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Application of Matlab software in static calculations
of bridge structures

Paweł Hawryszków1, Bronisław Czaplewski2

Abstract: Mathematical package Matlab is a very convenient programming language, used for calcu-
lations in the field of linear algebra for scientists and engineers. Its main advantage for civil engineers
is the simplicity of the language and the wide range of application in the field of linear statics. This
mathematical platformwas used for programming of static calculations of multi-span, continuous, beam
bridge structures. In the formulated theoretical approach, the internal forces were calculated using the
method of forces. Knowing the influence matrix and load values in the unit states, the envelope of
internal forces can be determined. The first step is entering the vector of loads and the second is cal-
culating an envelope using special function. Obtaining the results from individual loads in a variety of
operating conditions, it is possible to calculate the global envelope of internal forces and proceed with
modifications of the model. The theoretical approach was computationally tested on the example of an
alternative design concept of the MA-46 bridge along the A4 motorway. One of the biggest advantages
of the discussed computational approach is the wide access to the results of intermediate calculations.
Another benefits of working with mathematical packages are improving insight in the field of static
calculations and getting used to working with code like in some programs for structural analysis (e.g.
SOFiSTiK). The discussed computational approach is a good way to pre-design due to the little time
required to compare several variants of solution, so it can be helpful in optimizing the structure.
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1. Introduction
One of the most important stages in the process of designing building structures is

the process of determining extreme internal forces. The final result of this process is the
envelope of internal forces, which is a set of minimum and maximum values of these forces
in all cross-sections, for all load combinations.
The specificity of designing bridge structures lies in the movable nature of the loads,

which in practice gives a very large number of load combinations. Therefore, an inherent
element of the process of determining internal forces is the use of the function of the
influence of static quantities, which, collected in a set for many cross-sections, form the
influence matrix. This study discusses the process of determining the influence matrix for
multi-span, continuous, beam bridges and then use it to determine the envelope of internal
forces using Matlab.
The Matlab package [1] is the software whose programming language allows to work

with matrices, vectors and structures. The matrix as the basic data type makes the compu-
tation less time consuming than is the case with commonly used programming languages.
Another simplification is that there is no need to declare variables or specify the data type.
Operations on entire matrices mean that one short operation often replaces several loops
written in Java or C++ which is widely used in calculations in the field of linear statics.
This mathematical package is a valuable computational tool, which can be efficiently

used in mechanics of structures [2]. It can significantly support the computer-aided design
analysis and process of bridge superstructures optimization [3–6].

2. Formulation of the theoretical approach

2.1. Influence matrix

When starting the process of determining the influence matrix for a bridge structure
the following assumptions were made:
– static scheme of a continuous beam without cantilevers,
– constant cross-section characteristics along the entire length of the beam,
– homogeneous, isotropic, linear-elastic material.
The definition of a structure model with the assumed scheme can be reduced to a vector

whose elements are the lengths of successive spans of the structure. The followingmarkings
were introduced: L = [𝑙1, 𝑙2, . . . , 𝑙𝑁 ] – a vector representing the static scheme, where 𝑙𝑖 ,
𝑖 = 1, 2, . . . , 𝑁 denotes the length of the 𝑖-th span of a 𝑁-span continuous beam.
The influence matrix consists of vectors (in this case row vectors) representing the

graphs of the searched static quantity (shear force or bending moment) from the unit force
set successively at points spaced from each other by a given calculation step marked as dx.
The vector L and the constant 𝑑𝑥 the only data needed to determine the influence matrix
of Im, therefore:

(2.1) Im = Im(L, 𝑑𝑥)
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The force method was used to determine the diagrams of internal forces from unit load.
The first step in the method above is to create the basic scheme. In the function algorithm
it is obtained by removing the first 𝑁 − 1 supports as shown in Fig. 1.

Fig. 1. Creation the basic scheme of the force method

Internal forces in the basic scheme in unit states and from forces 𝑋𝑖 = 1 was determined
by the elementary method using a loop for. The following markings were introduced:
MP𝑖 – line vector representing the diagram of bending moments from the unit force

set at 𝑥 = (𝑖 − 1) · 𝑑𝑥, 𝑖 = 1, 2, . . . , 𝑛, where 𝑛 results from the quotient of the
sum of the lengths of all spans and the calculation step, according to the formula:

