, bhk is the bias at the k th neuron of the hidden 
layer, h is the number of neurons in the hidden layer, wik is the connection weight between the  
i th input variable and k th neuron of the hidden layer, Xi(N) is the normalised input variable, 
fsig is the sigmoid transfer function (i.e., tanh).

Based on the above explanations, the ANN-based predictive models are presented in Eq. 8 and 
Eq. 9. As for the ANN analysis results, strong correlations were obtained between the predicted 
and measured Eti and vti values (Fig. 6). The coefficients of determination (R2) for these models 
were 0.95 and 0.92, respectively. Therefore, the ANN models (M10-M11) have a higher predic-
tion efficiency than the regression models (M1-M9). Mathematical expressions and subfunctions 
for Eq. 8 and Eq. 9 are also presented in Table 5.

	

4

1
11.84 tanh 0.7347 22.36ti i

i
E A



 
   

 
 	 (8)

	

6

1
0.09 tanh 1.6312 0.19ti i

i
v A



 
   

 
 	 (9)

where subfunctions (Ai) are given in Table 5.

Table 5

Empirical formulae of the proposed ANN models

Model 10 (M10) Dependent variable : Eti

A1 = –0.73941tanh(–0.31605nne – 1.8092nQ + 4.4432nSc – 0.11964nVp + 2.9735)
A2 = 3.2983tanh(–3.2602nne + 0.36492nQ – 1.0778nSc – 4.348nVp + 0.55646)
A3 = –3.0718tanh(–3.881nne + 3.8847nQ – 1.9101nSc – 7.1933nVp + 0.44225)
A4 = 1.1302tanh(0.013534nne + 2.9422nQ + 5.9264nSc + 5.0804nVp – 1.6618)
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Normalization functions for independent variables
nne = 0.2797ne – 1.1986 nQ = 0.0317Q – 1.539
nSc = 1.1621Sc – 1.7252 nVp = 0.9217Vp – 3.2581

Model 11 (M11) Dependent variable : vti

A1 = –1.7392 tanh(–3.7708nne + 0.85205nLF + 1.282nUCS + 1.6811)
A2 = –0.9182 tanh(3.0538nne + 1.0128nLF + 0.041508nUCS – 1.3083)

A3 = 1.7995tanh(2.1438nne + 4.9313nLF – 4.3467nUCS – 0.4404)
A4 = –2.6048tanh(4.6183nne + 3.8207nLF + 3.0323nUCS + 4.0693)
A5 = 2.0093tanh(5.924nne – 3.4715nLF – 0.57324nUCS + 2.8373)

A6 = 2.9519tanh(–2.7696nne + 2.5136nLF + 0.82155nUCS – 1.5425)
Normalization functions for independent variables

nne = 0.2797ne – 1.1986 nLF = 0.0385LF – 1.6154
nUCS = 0.0178UCS – 1.9644

Fig. 6. Correlations obtained from the ANN analyses: a) Predicted and measured values b) Error bands

Several researchers also reported various ANN applications to evaluate the Eti for differ-
ent rock types (Table 6). It is clear from Table 6 that Schmidt hammer rebound value (SHV), 
ne, and Vp were commonly utilised to predict the Eti in such ANN models. In those models, 

Table 5. Continued
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the ANN architecture of 4–4–1 seems to be much preferable. It should be herein mentioned 
that the proposed ANN models (M10, M11) have several similarities with the models of Heidari 
et al. [76] and Armaghani et al. [77] in terms of independent variables used and ANN architec-
tures adopted.

Table 6

Independent variables and used to predict the Eti for various rock types

Rock type Independent variable ANN 
architecture R2 Reference

Travertine SHV, Is50, Vp, ne N.R 0.77 Dehghan et al. [53]
Gypsum SHV, Is50, wa, Vp 4–9–1 0.89 Yilmaz and Yuksek [68]

Limestone, marl, dolomite UCS, ne, ρd, Vp 4–4–1 0.93 Heidari et al. [76]
Granite ρd, Vp, Q, Plg. 4–4–1 0.92 Armaghani et al. [77]

Limestone
γd, SHV, ne, Vp, Id4 5–2–1 0.71 Yagiz et al. [78]

Ed, vd 2–9–1 0.92 Aboutaleb et al. [79]
Sandstone ne, Vp, Sc, Q 4–4–1 0.95 The present study

N.R – Not reported, SHV – Schmidt hammer rebound value, Is50 – Point load strength, wa – water absorption, 
ρd – Dry density, γd – Dry unit weight, Vp – Pulse wave velocity, ne – Effective porosity, UCS – Uniaxial com-
pressive strength, Id4 – Slake durability index after the fourth cycle, Ed – dynamic Young modulus, vd – Dynamic 
Poisson’s ratio, Q – Quartz content, Plg – Plagioclase content, Sc – Sorting coefficient

4.2.	M odel comparison

Comparing the predictive models was made based on a simple computational code gener-
ated in Matlab 2020b, including the empirical formulae established in this study (Table 4, 5). The 
prediction capability of the models (M1-11) depends on the independent variables considered 
in the relevant model. Specific to the regression models (M1-M9), it can be claimed that there 
is no clear superiority over their estimation capability owing to the fluctuation of the predicted 
results. To prevent overfitting in the estimations, it is recommended to consider all the regression 
models together. By this comparison, the ANN-based models (M10, M11) can be declared the 
most convenient tools for predicting the Eti and vti (Fig. 7). 

