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Effectiveness of Dynamic Matrix Control algorithm
with Laguerre functions
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The paper is concerned with the presentation and analysis of the Dynamic Matrix Control
(DMC) model predictive control algorithm with the representation of the process input trajec-
tories by parametrised sums of Laguerre functions. First the formulation of the DMCL (DMC
with Laguerre functions) algorithm is presented. The algorithm differs from the standard DMC
one in the formulation of the decision variables of the optimization problem — coefficients of
approximations by the Laguerre functions instead of control input values are these variables.
Then the DMCL algorithm is applied to two multivariable benchmark problems to investigate
properties of the algorithm and to provide a concise comparison with the standard DMC one.
The problems with difficult dynamics are selected, which usually leads to longer prediction and
control horizons. Benefits from using Laguerre functions were shown, especially evident for
smaller sampling intervals.
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1. Introduction

Model Predictive Control (MPC) is now an established advanced control
technology, represented by numerous control algorithms and software packages
applied successfully in the industrial practice, see, e.g., [1-4,6,8—14,19]. Dynamic
Matrix Control (DMC) algorithm was one of the first MPC algorithms developed
and applied in practice, still being one of the most popular MPC solutions in
the process industries. The algorithm uses nonparametric process models in
the form of discrete-time unit step responses. Such models are relatively easy
to identify during the standard on-line experiments, which is the main reason
of popularity of DMC. On the other hand, step response models can have long
horizons of dynamics, i.e., large numbers of sampling intervals before the outputs

Copyright © 2021. The Author(s). This is an open-access article distributed under the terms of the Creative Com-
mons Attribution-NonCommercial-NoDerivatives License (CC BY-NC-ND 4.0 https://creativecommons.org/licenses/
by-nc-nd/4.0/), which permits use, distribution, and reproduction in any medium, provided that the article is properly
cited, the use is non-commercial, and no modifications or adaptations are made

P. Tatjewski, e-mail: P.Tatjewski @ia.pw.edu.pl, is with Warsaw University of Technology, Nowowiejska
15/19, 00-665 Warszawa, Poland.
Received 10.07.20211.


https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:P.Tatjewski{@}ia.pw.edu.pl

www.czasopisma.pan.pl P N www.journals.pan.pl
Y
<

796 P. TATJEWSKI

stabilize after a step change of the process input. In particular, this happens
when short sampling intervals are chosen, now easily implemented in modern,
powerful process controllers to avoid too large additional delay stemming from
the sampling procedure. This can be also caused by difficult process dynamics,
e.g., by relatively short and different process delay times, when compared to the
dominant time constants, to capture accurate modeling of the delays. Therefore,
long prediction horizons can then result in the DMC algorithm together with
also relatively long control horizons. This usually leads to increased on-line
computational burden, mainly caused by increased dimensionality of the DMC
optimisation problem.

Using polynomial models is a way to simplify complex dynamical modeling,
the use of Laguerre functions is here a popular solution, see, e.g., [17]. It was also
proposed in MPC applications, to speed up the use of models in the prediction
process. The application of Laguerre functions for representation of control input
trajectories can be found mainly for state-space process models, see [16, 18].
Recently, this approach has been applied in nonlinear MPC for more efficient
optimization with linearized models in predictive structures of GPC type, see [5].
In this paper, the use of the Laguerre functions for the parametrization of predicted
control input trajectories in the DMC algorithm will be proposed and analysed.
Basing on a thorough analysis of simulation results of two benchmark MIMO
problems, it will be shown that such approach may be computationally more
efficient, first of all for processes with difficult dynamics and long step responses
(long horizons of dynamics) and thus relatively long control horizons. The paper
is a significantly extended version of the presentation at the 20th Polish Control
Conference [15], in particular by addition of the analysis of the impact of the
sampling interval, which occured to be crucial. Moreover, much more results
concerning the first benchmark problem and all results for the second problem
are added. This allowed to formulate much more representative conclusions.

The structure of the paper is as follows. In Section 2 the standard DMC algo-
rithm will be briefly recalled. The use of Laguerre functions to parametrize the
control input trajectories over the prediction horizon and the DMCL (DMC with
Laguerre functions) algorithm will be formulated in Section 3. In Section 4 the
efficiency of the DMCL algorithm, in comparison with the standard formulation
of the DMC algorithm, will be thoroughly investigated on two MIMO benchmark
example problems. Conclusions will be the last part of the paper.

