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Application of maximum principle to optimization
of production and storage costs

Liviu POPESCU and Ramona DIMITROV

A problem of optimization for production and storge costs is studied. The problem consists
in manufacture of n types of products, with some given restrictions, so that the total production
and storage costs are minimal. The mathematical model is built using the framework of driftless
control affine systems. Controllability is studied using Lie geometric methods and the optimal
solution is obtained with Pontryagin Maximum Principle. It is proved that the economical system
is not controllable, in the sense that we can only produce a certain quantity of products. Finally,
some numerical examples are given with graphical representation.
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1. Introduction

The theory of optimal control has been used as a framework in different
domains as economics, cybernetics, operations research or engineering. The
development of computer science has helped with a better understanding of the
phenomena studied, as well as the numerical solution of some equations, but also
the simulation and graphical representation of numerical examples. Seierstad
and Sydsater in their book [25] gave a notable contribution to the literature of
the control theory of economic processes and Arrow [3] applied the optimal
control theory to economic growth. Also, Sethi and Thompson [27] studied
production and inventory problems, optimal consumption of natural resources and
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applications of optimal control to management science. Weber [30] presented an
introduction to the use of optimal control techniques for continues-time systems
in economics and Caputo [7] added complementary methods for applications of
optimal control to operational research.

An important method in the study of solutions to optimal control problems
is given by Pontryagin’s Maximum Principle [4], which generates first-order
differential equations, which are necessary conditions for optimality. It is assumed
that a curve c(t) = (x(¢),u(t)) can be an optimal solution if there exists a lifting
of x(¢) to the dual space (x(¢), p(¢)) that satisfies the Hamilton-Jacoby-Bellman
equations.

One of the problems that is studied in the case of these control systems is
the issue of controllability. Controllability is the ability to move the system from
a given initial state to a final state, in finite time, using some available con-
trol variables. Lie geometric methods in the study of controllability problem are
used by many authors. Thus, Brocket [6] showed the connection between con-
trol and Lie theory. In his book [13], Jurdjevic deals with control affine systems
and LaValle [17] presented the cases of holonomic and nonholonomic control
systems. Agrachev and Sachkov [1] studied the control theory from the geomet-
ric viewpoint. Also, Lie geometric methods and framework of Lie algebroids
have been used by Popescu [22-24] in order to solve some problems involving
inventory and production.

The purpose of this paper is to solve an economical problem involving pro-
duction and storage costs and can be considered as a generalization of the results
obtained by Kamien and Schwartz in the paper [14]. The novelty of the approach
compared to the existing literature is given by the fact that we propose an opti-
mal manufacturing plan for n products under certain manufacturing conditions.
Also, the controllability is studied using Lie geometric methods. A mathemati-
cal model is proposed, using the framework of control systems. These types of
problems are common in the literature and can be found in many research papers,
with different constraints. Axséter [3] and Ortega, Lin [20] gave an overview of
earlier research concerning control theory applications in production and inven-
tory control, existing up to that date. Sethi [26] studied the applications of the
Maximum Principle to some type of production and inventory problems. In [12]
Hermosilla, Vinter and Zidani, used Hamilton—Jacobi—Bellman equations for
optimal control processes with convex state constraints. Benjaafar, Gayon and
Tepe [5] applied optimal control theory for a production-inventory system with
customer impatience. An optimal control model for continuous time produc-
tion and setup scheduling is investigated by Kogan and Khmelnitsky in [15].
A new approach to maximize the profit/cost ratio in a stock-dependent de-
mand inventory model is proposed by Pando and Sicilia in [21]. Qiu, Qiao
and Pardalos studied in [16] the optimal production and inventory manage-
ment policies for products with perishable inventory, while optimal control of
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a production-inventory system with product returns and two disposal options
is investigated by Gayon, Vercraene and Flapper in [11]. Danahe, Chelbi and
Rezg [8] proposed an optimal production plan for a multi-products manufac-
turing system with production rate dependent failure rate. Also, Gaimon [10]
and Feichtinger, Hartl [9] studied, among others, optimal pricing and produc-
tion, capacity decisions in an inventory model. In paper [18] Li and Wang pro-
posed an integrated replenishment and production control policy under inventory
inaccuracy and time-delay, while Li and Arreola-Risa investigated in [19] op-
timization of a production-inventory system under a cost target. Schwartz and
Rivera [28] described a process control approach to tactical inventory man-
agement in production-inventory systems, and Towill, Evans and Cheema [29]
proposed an analysis and design of an adaptive minimum reasonable inventory
control system.