𝑛 =

𝑁∑︁
𝑘=1

𝑙𝑘 ·
1
𝑑𝑥

+ 1,

MX𝑖 – line vector representing the diagram of bending moments induced by force 𝑋𝑖 = 1,
𝑖 = 1, 2, . . . , 𝑛ℎ , where 𝑛ℎ = 𝑁 − 1 is the degree of static indeterminacy of the
structure model,

SP𝑖 – line vector representing the diagram of shear forces from the unit force set at 𝑥 =

(𝑖−1) ·𝑑𝑥, 𝑖 = 1, 2, . . . , 𝑛, where 𝑛 results from the quotient of the sum of the lengths

of all spans and the calculation step, according to the formula: 𝑛 =

𝑁∑︁
𝑘=1

𝑙𝑘 ·
1
𝑑𝑥

+ 1,

SX𝑖 – line vector representing the diagram of shear forces induced by force 𝑋𝑖 = 1,
𝑖 = 1, 2, . . . , 𝑛ℎ , where 𝑛ℎ = 𝑁 − 1 is the degree of static indeterminacy of the
structure model.

The above matrices are indirectly used to solve the equation of the force method of the
form:

(2.2) DX + DP = 0

The solution of equation (2.2) has the form:

(2.3) X = −D−1DP

where:
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D = {𝑑𝑖 𝑗 } – flexibility matrix, 𝑑𝑖 𝑗 =
𝑛∑︁

𝑘=1
𝑀𝑋 𝑖,𝑘 · 𝑀𝑋 𝑗 ,𝑘 · 𝑑𝑥, 𝑖, 𝑗 = 1, 2, . . . , 𝑛ℎ , where:

𝑀𝑋 𝑖,𝑘 – 𝑘-th element of the vectorMX𝑖 ,
𝑀𝑋 𝑗 ,𝑘 – 𝑘-th element of the vectorMX 𝑗 ,

DP =
{
𝑑𝑃,𝑖 𝑗

}
– matrix of generalized displacements in the direction of unknown 𝑋𝑖 𝑗

induced by the unit force set at 𝑥 = ( 𝑗 − 1) · 𝑑𝑥, 𝑑𝑃,𝑖 𝑗 =

𝑛∑︁
𝑘=1

𝑀𝑋 𝑖,𝑘 · 𝑀𝑃 𝑗 ,𝑘 · 𝑑𝑥,

𝑖 = 1, 2, . . . , 𝑛ℎ , 𝑗 = 1, 2, . . . , 𝑛, where:
𝑀𝑋 𝑖,𝑘 – 𝑘-th element of the vectorMX𝑖 ,
𝑀𝑃 𝑗 ,𝑘 – 𝑘-th element of the vectorMP 𝑗 ,
X – the result of the force method equation.

The last step to obtain the influence matrix of the searched static quantities is to solve
the equations:
– for bending moments

(2.4) Im = X𝑇 MX + MP

where:

MX =


MX1
MX2
· · ·

MX𝑛ℎ

 , MP =


MP1
MP2
· · ·

MP𝑛


– for shear forces

(2.5) Im = X𝑇 SX + SP

where:

SX =


SX1
SX2
· · ·

SX𝑛ℎ

 , SP =


SP1
SP2
· · ·
SP𝑛


Having the appropriate function written in Matlab the influence matrix can be obtained

by typing just a few numbers. The influence matrix constitutes the algebraic basis of the
solution space of a given static scheme the size ofwhich is determined by a given calculation
step. In the numerical sense it is a structure model with access to all desired unit states and
influence functions in any cross-section.

2.2. Internal forces envelope

On the basis of the influencematrix and the values of loads, the envelope of the searched
static quantity can be determined. Due to the algorithm of determining the envelope the
impacts are divided into two groups: mobile and fixed (related to the point or area of
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application in a given load scheme). It should be noted here that loads distributed from the
vehicle uniformly distributed loading or the pedestrian crowd are classified in this case as
fixed.
For the purpose of calculating road bridges a dedicated function was created for the

influence of the four-axle vehicle. In the first step the function creates a combination in
the form of the sum of the four unit load matrices corresponding to the axles of the
vehicle. To fully reflect the passage of the standard vehicle each of the influence matrices is
supplemented with zero lines corresponding to the position of the axles outside the deck.
The scheme of operation is easiest to illustrate by means of rectangles symbolizing the
matrices as in Fig. 2.