2. Dynamic Matrix Control Algorithm

The DMC algorithm was one of the first model-based predictive feedback
control (MPC) algorithms, it is still very popular in the industry applications. The
general principle of the MPC algorithms is known, different formulations can be
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found in many papers and books, see, e.g., [6,9-11, 19]. In this paper the DMC
algorithm will be further developed, therefore its standard formulation will be
first given.

The principle of the MPC is to evaluate optimal current process control in-
put signals by minimizing certain performance function (cost function) over a
future prediction horizon of N samples, at each sampling instant k. The follow-
ing performance function is one of the most widely applied in process control
implementations:

N N,—-1
J(ky = > Iy e+ plk) = y(k + plollg + D IAutk +ploI, (1)
p=1 p=0

where || x|lg =x"Rx, ¥ > 0 and A > 0 are square diagonal scaling matrices, posi-
tive semi-definite and positive definite, respectively, of dimensions corresponding
to the dimensions n, and n,, of the vectors u and y representing process controlled
outputs and process control inputs, respectively. A simpler formulation of (1) is
often used in theoretical considerations, with one scaling scalar A only, i.e., ¥ =1
and A = AL. N, < N denotes the length of the control horizon, y*”(k + p|k) and
v(k + plk) are predictions of the set-point (reference) and process output vectors,
for a future sample k + p, but calculated at the current sample k, p = 1,..., N.
We assume in the paper that scaling matrices are the same for each sample over
the prediction horizon, extension to variable scaling is possible, see e.g., [7] for
results of the influence of sample-dependent scaling.

Control input increments on the control horizon are the decision variables of
the MPC optimisation problem in most standard DMC formulations,

Au(k + plk) =u(k + plk) —u(tk+p-1lk), p=0,...,N,— 1.
Therefore, the vector of decision variables, denoted by Au(k), is as follows
T T 17
Au(k) = [Au(klk) Au(k+1|k) ---Au(k + N, — 1]k) ] . 2)

The optimization of J(k) can be under constraints, we assume the following
simple constraints:

_Aumax < Au(k +p|k) < Aumax, p = 0, .. .,Nu_l, (3)
Umin < u(k +P|k) < Umaxo D= 0,....,N,~1, 4)
ymingy(k*'plk)gymax’ p=1...,N. (5)

More general form of the constraints is possible, including any linear functions
of all variables used, but is here avoided for simplicity.
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Denoting by y*” (k) and y”" (k) composite vectors of set-points and predicted
outputs on the prediction horizon, respectively,

T
: (6)
(7)

yPk) = [yP(k+ 1K) - yP(k+ NI
¥k = [y + 10T o v+ NI

we can formulate the MPC optimization problem, which calculates the optimal
control trajectory at each sampling instant, as follows:

min { J(k) = [ly* (k) =y (0)|[g + 1A u(®)I} }

Au(k)
subject to : (3), (4) and (5), (8)
where
N times N, times
—— —_——
W = diag{ V¥, ..., ¥}, A =diag{A, ..., A} 9)

and where the predicted trajectory y”” (k) of the process outputs is calculated
using the process model, in the form of unit step responses.

For MIMO processes, it is most convenient to formulate the overall process
step response model in the matrix form, see [11]. Such model consists of D
matrices S;, each matrix corresponding to one sampling instant /, covering the
horizon of sampling periods needed for the outputs to stabilize after the step input
change, i.e., the horizon of dynamics of length D of the process,

Al 12 13 Jdme ]
5080 sl2
200 22 23 ... 2m
sy ST ST sl3
S, = s?l s?z s133 sln“ , =12 ...,D,
nyl  ny2  ny3 L Iy
LS S0 S N PR

where 57 denotes [-th element of the response of the i-th process output on the
unit step change of the j-th process input,i = 1,...,n,, j = 1,...,n,, see [11].
Using this model, the following prediction formulae can be obtained (for the case
without measured disturbances) [11]:

y7 (k) = MAu(k) + y(k) + MEAu®(k), (10)
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where
S 0 o --- 0
S, Sy o .- 0
S; S, S - 0
M = : : : : 1
Sy, Swot Sny2 S (h
Sn,+1 Sn, Sn-1 -0 S
Sy Sn-1 Sn—2 -+ Sn-N,+1 |
is the dynamic matrix,
[ S2-S1 S3-S2 S4-S3 -+ Sp-Spi
S3-81 S4-8 Ss5-83 -+ Spy1—-Sp
MP=| S4a-8S1 Ss-S2 S6—-S3 -+ Spw2a—Sp1 |, (12
| Sn+1=S1 Sn+2—S2 Sn+3=S3 -+ Snip-1-Sp-1
[ y(k) Au(k —-1)
y(k) Au(k —2)
y(k) = | YK |, Auf(k)y=| Aulk=3) |, (13)
| y(k) Au(k—(D-1))

and where y(k) consists of N repetitions of the vector y(k).