The paper is organized as follows. In the second section, a problem of produc-
tion and storage optimization is proposed and the mathematical model is given,
using the optimal control framework. In section three is presented the method-
ology, which will be applied in order to find the optimal solution. This consists
in applying the Maximum Principle for the optimal control problem, while Lie
geometric methods are used in order to study the controllability. In section four,
the optimal solution of the economic problem is proved and some numerical
examples are given. The novelty of the paper can be found in sections two and
four. Finally, some conclusions are presented.

2. A problem of production and storage optimization

Let us consider that a company must manufacture n types of products in a
fixed period of time 7. It is known that certain percentages from quantities of
Py, Py, ..., P,_; products are used in the manufacture of the P, product, by a
given law. Also, it is assumed that the unit production costs for Py, Py, ..., P,_;
increase linearly with the production level and the cost of production operations
for the product P, is considered negligible (for example, P, is a product packaged
and unassembled). We have the unit storage costs of holding inventory given by
(B1, B2, - - ., Bn) for each product. In these conditions we are looking for a plan of
production to ensure the required quantity at specified delivery data at minimum
costs of production and storage. We assume that we have no restrictions on
production or storage capacity. A particular case with a single product is studied
by Kamien and Schwartz [14].

We have the following notations: P; = products, i = 1,2,...,n; T — period
of time to ensure the quatities of products; x’(z) — the inventory accumulated
by time #; s; — final quantities required; p'(t) — the rate of production; ¢; —
unit production cost. Also, we have the assumptions: x'(0) = 0; x/(T) = s;
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and the production costs increase linearly with the production level ¢; = a;p’,
ay,...,a,—1 = 0.

2.1. Mathematical model

The inventory level is the cumulated past production p' = p'(¢), and consid-

ering x'(0) = 0, we have
t

x'(1) = fp"(s)ds.
0
It results that the rate of change of inventory level X' is the production and we have

x' = p'. Considering &' = u', i = 1, n — 1 the control variables (the production
rate can be controllable), it is assumed that the production rate for P, is given by

the law
n—1 .
= ki, (1
i=1
where ki, ..., k,—1 €0, 1].

The unit production costs ¢; increase linearly with the production level, ¢; =
a;p' where ay, ..., a,—1 > 0 are positive constants and we have that the total cost
of production is

ap' = Z ai(p')* = Z @; (Xi)z

n—1 n—1 n—1
i=1 i=1

i=1

We obtain that the total cost, including the costs of holding inventory, is given by

—_

n—

n—1
o ()" + 3 Bl = k' + B
i=1

I
—_

i
where ki, ...,k,—1 € [0, 1] represent the percentages from the quantities of

Py, ..., P,_1 used in the manufacture of P,. Finally, we obtain the following
optimal control problem

X =u,
b
xn—l - u}'l—]
n—1
; (2)
W= ki
i=1

X0)=0, X)) =s,
ul, . ou >0, ki, ..., ky_1 € [0, 1].
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We are looking for a plan of production with minimum cost

T n—1 n—1
rrgnf( a; (x")z + Z Bi(1 — ki)x' + ,8,,x”> dr.
o \i=l i=1

1= 1=

3. Methodology

The methodology consists in applying the Pontryagin’s Maximum Principle
for the optimal control problem in the case of driftless control affine systems.
The controllability of the distributional system is studied using the Lie geometric
methods and Frobenius theorem in the case of holonomic distributions.

3.1. Preliminaries on optimal control and maximum principle

In the following, we consider a smooth n-dimensional manifold M, in partic-
ular a subset of R". A continuous control system on the manifold M is given by
a set of differential equations depending on some parameters, in the form

dxi(z -
O faanu).  i=Ta
dt
where x = (xl, ..., X") € M are the state variables of the control system and u =
w',...,u™) eU c R" represents the control variables (m < n). Considering xg

and x; two states of the system, an optimal control problem consists of finding
the ways through the system is brought from the initial state xg to the final state
x1 and minimizing the functional cost

T

muinfL(x(t),u(t))dt, x(0) = x9, x(T)=x,
0

where L is the Lagrangian function (energy, cost, time, distance, etc.).