Fig. 2. Scheme of matrix operation showing the influence of four-axle vehicle driving
through the bridge

In the second step the function finds the maximum and minimum element in each
column and multiplies them by the load value per axle of the standard vehicle. The value
returned by the function is a matrix composed of two lines representing the diagrams of
minimum and maximum forces. Finally, the envelope is obtained as a function of the three
variables, that is:

(2.6) Env K = Env K(Im, 𝑃, 𝑑𝑥)

where:
Env K – a matrix representing the extreme values of internal forces in [kN],
Im – influence matrix of the searched static quantity,
𝑃 – value of the load on the vehicle axle in [kN],
𝑑𝑥 – calculation step in [m].
The second function to obtain the envelope of internal forces is the envelope from loads

related to their point of application. Contrary to the previously described function the most
unfavorable load combinations do not depend on the point of application but on whether
it has a positive or negative effect on the value of the force in a given section. This is
automatically resolved by checking the sign of the corresponding element of the influence
matrix. Therefore, a pair of extreme values should be assigned to each analysed point in
order to create vectors modelling the load state of the structure. Uniformly distributed loads
should be converted into concentrated loads by multiplying their value expressed in [kN/m]
by 𝑑𝑥.
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In the first step, the function transforms the Im into a minimum loads matrixMin and
matrix of maximum loadsMax. This is done as follows:
– for positive elements

Max𝑖 𝑗 = Im𝑖 𝑗 · Loadmax,𝑖(2.7)

Min𝑖 𝑗 = Im𝑖 𝑗 · Loadmin,𝑖(2.8)

– for negative elements

Max𝑖 𝑗 = Im𝑖 𝑗 · Loadmin,𝑖(2.9)

Min𝑖 𝑗 = Im𝑖 𝑗 · Loadmax,𝑖(2.10)

where:
Max𝑖 𝑗 – element of matrixMax with coordinates 𝑖, 𝑗 ,
Min𝑖 𝑗 – element of matrixMin with coordinates 𝑖, 𝑗 ,
Im𝑖 𝑗 – element of matrix Im with coordinates 𝑖, 𝑗 ,
Immax,𝑖 – 𝑖-th element of vector Loadmax,
Immin,𝑖 – 𝑖-th element of vector Loadmin,
Loadmax – vector of maximum loads,
Loadmin – vector of minimum loads.
The second step is to sum up the columns of the Min and Max matrices. As a result

of summation line vectors representing the diagrams of minimum and maximum forces is
obtained. Finally, the envelope is a two-line matrix returned by a three-variable function,
marked as follows:

(2.11) Env P = Env P
(
Im, Loadmin, Loadmax

)
The vectors of minimum and maximum loads can be created manually but it can also

be automated by creating a special function. The following method of arranging the load
parameters was proposed:

p =
[
𝑝min 𝑝max

]
(2.12)

P =


𝑥1 𝑃1,min 𝑃1,max
𝑥2 𝑃2,min 𝑃2,max

· · ·
𝑥𝑘 𝑃𝑘,min 𝑃𝑘,max

(2.13)

where:
p – a vector representing the load uniformly distributed over the entire length in [kN/m],
P – matrix representing concentrated loads in [kN] with their points of application.
The data missing for the determination of the load matrix is the calculation step 𝑑𝑥 and

target size of matrix 𝑛. As a result of some actions not quoted due to their simplicity and
low importance the following function is obtained:

(2.14) Load = Load
(
p, P, 𝑛, 𝑑𝑥

)
=
[
Loadmin Loadmax

]
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3. Computational example

The analysis is based on the example of the MA-46 bridge over the Bobrzyca water-
course at km 45+958 of the A4 motorway in Poland (Fig. 3). It is located between the
Bolesławiec and Krzyżowa junctions. The bridge carries the route over the watercourse by
two separate superstructures for the left and right carriageway of the motorway, supported
on common abutments. In a static scheme it is a three-span frame and the main girder is
a concrete slab.

Fig. 3. MA-46 bridge along the A4 motorway (photo credit: Maciej Hildebrand)

For purposes of this paper and the work [7] an alternative design solution to the existing
facility was proposed. In this solution the superstructure is a four-girder beam-plate system
(Fig. 4). The cooperation of the girders, apart from the deck slab, is ensured by the cross-
members located in the middle of the span. The general concept of the structure remains
the same: a three-span concrete road bridge with not changed span lengths of 16 m, 19 m,
16 m (Fig. 5). The static scheme was simplified and defined as a continuous beam.