These models are based on ne, Q, LF, Sc, Vp, and UCS (Fig. 5). The error bands for the 
ANN-based models are almost within the 95% confidence interval limits, which validates their 
statistical significance (Fig. 6b). The mentioned independent variables for M10, M11, especially 
mineralogical (Q, LF), and textural ones (Sc), can be determined from thin-section analyses, 
previously given in Fig. 1 and 2. In physicomechanical properties, ne and Vp are nondestructive 
rock properties, which are easy to handle and easily repeatable [80]. Hence, they can be used to 
evaluate the Eti of investigated sandstones. When it comes to estimating the vti, the LF and UCS 
were utilised in the models of M9 and M11.

The LF for sandstones in the ZHB was previously defined as four subgroups. These are 
gravel substitutions (e.g., micro-quartzite with undulose extinction), detritic igneous constituents 
(e.h. Hornblende, biotite, tremolite, chlorite, and pyroxene), carbonate fragments (e.g., calcite, 
aragonite), and opaque minerals (magnetite, rutile etc.) [60]. The more LF is, the lower UCS values 
can be expected (Table 3). Owing to this reason, the LF was adopted as a reasonable parameter 
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Fig. 7. Comparison of the predictive models for several sandstones
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for predicting the vti. However, it should be considered thoroughly because of the possibility of 
subjective mineralogical inferences.

The performance of the proposed models was evaluated using various statistical indices 
such as root means squared error (RMSE), mean-squared-error (MSE), mean absolute percent-
age error (MAPE), and the variance accounted for (VAF). The equations to calculate the above 
indices were listed in Eqs. 10-13.
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where oi is the observed data, ei is the estimated data, and n is the number of observations.

The performance evaluation of the models is presented in Table 7. Higher VAF and lower 
RMSE, MSE, and MAPE values indicate relatively more successful models. In this direction, 
when comparing the regression models with one another, M5 has the lowest relative errors with 
RMSE, MSE, and MAPE values of 2.82, 7.95, and 2.20, respectively. 

Table 7

Performance evaluation of the predictive models

Model No Dependent variable R2 RMSE MSE MAPE VAF
M1

Eti

0.56 4.53 20.53 3.62 56.13
M2 0.64 3.83 14.72 2.95 68.53
M3 0.74 3.45 11.93 2.72 74.49
M4 0.75 3.40 11.56 2.45 75.28
M5 0.82 2.82 7.95 2.20 82.99
M6 0.76 3.33 11.09 2.67 76.29
M7 0.68 3.86 14.92 3.13 68.11
M8 0.53 4.71 22.19 3.75 52.57

M10(I) 0.95 1.58 2.50 1.14 94.70
M9

vti
0.52 0.03 0.001 0.02 52.47

M11(I) 0.92 0.01 0.0002 0.008 93.69
(I) ANN-based models
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The VAF for M5 is 82.99. On the other hand, as tabulated in Table 7, M10 and M11 pro-
vide the highest prediction performance among the established models with VAF values greater 
than 93. The performance indices demonstrate that the M10 and M11 can be used to predict the 
deformation properties of the sandstones when a high degree of accuracy is required. Moreover, 
regression-based models such as M4 and M5 can also be regarded in conditions where simple 
estimations of Eti are desired. 

5.	 Conclusion

Predictive models have been established for the evaluation of Eti and vti in this study. The 
physicomechanical, mineralogical, and textural properties were determined using 32 different 
coal-measure sandstones (Table 2). Regression and soft computing analyses were carried out 
using the laboratory test results. The analysis results demonstrated that the ne, Q, LF, Sc, UCS, 
and Vp are statistically significant. Therefore they could be declared correlative parameters for 
the evaluation of Eti. However, simply no correlative variables are found with regards to the vti.

Soft computing analyses are carried to fulfil the need for high prediction accuracy. The cal-
culated performance indices have demonstrated that the M10 and M11 could be reliably utilised 
to estimate the deformation properties of the sandstones (Table 7).

Mining activities in the ZHB have been gradually carried out at greater depths that neces-
sitate detailed investigations on coal-measure rocks’ physicomechanical properties. Therefore 
it is logical to suppose that such predictive models based on soft computing tools save time and 
provide accurate data in rock engineering judgments for roof stability considerations in the ZHB. 
One can claim that the physicomechanical, mineralogical, and textural features of sandstones can 
reveal the deformational properties when integrated into soft computing algorithms. By changing 
the independent variables, various ANN models can always be welcomed relative to the need. 
Therefore, there is flexibility in improving the ANN-based models by incorporating new test 
results. The outputs of the experimental studies presented in the paper help provide information 
on the deformational properties of the investigated sandstones. Nevertheless, further studies are 
required to obtain such predictive models that consider confining pressures, degree of anisotropy, 
and predefined cracks.
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