In other words, we must find the trajectories of our control system which
connect two given points on M such that a certain optimality condition is satisfied.
An important method for studying the optimal solutions in control theory is given
by Pontryagin Maximum Principle. It generates the differential equations of first
order, which are necessary for the optimal solutions. For each optimal trajectory
c(t) = (x(2),u(t)), it gives a lift on the dual space (x(¢), p(t)) satisfying the
Hamilton—Jacobi—Bellman (HJB) equations. The Hamiltonian function on dual
space is given by

H(-x’p, M) = Zpifi(x’ l/l) - L(X, M),

i=1
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where (py,..., p,) are momentum variables. The maximization condition with
respect to control variables u, given by

H(x(@), p(t),u(t)) = max H(x(2), p(t), ),

OH
leads to - = O(H is assumed to be smooth with respect to u) and the extreme
u

trajectories satisfy the HJB equations
dx! _O0H dpi  O0H 3)
dt — ap;i’ dr ~ 9xi

Next, we will consider a driftless control affine system (distributional systems) in
the form

(1) = ) d X (x(0), )
i=1
. dx(7) .
where x(t) = —— and Xy, ..., X;; are smooth vector fields on the manifold

M, called the input vector fields. A first problem that can be studied in the
case of these systems is the issue of controllability. We say that the system is
controllable if for any two states xo and x| there exists a solution curve of (4)
connecting xq to x1. Controllability is the ability to move a system from a given
initial state to any final state, in finite time, using the available controls. It is
interesting to note that the information about controllability of distributional
systems is contained in the structure of the Lie algebra generated by the family

of vector fields X;, i = 1, m. A distribution A on the manifold M is a map which
assigns to each point in M a subspace of the tangent space TM at this point
x € M — A(x) c TyM. The distribution A is called locally finitely generated if
there is a family of vector fields X;, i = 1, m, called local generators of A which
spans A, that is A(x) = span{X;(x), ..., X;y(x)} € TyM. The distribution A has
constant dimension k if dim A(x) = k, for all points x € M. The Lie bracket of
two vector fields is given by [ X, Y](f) = X(Y (f)) = Y (X(f)).

The distribution A = span{Xj, ..., X,,} is called involutive if the Lie bracket
of any two vectors from A belongs to A, that is, for X, Y € Aitresults [X, Y] € A.
It results that every Lie bracket can be expressed as a linear combination of the
system vector fields, and therefore

[Xi. x;] ZLka

We recall that a foliation {Sy}qe; of M is a partition of M = (J S, of M into

ael
disjoint connected submanifolds S, called leaves. A distribution A of constant
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dimension on M is called integrable (holonomic) if there exists a foliation { Sy }4e;
on M whose tangent bundle is A, that is 7,,S = A(x), where S is the leaf passing
through x. The well-known Frobenius theorem says that if A is a distribution with
constant dimension on the manifold M, then A is integrable if and only if A is
involutive.

If we return to the case of driftless control affine system (4) and the distribution

Agenerated by the input vectors X;, i = 1, m is integrable (holonomic) with
constant dimension, then the system is not controllable and A determines a
foliation on M with the property that any curve is contained in a single leaf of the
foliation. With other words, any two points can be joined by an optimal trajectory
if and only if they are situated on the same leaf.

4. Solution of the economic problem

We observe that the system (2) is a dritless control affine system on M = Ri
written in the form

n—1
X:ZuiXi, x=(x.. ., x") eRr"
i=1
T
mian(u(t),x(t))dt,
u
0
where
1 0 0
0 1 :
Xi=|.| Xo=| .| » Xn-1 = t
kl kz kn—l
n—1
Fu(@), x®) = > (@) + Bi(l = k)x') + Bax".
i=1
We are looking for the optimal trajectories starting from the point (0,0, ...,0)
and endpoint (s, 52, . . ., 5,). The distribution A = span{Xjy, ..., X,—1} generated

by the vector fields X1, ..., X,,—1 has constant dimension, dim A(x) = n — 1, for

0 0
92 D } of R" the vector fields
X X xn

all x € R". Also, in natural basis {
have the expressions

0 0 0 0

Xi=—+ s e, X1 =—+ ko1 —,
b= Xl Foxn T g1 gxn
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and using the Lie brackets formula

[fX,8Y] = f8[X, Y]+ [X(9)Y - g¥(f)X,
we obtain that the Lie bracket of the vectors fields from distribution is given by