Fig. 4. Cross-section of the deck of an example bridge

With the functions described in Section 2 it is possible to quickly determine the
envelopes of bending moments and shear forces for a structure model with a scheme
of a continuous beam without cantilevers. The procedure for determining the individual
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a)

b)

Fig. 5. Side view of an example bridge: a) technical drawing, b) ideological scheme used
for static calculations

components and the total envelopes of bending moments, as well as shear forces is shown
on the example of the bridge described above and presented in Fig. 4 and Fig. 5.
The static scheme was defined as L = [16 19 16] and the calculation step was assumed

𝑑𝑥 = 0.1 m. Based on these data the bending moment influence matrix was determined
according to (2.1):

(3.1) Im = Im
(
L, 𝑑𝑥

)
= Im

(
[16 19 16], 0.1

)
The model was reduced to the one-dimensional space using the influence function of

the transverse load distribution. Many, well known methods enabling such operation can
be found in the literature, e.g. [8–10]. For purposes of this study the Guyon–Massonnet
method was used [10]. After performing the calculations, the values presented in Table 1
were obtained.

Table 1. List of loads

No. Item
Load value

unit maximum minimum

1 Deck, girders, equipment kN/m 81.08 55.99

2 Cross-beams kN 30.81 22.54

3 Vehicle uniformly distributed load kN/m 16.37 –

4 Vehicle axle kN 178.19 –

The envelope of bending moments is divided into the following three components:
Env G = Env P(Im, Load𝐷𝐿

min , Load𝐷𝐿
max) – envelope obtained from dead and equipment

load (DL),
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Env Q = Env P(Im, 0, Load𝑈𝐷𝐿
max ) – envelope obtained from vehicle uniformly dis-

tributed load (UDL),
Env V = Env K(Im, 178.19, 0.1) – envelope obtained from vehicle passage.
The total envelope of bending moments is the sum of:

(3.2) Env = Env G + Env Q + Env V

4. Discussion of results

All static calculations of the example bridge, described in Section 3, were performed in
Matlab software. A block diagram of the programming code was presented in Fig. 6. The
entire numerical code can be found in Table 2.

Fig. 6. Block diagram of Matlab programming code used for static calculations

The calculation results obtained fromMatlab were used to generate appropriate graphs
with envelopes of bending moments and shear forces (Figs. 7–11).
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Table 2. Matlab numerical code

Matlab code for calculations of bending moments∗ Matlab code for calculations of shear forces∗

% definition of geometry data and calculation
step

L = [16 19 16];
dx = 0.1;

% calculations of influence matrix

nh = length(L) � 1;
n = sum(L)/dx + 1;

MX = zeros(nh,n);
MP = zeros(n,n);
X = zeros(nh,n);
D = zeros(nh,nh);
D_P = zeros(nh,n);

for i = 1:nh
a = sum(L) � L(length(L));
b = L(length(L));
L_rest = L(i:length(L));
c = sum(L) - sum(L_rest);
R = �(sum(L_rest)/b);
x = 0;
for j = 1:n
if x <= c
MX(i,j) = 0;
end
if x > c && x <= a
MX(i,j) = x - c;
end
if x > a
MX(i,j) = x � c + R*(x - a);
end
x = x + dx;
end

end

for i = 1:n
a = sum(L) � L(length(L));
b = L(length(L));
c = (i-1)*dx;
R = (sum(L) � c)/b;
x = 0;
for j = 1:n
if x <= a
if x <= c
MP(i,j) = 0;
end
if x > c
MP(i,j) = c � x;
end
end
if x > a
if x <= c
MP(i,j) = R*(x � a);
end
if x > c
MP(i,j) = c � x + R*(x � a);
end
end
x = x + dx;
end

end

% definition of geometry data and calculation
step

𝐿 = [16 19 16];
dx = 0.1;

% calculations of influence matrix

nh = length(L)-1;
n = sum(L)/dx + 1;

MX = zeros(nh,n);
MP = zeros(n,n);
SX = zeros(nh,n);
SP = zeros(n,n);
X = zeros(nh,n);
D = zeros(nh,nh);
D_P = zeros(nh,n);

for i = 1:nh
a = sum(L)-L(length(L));
b = L(length(L));
L_rest = L(i:length(L));
c = sum(L)-sum(L_rest);
R = -(sum(L_rest)/b);
x = 0;
for j = 1:n
if x<= c
MX(i,j) = 0;
end
if x> c && x<= a
MX(i,j) = x � c;
end
if x> a
MX(i,j) = x-c + R*(x-a);
end
x = x + dx;
end

end

for i = 1:n
a = sum(L) � L(length(L));
b = L(length(L));
c = (i �1)*dx;
R = (sum(L)-c)/b;
x = 0;
for j = 1:n
if x <= a
if x <= c
MP(i,j) = 0;
end
if x > c
MP(i,j) = c � x;
end
end
if x > a
if x <= c
MP(i,j) = R*(x � a);
end
if x > c
MP(i,j) = c � x + R*(x � a);
end
end
x = x + dx;
end

end
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Table 2 [cont.]