Once the optimization problem (8) with the predictions (10) has been solved,
only the first element Ai(k|k) of the optimal control trajectory is further taken
as the current process input u(k) = u(k — 1) + A#i(k|k). But, after the next
measurement (at the next sampling instant) the whole DMC algorithm procedure
is repeated (which is usually called a receding horizon strategy).

We shall assume n,, = n, in the paper, which in the linear case always yields
a unique solution of the MPC optimization problem. However, by appropriate
augmentation of the performance function, this can be easily generalized to the
case n, > ny, not unusual in MPC applications, see, e.g., [11].

3. The DMC Algorithm with Laguerre Functions

The Laguerre functions are usually defined by their transfer functions — the
transfer function of the Laguerre function of order n is

V1 - a2 (1 - az)("_l)

Z—a

Ln(z) =

(14)
z—a
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where a is a scaling factor, 0 < a < 1, see, e.g., [17, 19]. Thus the Laguerre
function of order n is

Li(k) = Z7N(Lu(2)). (15)

Define a set of n; Laguerre functions, of increasing order

I(p) =L@ L,]", p=0,...,N-I (16)

Taking into account the structure of these functions, it can be easily deduced that

l(p+1)=Al(p), (17)
where
a 0 0 --- 0]
B a 0 ---0
—-ap B a -0
A= aZB _aﬁ :8 K (18)
_qn2p _gnip . B o4l

with the initial value

1
—a
2
=vi-a| °; (19)
| (~ay ]

and where 8 =1 — a2, see, e.g., [19].

Let us assign a set of n; Laguerre functions [},12,...,1;,,
to every component u; of the process control input vector u = [uj - - cu, .
Generally, the numbers n;, can differ for components of u, but they are usually
taken equal, for simplicity, we also apply this assumption. Next, components of
the DMC decision control vector Au(k) (2) are parametrised in the following way

j=1...,ny,

Aujk +plk) = )" B(p)en(k) =V (p) ¢/ (k)

m=1

j=1...,mw p=0,...,N-1,  (20)

where . . . ,
Vp) =) - b, ()] 1)
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is defined according to (16) and ¢/ (k) is the vector of coefficients of the Laguerre
functions,

. : ; ; T .
(k) = [ef (k) k) - ch (O] L =1 (22)
Therefore, we have finally the following representation of the control vector

Np)Tel (k)

P(p)c? (k)

Au(k + plk) = , p=0,...,N—1. (23)

17 (p) e (k)
Further, defining the composite vector ¢(k) of all coefficients ¢/ (k),
e(k) = [ () AT - )] (24)
and N matrices
L(p) = diag (I'(p)". 2(p)".....I" ("), p=0.....N-1,  (25)
we can transform (23) to the form
Au(k + plk) =L(p)e(k), p=0,...,N—-1. (26)
Therefore, we get the final formula

Au(klk) L(0)

Au(k + 1lk) L(1)

Au(k) = c(k) = Le(k). 27)

Autk+N-116] |Lv=1)

Observe that the matrix L. does not depend on time, it depends only on the
value of the scaling factor a. Thus it is evaluated only once, off-line during
the design phase. Generally, different scaling factors a/ can be used for different
components u; of the vector u, but this would only influence the off-line evaluation
of the Laguerre functions [/ and the matrix L.

Substituting (27) into the prediction equation (10), into the performance func-
tion (8) and into the inequality constraints (3),(4),(5) changes the decision vari-
ables of the DMC optimization problem. It becomes the problem of optimization
with respect to the vector of the Laguerre coefficients ¢(k). The DMC algorithm
with this optimization problem will be further denoted by the acronym DMCL
(DMC with the control input parametrization using the Laguerre functions).
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The dimension of the vector ¢(k) is n, = n,-ny and is therefore not dependent
on the control horizon N,, whereas in the standard DMC algorithm the dimension
of the decision vector Au(k) is n,-N,. Therefore, if n; < N,, dimensionality of
the DMC optimization problem is diminished — what is important, as this problem
is solved on-line at every sampling instant. As ny is not dependent on N,, we
assume N, = N in the DMCL algorithm. Further, if N, = N and the prediction
horizon N is sufficiently long, the Laguerre functions become orthonormal (see,
e.g., [19]). Taking this into account, the second term in the performance function
in (8) can be transformed to the following simple form:

IAu(i)ll§ = e(k)'LTALe(k) = e(k) Ape(k) = lle(Olly . (28)

where
A, = diag (4L, Lol -+, A,,1,) (29)

and where I,,, is the identity matrix of dimension n; and the weights A; are
elements of the weighting matrix A in the initial performance function (1),
A =diag(Ay, Ay, . . ., Ay,). Therefore, the performance function takes the form

J(k) =

¥y (k) - [MLe(k) + y(k) + MPAu"(k)] ||; +lle®ly, . (30)

In the simplified case when there is one common weighting factor A for all
components of the control input vector, i.e., A = AI,,, eq. (28) reduces to

Alle(k).

4. Efficiency of the DMCL algorithm

As the dimensionality n. of the decision vector ¢(k) does not depend on
the control horizon, we can take both control and prediction horizons equal,
N, = N, without negative influence on the on-line computations. On the other
hand, n. = n,-n; and thus depends on the number of Laguerre functions ny,
taken to parametrize the trajectory of each element u; of the input vector u, over
the prediction horizon. The practice of model approximations by the Laguerre
functions has shown that taking relatively small number of these functions leads
usually to satisfactory results. This fact will be also confirmed by simulation
results analysed further in this section. Therefore, the DMCL algorithm should
be a more effective solution in cases when longer control horizons are appropriate
in the standard DMC algorithm. Taking this into account, we have selected two
benchmark example processes corresponding to this case. The aim of our research
will be to analyse properties of the DMCL algorithm in comparison with the
results obtained using a standard formulation of the DMC alhorithm.
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4.1. Example 1

First, we shall apply the DMCL algorithm to the composition control in the
Wood-Berry (WB) methanol-water distillation column example, a well known
benchmark for MIMO process control [20]. The 2 X 2 continuous time transfer
function model in this column is as follows:

12.8¢75 —18.9¢73 3.8¢78¢

Yi(s) 167s+1 21s+1 ||[Ui(s) 1495 + 1
= F(s). (3l
[Yz(s)] 6.607 —194¢3 | |Ua(9)| | 4lgea [T GD

109s+1 14.4s+1 13.2s +1

A discrete-time model is needed, therefore the model (31) has been discretized,
with different sampling periods T, as the sampling period can be an important
design parameter. We have started with 7, = 1, the largest sampling period
resulting in discrete-time model with accurate representation of delay times.
Using for discretization the Matlab function c2d we got the following result:

0.744z71  -0.8789z773 0.2467778

Y1(2)| _|2-0.9419 z-0.9535 | |Vi(2) 209351 | py. (32
Y (2) 0.5786z7 —1.302z73 | |U2(2) 0.3575773 '
z—-0.9123 z-0.9329 z—0.927

Step responses of this model are shown in Fig. 1.

Step Response
From: In(1) From: In(2)

10 -

g

To: Out(1)
>

Amplitude

To: Out(2)
(4] o

0 20 40 60 80 100 1200 20 40 60 80 100 120
Time (seconds)

Figure 1: Step responses of discrete-time Wood-Berry column model, 7, = 1
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The number n;, of the Laguerre functions modeling every control input trajec-
tory is a key factor influencing efficiency of the DMCL algorithm. We assumed
this number the same for each component of the control vector, for simplicity
and without loss of generality. The influence of n; on the results of a single
optimization of the DMCL performance function (30) was analysed first. The
scaling factor a = 0.55 was used, values of a around this value were found to be
appropriate. Sample results are presented in Fig. 2 and Fig. 3, for a case with unit
step changes of both output reference values (set-points) at the current sample
time (O in the figures).

1.4

1.2

1+

08

0.6

output 1

04r

O 3 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Figure 2: Optimized trajectories of the first output, after unit step changes of both set-
points, for different numbers of the Laguerre functions n, T, = 1

1.2 ; »

0.8 r

0.6

output 2

0 . I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50

Figure 3: Optimized trajectories of the second output, after unit step changes of both
set-points, for different numbers of the Laguerre functions n;, T), = 1
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It can be easily seen that shapes of the trajectories stabilize with the increase
of the value of ny, differences between the trajectories for n;, = 4 and ny = 5
are small. This indicates that the choice n; = 5 should be safely satisfactory,
even taking n; = 4 should suffice. Let us notice that n;, = 5 corresponds to
the control horizon N, = 5 in the standard DMC algorithm, assuming the same
dimensionality of optimization problems in both algorithms.