0 0 0 0
X, Xi|=|—+k , -+ k; =0
[l J] [Gx’ foxn ax) T axn

It results that the distribution A is involutive. Using the Frobenius theorem, it
results that the distribution is integrable and as a consequence, it determines a
foliation on state space R’. Consequently, two points can be joined by an optimal
trajectory if and only if they are situated on the same leaf. It results that the our
economical system is not controllable, in the sense that we can not manufacture
any quantity required. Indeed, by using the equation (1) we have, by integration

n—1
x"t = Z kix' +c,
i=1

which are hyperplanes of R", which determine a foliation. Using the condition
x'(0) = 0, it results ¢ = 0, and from x'(T) = s; we obtain that the system is
controllable if and only if
n—1
Spn = Z kl‘S,‘ .
i=1

We will use the Pontryagin’s Maximum Principle in order to find the optimal
solution.

Theorem 1 The optimal solution of the economic system (2) has the form

) a;s; :
a)if0<T <2 i=1n-1
/ \/ﬁi(l — ki) + ki B
then
iy BU—K) t kB (s U=k + ki)
4a; T da;
; i(1 =k iBn i i(1—k; iBn
i = B k)+kﬁt+(S__ﬁ( k)+kﬁT)
2a’i T 40,’1'
for <t T

and
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b)ifT >?2 ,i=1,n-1
/ \/,Bi(l — ki) + ki By
then
Ada:s:
0 iFO<t<T i

B —k)+ k)T’
ﬂm:<@ﬂ—hﬂ%ﬁ%“«ﬁ_&ﬂ—hﬂ%ﬁwjl

4a; T da;
. da;s;
if T - <t<T;
/ (Bi(1 = ki) + ki) T
0 ifO<t<T daisi

T (B k) +kiB) T
() = | B —k) + ki (ﬁ B = k) +ki,8nT)

zai T 4@’,‘
4a’,‘S,‘

Bl k) + kBT

if T — t<T.

where, in both cases,

n—1
X(t) = Z kix' (1)

i=1

Proof. The Hamiltonian function on dual space is given by

n
H= pi -F,
i=1

with pq, ..., p,, the momentum variables, which leads to

n—1

-1 —1
H=§ﬁ#+m§ﬁ#—zxmwﬂ+&a—mf%ﬁM¢
i=1 i=1

i=1

o0H —_—
The condition i 0,7 =1, n — 1 yields the following equations
u

pi + puki — 20’ =0,
and it results

I/ti — Di +pnki
20’,‘ '
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Next, we replace the expressions of the control variables u!,...,u""! into the
expression of the Hamiltonian and by straightforward computation it results

2
H= Z((p’+p”k) —ﬁ,a—k)x) Bux"

Using the Hamilton-Jacobi-Bellman equations (3) we obtain the following system
of first order differential equations:

OH Di +pnki

'i:—:—, =1, n-1, 5
X o 2a, I n &)
n—1

. 0H (pi + puki)ki

n_ = , 6
* 6p,, ; 20’,‘ ( )
. 6H

pi=——— = Bi(l = k),

BH

pn:_axn:ﬁn-

From (5) we get
i Di+tpoki  Bi(1=ki) + ki,
x = =
2&’,‘ 2al~

which leads through integration to

Bi(1—k;) + kiﬁnt v
2011-

i) =

and finally

, (1 —k; k; By,
x’(t):ﬁ( )+ 'Bt2+c,t+dl~.
da;

The condition x*(0) = 0 leads to d; = 0 and the condition x(T') = s; implies

si Bill = ki) + ki
Ci = — — T
T 40’,’

It results the solution

Bil—ki) + kiBn 5 (si _ Bi(l—ki)+ kiﬁnT) .

X(t) = (7)

4(1’,' T 4a,~

The solution is optimal, because the Hamiltonian function is convex. These are
the polynomial functions of degree two and the equations x'(¢) = 0, have the
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dasi
solutions f; = Oand 1, =T — ais . Moreover, the economical
_ , (Bi(1 = ki) + ki )T
condition x'(¢) > 0, u'(t) > for r > 0 leads to the following cases:
a;s; . . . .
aA)0<T <2 , with the optimal solution given by (7), for
J&a—hwwmn P SRy

0T
and

BT >2, A

; daisi
which leads to xi(r) = 0, for 0 <t < T ais

(Bl = k) + kiB)T

4aisi
@i? < t < T which ends the proof.
(Bi(1 — ki) + ki )T

and the optimal

solution given by (7) for T —
O

4.1. Numerical examples

Example 1. We consider the following data for the case of three products Py,
P>, Ps.