Matlab code for calculations of bending moments∗ Matlab code for calculations of shear forces∗

for i = 1:nh
for j = 1:nh
x = MX(i,:).*MX(j,:);
k = length(x);
D(i,j)=0.5*dx*(sum(x(1:(k-1)))+sum(x(2:k)));
end
end

for j = 1:n
for i = 1:nh
x = MX(i,:).*MP(j,:);
k = length(x);
D_P(i,j)=�0.5*dx*(sum(x(1:(k�1)))+
sum(x(2:k)));
end
end

for j = 1:n
X(:,j) = D\D_P(:,j);
end

Im = X’*MX + MP;

% definition of loads data

g_max = 81.08;
g_min = 55.99;
G_max = zeros(n,1);

% index specifies location of the force

G_max(81) = 30.81;
G_max(256) = 30.81;
G_max(431) = 30.81;
G_min = zeros(n,1);
G_min(81) = 22.54;
G_min(256) = 22.54;
G_min(431) = 22.54;
q_max = 16.37;
V_max = 178.19;

% calculations of envelope from dead and
equipment load

Max = zeros(n,n);
Min = zeros(n,n);

for j = 1:n
for i = 1:n
if Im(i,j)>= 0
Max(i,j) = Im(i,j)*(G_max(i) + g_max*dx);
Min(i,j) = Im(i,j)*(G_min(i) + g_min*dx);
end
if Im(i,j)< 0
Max(i,j) = Im(i,j)*(G_min(i) + g_min*dx);
Min(i,j) = Im(i,j)*(G_max(i) + g_max*dx);
end
end
end

for i = 1:n
EnvG(i,1) = sum(Min(:,i));
EnvG(i,2) = sum(Max(:,i));
end

for i = 1:nh
a = sum(L)-L(length(L));
b = L(length(L));
L_rest = L(i:length(L));
c = sum(L)-sum(L_rest);
R = -(sum(L_rest)/b);
x = 0;
for j = 1:n
if x <= c
SX(i,j) = 0;
end
if x > c && x <= a
SX(i,j) = 1;
end
if x > a
SX(i,j) = 1 + R;
end
x = x + dx;
end
end

for i = 1:n
a = sum(L)-L(length(L));
b = L(length(L));
c = (i-1)*dx;
R = (sum(L)-c)/b;
x = 0;
for j = 1:n
if x <= a
if x <= c
SP(i,j) = 0;
end
if x > c
SP(i,j) = -1;
end
end
if x > a
if x <= c
SP(i,j) = R;
end
if x>c
SP(i,j) = R-1;
end
end
x = x + dx;
end
end

for i = 1:nh
for j = 1:nh
x = MX(i,:).*MX(j,:);
k = length(x);
D(i,j) = 0.5*dx*(sum(x(1:(k-1))) +
sum(x(2:k)));

end
end

for j = 1:n
for i = 1:nh
x = MX(i,:).*MP(j,:);
k = length(x);
D_P(i,j) = -0.5*dx*(sum(x(1:(k-1))) +
sum(x(2:k)));

end
end
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Table 2 [cont.]

Matlab code for calculations of bending moments∗ Matlab code for calculations of shear forces∗

% calculations of envelope from vehicle
uniformly distributed load

Max = zeros(n,n);
Min = zeros(n,n);

for j = 1:n
for i = 1:n
if Im(i,j)>= 0
Max(i,j) = Im(i,j)*q_max*dx;
Min(i,j) = 0;
end
if Im(i,j)<0
Max(i,j) = 0;
Min(i,j) = Im(i,j)*q_max*dx;
end
end
end

for i = 1:n
EnvQ(i,1) = sum(Min(:,i));
EnvQ(i,2) = sum(Max(:,i));
end

% calculations of envelope from vehicle
passage

temp = [zeros(36,n);Im] +
[zeros(24,n);Im;zeros(12,n)] +
[zeros(12,n);Im;zeros(24,n)] +
[Im;zeros(36,n)];

for i = 1:n
EnvV(i,1) = min(temp(:,i))*V_max;
EnvV(i,2) = max(temp(:,i))*V_max;
end