Output and input trajectories of a sample simulation of the feedback control
system with the DMCL algorithm with 7}, = 1 are depicted in Fig. 4. The applied
scenario of external influences consists of unit step changes of the reference
values, at sampling instants k = 2, k = 60 and £ = 120, and of a step change
of the disturbance F (see (32)) at the samppling instant k = 200. Following the
inspection of Figs. 2 and 3, the prediction horizon was chosen equal to N = 20
for the sample simulation, which seems to be the shortest value assuring that the
controlled outputs stabilize over the prediction horizon. Following the previous
discussion, N, = N = 20 was selected, as also the control inputs should stabilize
with stabilizing outputs. The horizon of dynamics of the model used for the
prediction in the DMC controller was assumed D = 80, shorter values were
decreasing the quality of the control. For the process simulation in the feedback
control loop the horizon of dynamics D, = 120 was taken — compare the step
responses presented in Fig. 1.

WB DMCL num., A= 1, N=N =20, D=80, n =5, a,=0.55, a,= 0.55

0.5

output
— — —reference
-+ disturbance

control input1
o

0 50 100 150 200 250 300 o 50 100 150 200 250 300

1 T 0.4
‘ | output
‘ ‘ — — —reference N got
N | | 2
3057 } | é 0
> =
o | ! IS
| } 8-02r
i —_ =
o— =
0 50 100 150 200 250 300 0 50 100 150 200 250 300
sampling instant sampling instant

Figure 4: Trajectories of the process outputs and inputs in a simulation of the DMCL
feedback control system under step changes of the reference values and the disturbance
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To compare efficiency of the DMCL and standard DMC algorithms, a series of
simulations were performed, for different values of n; and N,,, also changing other
main parameters of the DMCL and DMC algorithms, the horizons and, first of
all, the sampling period 7 p. Recall that the number of computations and thus the
time of computations, measured roughly by dimensionality of the optimization
problem, is equal for both algorithms for n;, = N,. Each simulation was performed
for the reference and disturbance scenario as applied to the simulation presented
in Fig. 4. To measure the control quality, the associated value of the commonly
used integrated squared control error (ISE) was calculated, over the simulation
horizon.

Numerous simulation runs were performed, for different parameters of both
DMCL and DMC algorithms. Most relevant aggregated results are presented in
Figs. 5 to 8. To compare, simultaneously, the efficiency of both algorithms, the
results are shown in terms of variable values n; = N,, for different sampling

WB DMC,DMCL num., A= 1, A,= 1 Tp=1, N=20, D=80, Dpr=120, a, =0.55
15.5 m : ‘ ‘

| — — —DMC

DMCL

ISE

145

Nu=nL

Figure 5: Comparison of control quality of DMCL and DMC algorithms, 7,, = 1

WB DMC,DMCL num., A= 1, A,= 1 Tp=0.5, N=40, D=160, Dpr=240, a =0.55
13.5

— — —DMC
DMCL

T
|
|
|
|
|
|
|
|
|

ISE

125

|
|
L

Figure 6: Comparison of control quality of DMCL and DMC algorithms, 7,, = 0.5
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periods T, from 1 to 0.125. The control horizons are recalculated to maintain the
same length in terms of time, for different sampling periods.

WB DMC,DMCL num., A =1, A,= 1 Tp=0.25, N=80, D=320, Dpr=480, a, =0.55
T T

— — —DMC
DMCL 7

1.8

U
I
I
I
I
[
1.6 I
[
I

w
D114t

1.2

Nu=nL

Figure 7: Comparison of the control quality of DMCL and DMC algorithms, 7, = 0.25

WB DMC,DMCL num., A1= 1, /\2= 1 Tp=0.125, N=160, D=640, Dpr=960, aL=0.55
11.5 T T T T T

| — — —DMC
DMCL

ISE

Figure 8: Comparison of the control quality of DMCL and DMC algorithms, 7, = 0.125