— the period of time is T = 1;

— the final quantities of products are:

s1=4, sy=2, s3=3;
— storage costs are given by
Bi1=2 pr=2 p3=2
— the coeficients are
k1 =05, ky=0.5, a; =05 a;=0.5.

The system is controllable, because s3 = kis1 + kpso. It results that 0 < T <
282

1Sy 2 )
2 =2and 0 < T <2 = —, which
\/ﬁl(l — k1) + k183 \/ﬁz(l —k)+kaffs 2
leads to the case a) for x!(¢) and x2(¢), with optimal solution given by

x' (1) =17 + 31, ul (1) = 2t + 3,
x2(1) =12 +1, Wl () =2t + 1,
() =1+ 2t for0 <t < 1.

It results that the production for all products starts at time ¢ = 0. The optimal
solution (x!(¢), x2(¢), x*(¢)) is illustrated in Fig. 1.
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Figure 1: Optimal solution (x! (), x2(1), x3(1)) for0 < r < 1

Example 2. We consider the following data for the case of three products Py,
P, Ps:
— the period of time is T = 2;
— the final quantities of products are:
s1=8 s=4 s53=06;
— storage costs are given by
Bi=2 pr=2 p3=2
— the coeficients:

k1 =0.5, ky=0.5, a1 =0.5, a2 =0.25.

The system is controllable, because s3 = kys; + kosy. We obtain that 0 < T <

a1 ans5) 2 .
2 =2V2and T > 2 = —, which
\/ﬁl(l — k1) + k183 \/,32(1 k) + ks A2

leads to the case a) for x'(¢) and case b) for x2(¢) with optimal solution given by

)= +21, for 0<t <2, ul(t) =2t +2,

20 = 0 if0<r<1, 2(0) = 0 ifo<r<l,
22 -2 if1 <1<’ C\4r-2 ifl<t<2,
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12
—+r if0O<<r<l,
2n=12,
3t

— if 1 <t <2.
2

From an economic point of view, the production on the first product starts at time
t = 0 and for the second product the production starts later at 1 = 1. Production
on the third product, which depends on the first two, begins at time r = 0. The
optimal solution (x'(0), x2(1), x3(1)) is given in Fig. 2.

Figure 2: Optimal solution (x'(@), x2(t), x*(1)) for 0 <1 < 2
Example 3. We consider the following data for the case of three products Py,
P>, Ps:
— the period of time is T = 4;
— final quantities of products are:
S1 = 12, Sy = 8, §3 = 10;
— storage costs are given by
Bi=2 pr=2 pz3=2

— the coeficients:

k1 =05, ky=0.5, a1 =05, a»=0.5.



www.czasopisma.pan.pl P N www.journals.pan.pl
Y

878 L. POPESCU, R. DIMITROV

The system is controllable, because s3 = kis; + kpso. We have that T >

151 28?2 .
2 =2V3and T > 2 = 242, which
\/ﬁl(l — k1) + k183 \/,32(1 —k2) + k233

lead to the case b) for x!(¢) and x?(¢) with optimal solution given by

A = 0 ifo<r <1, W0 = ifo<r <1,
S \2-r ifl <t <4, Cl2r-1 ifl <t <4

20 = 0 if0<r<2, (1) = if0<r<2
S\ -2r if2<t <4, T2t -2 if2<r<4,
0 if0<r <1,
-
X3(Z‘)= ifl <t <2,

3t
’2_5 if2 <t <4,

It is found that the production for the first product starts at time ¢ = 1 and for the
second at time = 2. Production on the third product, which depends on the first
two, begins at time ¢ = 1. The optimal solution (x!(¢), x2(¢), x> (¢)) is represented
in Fig. 3.

Figure 3: Optimal solution (x' (1), x2(1), xX3(1)) for0 <t < 4
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5. Conclusions

In this paper a problem of minimizing the total costs of production and
storage is studied. The problem consists in the manufacture of n types of products
in certain economic conditions and in a fixed period of time. The mathematical
model is proposed, using the framework of control affine systems and the optimal
solutions is obtained with the Pontryagin Maximum Principle. The economic
system is not controllable, in the sense that we cannot manufacture any quantity
of products. The problem has a solution if and only if there is a certain connection
between the final stocks quantities. Finally, some illustrative examples are given
in the particular case n = 3 and the optimal solutions are graphically represented.
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