% calculations of total envelope

Env = EnvG + EnvQ + EnvV;

% preparation of figures and saving of
envelopes

figure(’WindowState’,’maximized’)
x = 0:dx:sum(L);
plot(x,EnvG(:,1),’b’,x,EnvG(:,2),’r’,
’LineWidth’,1.5)
xlim([0 sum(L)])
set(gca,’ydir’,’reverse’,’FontSize’,14)
xlabel(’x [m]’)
ylabel(’M [kNm]’)
title(’Env M(G)’)
grid
saveas(gcf,’Env_M(G).fig’)
saveas(gcf,’Env_M(G).bmp’)

figure(’WindowState’,’maximized’)
x = 0:dx:sum(L);
plot(x,EnvQ(:,1),’b’,x,EnvQ(:,2),’r’,
’LineWidth’,1.5)
xlim([0 sum(L)])
set(gca,’ydir’,’reverse’,’FontSize’,14)
xlabel(’x [m]’)
ylabel(’M [kNm]’)
title(’Env M(Q)’)
grid
saveas(gcf,’Env_M(Q).fig’)
saveas(gcf,’Env_M(Q).bmp’)

for j = 1:n
X(:,j) = D\D_P(:,j);
end
Im = X’*SX + SP;

% definition of loads data

g_max = 81.08;
g_min = 55.99;
G_max = zeros(n,1);

% index specifies location of the force

G_max(81) = 30.81;
G_max(256) = 30.81;
G_max(431) = 30.81;
G_min = zeros(n,1);
G_min(81) = 22.54;
G_min(256) = 22.54;
G_min(431) = 22.54;
q_max = 16.37;
V_max = 178.19;

% calculations of envelope from dead and
equipment load

Max = zeros(n,n);
Min = zeros(n,n);

for j = 1:n
for i = 1:n
if Im(i,j)> = 0
Max(i,j) = Im(i,j)*(G_max(i) + g_max*dx);
Min(i,j) = Im(i,j)*(G_min(i) + g_min*dx);
end
if Im(i,j)< 0
Max(i,j) = Im(i,j)*(G_min(i) + g_min*dx);
Min(i,j) = Im(i,j)*(G_max(i) + g_max*dx);
end
end
end

for i = 1:n
EnvG(i,1) = sum(Min(:,i));
EnvG(i,2) = sum(Max(:,i));
end

% calculations of envelope from vehicle
uniformly distributed load

Max = zeros(n,n);
Min = zeros(n,n);

for j = 1:n
for i = 1:n
if Im(i,j)> = 0
Max(i,j) = Im(i,j)*q_max*dx;
Min(i,j) = 0;
end
if Im(i,j)< 0
Max(i,j) = 0;
Min(i,j) = Im(i,j)*q_max*dx;
end
end
end

for i = 1:n
EnvQ(i,1) = sum(Min(:,i));
EnvQ(i,2) = sum(Max(:,i));
end
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Table 2 [cont.]

Matlab code for calculations of bending moments∗ Matlab code for calculations of shear forces∗

figure(’WindowState’,’maximized’)
x = 0:dx:sum(l);
plot(x,EnvV(:,1),’b’,x,EnvV(:,2),’r’,
’LineWidth’,1.5)
xlim([0 sum(L)])
set(gca,’ydir’,’reverse’,’FontSize’,14)
xlabel(’x [m]’)
ylabel(’M [kNm]’)
title(’Env M(V)’)
grid
saveas(gcf,’Env_M(V).fig’)
saveas(gcf,’Env_M(V).bmp’)

figure(’WindowState’,’maximized’)
x = 0:dx:sum(L);
plot(x,Env(:,1),’b’,x,Env(:,2),’r’,
’LineWidth’,1.5)
xlim([0 sum(L)])
set(gca,’ydir’,’reverse’,’FontSize’,14)
xlabel(’x [m]’)
ylabel(’M [kNm]’)
title(’Env M(G,Q,V)’)
grid
saveas(gcf,’Env_M.fig’)
saveas(gcf,’Env_M.bmp’)

* All rights reserved. The data necessary to be defined to
perform the calculations are marked in blue colour.