It can be easily seen from this comparison that the DMCL algorithm is a sound
alternative to the classical DMC algorithm with the process control inputs as the
decision variables, the more the smaller the sampling period (the ISE axes are
comparable in all figures). It achieves good control quality for n; = 4 Laguerre
functions and, certainly, keeps it with increasing n; (for each control input),
whereas the standard DMC algorithm achieves the same level of control quality
for larger values of the control horizon N,, much larger for smaller sampling
periods. This can be easily explained, it follows from the fact that with shorter
sampling intervals longer horizons are needed in the standard DMC algorithm to
achieve best control performance, for the same physical dynamical properties of
the process. Therefore, the smaller sampling period, the longer control horizon is
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needed in DMC to attain the control performance of the DMCL algorithm, which
can be easily seen in Figs. 5 to 8. The DMCL algorithm operates all the time with
the full length control horizon equal to the prediction horizon, all the time with the
same small number of Laguerre functions independent on the length of horizons.
For T, = 1 DMC arrives at asymptotically optimal performance with N, = 6,
obtained in DMCL from n; = 4 and upwards, see Fig. 5. For smaller 7, DMC
needs significantly longer control horizons N,, whereas in DMCL the sufficient
number of Laguerre functions n; is about 5, independently of 7,. Observe that
smaller sampling periods lead also to smaller optimal (asymptotic) values of
ISE, due to smaller additional delay added in the feedback control loop by the
sampling process itself. The presented results are important, as implementation
of faster sampling, even for computationally more demanding control algorithms,
is possible due to enormous potential computational power of modern process
controllers.

Other parameters important for tuning the MPC, including DMCL and DMC
algorithms, to achieve appropriate control properties, in particular robust sta-
bility, are the weighting factors in the performance function. Influence of these
parameters was also thoroughly investigated for the considered example. All ob-
tained results confirmed the conclusions stated earlier for the results presented in
Figs. 5 to 8. To shorten the length of the paper only one, representative sample
example is shown in Fig. 9.

WB DMC,DMCL num., A, = 0.1, A,= 0.5 Tp=0.25, N=80, D=320, Dpr=480, a, =0.55
T T

115 T T T

| — — —DMC
DMCL

ISE

10.5

Nu:nL

Figure 9: Comparison of control quality of DMCL and DMC algorithms, 7,, = 0.25,
different values of weighting coefficients A4; and A,

It should be noticed that the dynamics of the considered WB column seems
to be representative, with different delays and time constants leading to long
horizons in the DMC algorithms. However, transfer functions of this column
model are without zeros in the numerators, in particular without unstable zeros.
This will be the case in the second process example considered.
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4.2, Example 2

We shall apply the DMCL algorithm to the MIMO 2 X 2 process examined
in [18], where an MPC controller with state-space process model was investigated.
The continuous time transfer model of this process is as follows

12.8(—s + 4)? —18.9(-3s + 4)2
N | _ | 16.7s+1)(s+4)2 Qls+DBs+4)?2 ||Ui(s) (33)
His)| ™ 12.8(=7s + 4)2 —19.4(=3s + 4)2 Us(s)|"

(10.95s + 1)(7s +4)2 (1445 + 1)(3s + 4)2

We have investigated this process with the DMCL controller for different sampling
intervals, from 7,, = 1 to T,, = 0.125, as for the WB column example (in [18]
only 7,, = 0.1 was used).

Discrete-time step responses corresponding to transfer functions (33) for the
sampling interval 7, = 1 are shown in Fig. 10. Notice the non-minimum phase
behaviour of the responses corresponding to unstable zeroes of the transfer func-
tions.

Step response, Tp=1
From: In(1) From: In(2)

Amplitude

0 20 40 60 80 100 1200 20 40 60 80 100 120
Time (seconds)

Figure 10: Step responses of discrete-time model corresponding to (33), for 7, = 1

Because the range of values of time constants in the transfer functions in (33),
and thus thus the lengths of the step responses, are similar as in the case of the
WB column model in Example 1, we have taken the same values of prediction,
control and dynamics horizons in the design of the DMCL and DMC controllers.
Further, the same time interval of simulation and similar scenario of external
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influences was assumed, the only difference being the replacement of the step
change of the disturbance F of the WB column at the samppling instant £ = 200
by two step changes of external disturbances acting directly on the process inputs.
Output and input trajectories of a sample simulation of the feedback control
system with the DMCL algorithm with 7,, = 1 are depicted in Fig. 11 (notice the
input disturbances denoted by z;,,1 and zjnp2).

Example2 DMCL num., ,\1= 1, A2= 1, Tp=1, N=Nu=20, D=80, Dpr=120, nL=5, a1=a2=0.6
: : : : : 0.5 : : : : :

input1
o

05 . . . . .
0 50 100 150 200 250 300

output2
input2

. . . . . 05 I | | . .
0 50 100 150 200 250 300 0 50 100 150 200 250 300

sampling instant sampling instant
Figure 11: Trajectories of process outputs and inputs in a simulation of the DMCL
feedback control system under step changes of reference values and input disturbances

To compare efficiency of the DMCL and standard DMC algorithms, a series
of simulations was performed, for different values of n; and N,, also changing
other main parameters of the DMCL and DMC algorithms, the horizons and, first
of all, the sampling period Tp — in a similar way as for Example 1 in the previous
section. Each simulation was performed for the reference and disturbance scenario
as applied to the simulation presented in Fig. 11. To measure the control quality,
the associated value of the integrated squared control error (ISE) was calculated,
over the simulation horizon. The simulation runs were performed for both DMCL
and DMC algorithms. Most relevant aggregated results are presented in Figs. 12
to 15. To compare, simultaneously, the efficiency of both algorithms, the results
are shown in terms of variable values n; = N,, for different sampling periods
T, from 1 to 0.125. The control horizons are recalculated to maintain the same
length in terms of time, for different sampling periods.

It can be easily seen from this figures that the comparison of the control quality
between DMCL and DMC algorithms is similar as it was in Example 1 for the
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Example2 DMC,DMCL num., A=12,=1 Tp=1, N=20, D=80, Dpr=120, aL=0.6
24 ' T T T T

— — —DMC
DMCL |

Figure 12: Comparison of control quality of the DMCL and DMC
algorithms, 7,, = 1

Example2 DMC,DMCL num., ,\1= 1, ).2= 1 Tp=0.5, N=40, D=160, Dpr=240, aL=0.6
21 T T T T

— — —DbMC
DMCL |

Figure 13: Comparison of control quality of the DMCL and DMC
algorithms, 7,, = 0.5

Wood-Berry column, in this case even more in favor of the DMCL algorithm —
the differences are larger. The DMCL algorithm is again a sound alternative to the
classical DMC algorithm with the process control inputs as the decision variables,
the more the smaller the sampling period (the scale of ISE axes are comparable in
all figures). It achieves good control quality for about n; = 5 Laguerre functions
and, certainly, keeps it with increasing n, only for the smallest sampling period
T, = 0.125 slightly more Laguerre functions are needed. Whereas the standard
DMC algorithm achieves the same level of control quality for larger values of the
control horizon N, the larger the smaller sampling periods. Observe that smaller
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Example2 DMC,DMCL num., A1= 1, ,\2= 1 Tp=0.25, N=80, D=320, Dpr=480, aL=0.6

'\ T T T T T T T
181 | ——-DMC |
I\ _ DMCL
17 F -——_ i
16 Tl .
wisr T~ 8
@ \\\
14+ Te——— A
13 8
12 B
11 a
Il Il Il Il Il Il Il Il
1 2 3 4 5 6 7 8 9 10
N =n
u L

Figure 14: Comparison of control quality of the DMCL and DMC
algorithms, T,, = 0.25

Example2 DMC,DMCL num., A=1,2,=1 Tp=0.125, N=160, D=640, Dpr=960, a =0.6
T T T

18 l — —-bMC
DMCL

Nu=nL

Figure 15: Comparison of control quality of the DMCL and DMC
algorithms, 7,, = 0.125

sampling periods lead also in this example to smaller optimal (asymptotic) values
of ISE, due to smaller additional delay added in the feedback control loop by the
sampling process itself.

5. Conclusions

Development and analysis of the DMCL (DMC with Laguerre functions) al-
gorithm, the DMC model predictive control algorithm with parametrisation of
the control input trajectories by sets of the Laguerre functions, was the aim of
the paper. The appropriate formulation of the algorithm was developed, where
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coeflicients of the approximation by the Laguerre functions instead of process
control input values are the decision variables of the MPC optimization problem.
Then the developed DMCL algorithm was applied to two MIMO benchmark pro-
cesses with difficult dynamics. Aggregate results of extensive simulation studies
were presented showing that the DMCL algorithm is a sound alternative to the
standard DMC algorithm. It offers the possibility to deliver equivalent results
more effectively, with lower computational effort and thus shorter computational
time, especially for problems with long prediction and control horizons. It was
shown that this happens, in particular for faster sampling (smaller samppling
intervals). These results are important, as implementation of faster sampling,
even for computationally more demanding controllers, is now possible and is
applied due to enormous potential power of modern process controllers. This
enables also to replace PID control loops and structures by more effective SISO
or MIMO predictive controllers when PID performance is not satisfactory due to
complex process dynamics, including stronger interactions in MIMO processes.
Application of predictive controllers in embedded systems needs also effective
implementations.

References

[1] T.L. BLEvins, G.K. McMiLLaN, W.K. Worsznts, and M.W. BrRowN: Ad-
vanced Control Unleashed. The ISA Society, Research Triangle Park, NC,
2003.