% calculations of envelope from vehicle
passage

temp = [zeros(36,n);Im]+[zeros(24,n);Im;
zeros(12,n)]+[zeros(12,n);Im;zeros(24,n)]+
[Im;zeros(36,n)];

for i = 1:n
EnvV(i,1) = min(temp(:,i))*V_max;
EnvV(i,2) = max(temp(:,i))*V_max;
end

% calculations of total envelope

Env = EnvG + EnvQ + EnvV;

% preparation of figures and saving of
envelopes

figure(’WindowState’,’maximized’)
x = 0:dx:sum(L);
plot(x,EnvG(:,1),’b’,x,EnvG(:,2),’r’,
’LineWidth’,1.5)
xlim([0 sum(L)])
set(gca,’FontSize’,14)
xlabel(’x [m]’)
ylabel(’S [kN]’)
title(’Env S(G)’)
grid
saveas(gcf,’Env_S(G).fig’)
saveas(gcf,’Env_S(G).bmp’)
figure(’WindowState’,’maximized’)
x = 0:dx:sum(L);
plot(x,EnvQ(:,1),’b’,x,EnvQ(:,2),’r’,
’LineWidth’,1.5)
xlim([0 sum(L)])
set(gca,’FontSize’,14)
xlabel(’x [m]’)
ylabel(’S [kN]’)
title(’Env S(Q)’)
grid
saveas(gcf,’Env_S(Q).fig’)
saveas(gcf,’Env_S(Q).bmp’)
figure(’WindowState’,’maximized’)
x = 0:dx:sum(L);
plot(x,EnvV(:,1),’b’,x,EnvV(:,2),’r’,
’LineWidth’,1.5)
xlim([0 sum(L)])
set(gca,’FontSize’,14)
xlabel(’x [m]’)
ylabel(’S [kN]’)
title(’Env S(V)’)
grid
saveas(gcf,’Env_S(V).fig’)
saveas(gcf,’Env_S(V).bmp’)
figure(’WindowState’,’maximized’)
x = 0:dx:sum(L);
plot(x,Env(:,1),’b’,x,Env(:,2),’r’,
’LineWidth’,1.5)
xlim([0 sum(L)])
set(gca,’FontSize’,14)
xlabel(’x [m]’)
ylabel(’S [kN]’)
title(’Env S(G,Q,V)’)
grid
saveas(gcf,’Env_S.fig’)
saveas(gcf,’Env_S.bmp’)
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The envelope of bending moments caused by permanent loads (dead and equipment
load)was presented in Fig. 7. The envelopes of the same internal forces caused by temporary
loads were shown in Fig. 8 and Fig. 8. Figure 8 concerns the results for vehicle uniformly
distributed load, whereas Figure 9 refers to the effects of static combinations for vehicle
passage. The total envelope of bending moments, generated as the sum of the previously
discussed envelopes, was presented in Fig. 10.

Fig. 7. Envelope (Env) of bending moments (M) due to permanent loads (G)

Fig. 8. Envelope (Env) of bending moments (M) due to vehicle uniformly distributed load (Q)

The process of determining the envelope of shear forces is analogous and the final
result of calculations was presented in Figure 11.
The results of static calculations, efficiently supported by Matlab, were compared with

extreme values obtained in FEM programs, SOFiSTiK and Autodesk Robot Structural
Analysis Professional. The comparison in relation to the bending moments and shear
forces is presented in Table 3 and Table 4. As it is visible, the results are very similar. Some
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Fig. 9. Envelope (Env) of bending moments (M) due to vehicle passage (V)

Fig. 10. Summary envelope (Env) of bending moments (M)

Fig. 11. Summary envelope (Env) of shear forces (S)
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differences in bending moments, calculated in commercial programs, were also noticed.
This inaccuracy can be caused by different theory implemented for calculations in both
programs – Timoshenko and Bernoulli beam theory. The computational beam model of
the structure prepared in SOFiSTiK is presented in Fig. 12.

Fig. 12. Computational beam model of the structure

Table 3. Comparison of calculations’ results in relation to the bending moments

Software M(G)
[kNm]

M(Q)
[kNm]

M(V)
[kNm]

M(G,Q,V)
[kNm]

Relative
difference

MATLAB
–2686.17 –573.89 –1133.86 –4393.91 –
1759.25 433.90 1968.49 4158.37 –

ROBOT
–2686.00 –573.91 –1133.67 –4393.58 –0.01%
1757.13 433.77 1967.82 4157.30 –0.03%

SOFiSTiK
–2672.19 –569.46 –1127.55 –4369.20 –0.56%
1762.40 434.23 1973.44 4165.04 +0.16%

Table 4. Comparison of calculations’ results in relation to the shear forces

Software S(G)
[kN]

S(Q)
[kN]

S(V)
[kN]

S(G,Q,V)
[kN]