[2] T.L.BLEvINS, W.K. WorszNis and M.NixoN: Advanced Control Foundation.
The ISA Society, Research Triangle Park, NC, 2013.

[3] E.F. Camacho and C. Borpons: Model Predictive Control. Springer Verlag,
London, 1999.

[4] M. LawryNczuk: Computationally Efficient Model Predictive Control Al-

gorithms: A Neural Network Approach, Studies in Systems, Decision and
Control. Vol. 3. Springer Verlag, Heidelberg, 2014.

[5] M. LawryNczuk: Nonlinear model predictive control for processes with
complex dynamics: parametrisation approach using Laguerre functions.
International Journal of Applied Mathematics and Computer Science, 30(1),
(2020), 3546, DOLI: 10.34768/amcs-2020-0003.

[6] J.M. Maciesowski: Predictive Control. Prentice Hall, Harlow, England,
2002.

[7] R. NeBeLuk and P. Marusak: Efficient MPC algorithms with variable
trajectories of parameters weighting predicted control errors. Archives of
Control Sciences, 30(2), (2020), 325-363, DOI: 10.24425/acs.2020.133502.


https://doi.org/10.34768/amcs-2020-0003
https://doi.org/10.24425/acs.2020.133502

www.czasopisma.pan.pl P N www.journals.pan.pl
Y
S~

814 P. TATJEWSKI

[8] S.J.Qinand T.A. BADGWELL: A survey of industrial model predictive control
technology. Control Engineering Practice, 11(7), (2003), 733-764, DOI:
10.1016/S0967-0661(02)00186-7.

[9] J. B. RawLinGs and D. Q. MayYNE: Model Predictive Control: Theory and
Design. Nob Hill Publishing, Madison, 2009.

[10] J.A. RossITER: Model-Based Predictive Control. CRC Press, Boca Raton —
London — New York — Washington, D.C., 2003.

[11] P. TaTsewski: Advanced Control of Industrial Processes. Springer Verlag,
London, 2007.

[12] P. TaTsewskr: Advanced control and on-line process optimization in mul-
tilayer structures. Annual Reviews in Control, 32(1), (2008), 71-85, DOI:
10.1016/j.arcontrol.2008.03.003.

[13] P. Tamewskr: Disturbance modeling and state estimation for offset-free
predictive control with state-spaced process models. International Journal
of Applied Mathematics and Computer Science, 24(2), (2014), 313-323,
DOI: 10.2478/amcs-2014-0023.

[14] P. TaTiewskr: Offset-free nonlinear Model Predictive Control with state-
space process models. Archives of Control Sciences,27(4), (2017),595-615,
DOI: 10.1515/acsc-2017-0035.

[15] P. TaTsewskr: DMC algorithm with Laguerre functions. In Advanced, Con-
temporary Control, Proceedings of the 20th Polish Control Conference,
pages 10061017, £.6dZ, Poland, (2020).

[16] G. VaLencia-PaLomo and J.A. RossiTeEr: Using Laguerre functions to im-
prove efficiency of multi-parametric predictive control. In Proceedings of
the 2010 American Control Conference, Baltimore, (2010).

[17] B. WaHLBERG: System identification using the Laguerre models. /IEEE
Transactions on Automatic Control, 36(5), (1991), 551-562, DOI: 10.
1109/9.76361.

[18] L. Wanag: Discrete model predictive controller design using Laguerre
functions. Journal of Process Control, 14(2), (2004), 131-142, DOI:
10.1016/S0959-1524(03)00028-3.

[19] L. WANG: Model Predictive Control System Design and Implementation
using MATLAB. Springer Verlag, London, 2009.

[20] R. Woobp and M. Berry: Terminal composition control of a binary distil-
lation column. Chemical Engineering Science, 28(9), (1973), 1707-1717,
DOI: 10.1016/0009-2509(73)80025-9.


https://doi.org/10.1016/S0967-0661(02)00186-7
https://doi.org/10.1016/j.arcontrol.2008.03.003
https://doi.org/10.2478/amcs-2014-0023
https://doi.org/10.1515/acsc-2017-0035
https://doi.org/10.1109/9.76361
https://doi.org/10.1109/9.76361
https://doi.org/10.1016/S0959-1524(03)00028-3
https://doi.org/10.1016/0009-2509(73)80025-9

	Piotr Tatjewski: Effectiveness of Dynamic Matrix Control algorithm with Laguerre functions