Relative
difference

MATLAB
809.13 171.99 657.42 1638.55 –
–827.88 –166.01 –659.47 –1653.36 –

ROBOT
813.00 172.81 657.43 1643.24 +0.29%
–831.92 –166.83 –659.47 –1658.22 +0.29%

SOFiSTiK
812.52 172.51 657.14 1642.17 +0.22%
–831.06 –166.55 –659.08 –1656.69 +0.20%
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5. Summary
The discussed examples show how theMatlab package can effectively support the work

of a designer. Compared to the modelling of structures in FEM programs the proposed
approach has more steps but they are not time-consuming and this allows for minor mod-
ifications even at the numerical level. Despite this, it does not compete with advanced
structural analysis programs, on the contrary – it is a good tool for preliminary calculations
and checking the results. Moreover, it familiarizes the designer with working on code which
is similar to working in some FEM softwares (e.g. SOFiSTiK). Another benefit of working
in Matlab is improving mathematical intuition by solving complex systems of equations
using algebraic structures and static through contact with partial results of calculations for
different types of load. This approach also has its drawbacks which is a big limitation when
it comes to construction types as creating computational models of higher classes than
one-dimensional. In this case it is an issue beyond the reach or simply beyond the common
sense of most designers.
However, a smart solution might be a cooperation between FEM software and math-

ematical packages (e.g. Autodesk Robot Structural Analysis Professional & Matlab or
SOFiSTiK & Mathematica). This approach was used by Hawryszków in case of static
calculations of two landmark footbridges in Poland (Fig. 13) [11–14]. The footbridge in the
Pieniny mountains was built in 2006 and was designed as a large-span, cable-stayed struc-
ture made of glued-laminated wood [15], whereas the footbridge in Jadwisin was designed
in 2005 and constructed in 2008 as an arch, steel structure with decks made of reinforced
concrete. Coupling of Robot Millennium software with Matlab programming and numeric
computing platform was an uncommon and innovative design idea in those times.

Fig. 13. Examples of footbridges designed with the use of Robot and Matlab cooperation [11–14]

Nowadays, FEM (Finite Element Method) and CAS (Computer Algebra System) pro-
grams offer designers much more possibilities in computer-aided calculations. Moreover,
mathematical packages are very useful tools for expert or scientific calculations and can
also perfectly support optimization processes.
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Zastosowanie programu Matlab w obliczeniach statycznych
konstrukcji mostowych

Słowa kluczowe: obliczenia statyczne, mosty, obwiednie sił wewnętrznych, pakiety matematyczne,
Matlab

Streszczenie:

Pakiet Matlab jest środowiskiem programistycznym służącym do obliczeń w zakresie algebry li-
niowej, pomocnym zarówno dla naukowców, jak i dla inżynierów. Znajduje on zastosowanie zarówno
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przy obliczeniach prostych, jak i bardzo złożonych. Jego główną zaletą z perspektywy inżyniera bu-
dowlanego jest prostota języka, niewymagająca dużych umiejętności programistycznych i możliwość
szerokiego zastosowania w obliczeniach z zakresu statyki liniowej. Platforma matematyczna została
użyta do oprogramowania obliczeń statycznych wieloprzęsłowych, ciągłych, belkowych konstruk-
cji mostowych. W sformułowanym podejściu teoretycznym wykorzystano metodę siłdo wyznacza-
nia wykresów siłwewnętrznych w stanach jednostkowych, które to uporządkowane tworzą macierz
wpływu. Mając macierz wpływu, wprowadzano wektor obciążeń, a następnie wyznaczano obwied-
nię sił przekrojowych przy użyciu specjalnej funkcji. Znając wyniki od poszczególnych obciążeń,
możliwe jest wyznaczenie globalnej obwiedni sił wewnętrznych i przystąpienie do ewentualnych
modyfikacji modelu. Podejście teoretyczne zostało przetestowane obliczeniowo na przykładzie alter-
natywnej koncepcji projektowej mostu MA-46 w ciągu autostrady A4.
Jedną z większych zalet omówionego podejścia analitycznego jest szeroki dostęp do wyników

obliczeń pośrednich oraz praca z kodem zbliżonym do niektórych programów obliczeniowych (np.
SOFiSTiK). Omówione podejście obliczeniowe jest dobrym sposobem do wstępnego projektowania
ze względu na niewielki czas potrzebny do porównania kilku wariantów rozwiązania, a co za tym
idzie, może być pomocne w optymalizacji konstrukcji.
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