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Abstract

One of the most popular heuristics used to solve the permutation flowshop scheduling problem
(PFSP) is the NEH algorithm. The reasons for the NEH popularity are its simplicity, short
calculation time, and good-quality approximations of the optimal solution for a wide range of
PFSP instances. Since its development, many works have been published analysing various
aspects of its performance and proposing its improvements. The NEH algorithm includes,
however, one unspecified and unexamined feature that is related to the order of jobs with
equal values of total processing time in an initial sequence. We examined this NEH aspect
using all instances from Taillard’s and VRF benchmark sets. As presented in this paper, the
sorting operation has a significant impact on the results obtained by the NEH algorithm. The
reason for this is primarily the input sequence of jobs, but also the sorting algorithm itself.
Following this observation, we have proposed two modifications of the original NEH algorithm
dealing with sequencing of jobs with equal total processing time. Unfortunately, the simple
procedures used did not always give better results than the classical NEH algorithm, which
means that the problem of sequencing jobs with equal total processing time needs a smart

approach and this is one of the promising directions for further research.
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lem, NEH algorithm, Input sequence.

Introduction

This paper presents an analysis of an unexamined
feature of the NEH algorithm applied for the permu-
tation flowshop scheduling problem, in which n jobs
are to be processed consecutively on m machines and
the order of jobs on every machine is to be kept the
same. The solution to the problem is a permutation
containing all n jobs, and the completion time of the
last job on the last machine (makespan) should be
minimized.

NEH algorithm, the most popular heuristic for
PFSP proposed by Nawaz, Enscore and Ham (1983),
is described in the following steps:

1. Sorting jobs (from an input sequence) to generate
an initial sequence based on the sums of their pro-
cessing times arranged in a non-increasing order.
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2. Scheduling the first two jobs in the sequence in
such a manner that the makespan for these jobs
should be the smallest.

3. The next job k (2 < k < n) that has not been
sequenced yet is inserted in the existing sequence
into a position that minimises the makespan for
these jobs. The insertion is repeated until all jobs
are sequenced.

The NEH algorithm has two properties unresolved
in the original publication:

1. Equal total processing time (TPT) of some jobs
(step 1).

2. Equal makespan of partial sequences (step 2 and
step 3).

While the second listed aspect has been widely
studied and various tie-breaking techniques have been
proposed — see e.g. Nagano and Moccelin (2002) and
Liu et al. (2017) — the first one has been noticed, but
only partially examined. At most, in the case of equal
total processing time of some jobs, a random order
of these jobs in an initial sequence is proposed (e.g.
Ying and Lin, 2013), without any justification. Thus,
the NEH constructive algorithm, which by definition
should give repetitive results, becomes a partially ran-
dom algorithm that generates the more different solu-
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tions, the more jobs with an equal sorting criterion oc-
cur in the input sequence. Although researchers have
proposed various ways to generate the initial order of
jobs, the purpose of those activities is not to resolve
the ambiguity identified, but simply to create a sort-
ing criterion that will yield better results than the
original approach.

The most comprehensive analysis of this problem
is contained in Vasiljevic and Danilovic (2015). The
authors emphasize that in contrast to the sort of ties
in the insertion phase, the ties in the initial phase are
not defined in the definition of NEH. This results in
inaccuracy that can be observed in a large number of
experimental results published on this topic. Vasilje-
vic and Danilovic provided the experiments that con-
firm the importance of the information about the sort
of ties in the initial phase in any experimental result
related to NEH. The conclusion, obtained by their
study, is that the range of the objective values for dif-
ferent sorting approaches of ties is often greater than
the NEH improvements, proposed in the literature.

In order to examine in details the input se-
quence problem in the NEH algorithm, the bench-
mark set proposed by Taillard (1993) and Vallada-
Ruiz-Framinan (VRF) benchmark proposed by Val-
lada et al. (2015) are used further in the paper. The
basic statistics for test instances are given and some
ideas dealing with sequencing problem are proposed.
The aim of our experiments is to show that ambiguous
sorting of jobs with the same total processing time has
an impact on the results of the NEH algorithm and
should be taken into account while developing its ex-
tensions. We considered only the original version of
NEH, in which the sorting criterion is a total pro-
cessing time of jobs on all machines. As it has been
shown in (Framinan et al., 2003), it is the best sin-
gle criterion for NEH heuristic dealing with makespan
minimization.

The paper has the following structure. Background
presents the literature review of the NEH heuristic
and its extensions. The explanation of the job se-
quencing problem is described in the Third Section.
The Fourth Section gives the detailed analysis of the
test instances. The computational experiments are
summarized in the Fifth Section, and two approaches
solving input sequence problem are proposed in Sec-
tion Potential directions. The conclusions are drawn
in the last Section.

Background

There are many studies reported in the literature
devoted to the permutation flowshop scheduling prob-
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lem. a comprehensive review on PFSP formulations
as well as solution approaches are presented in (Rossi
et al., 2016) and (Fernandez-Viagas et al., 2017). For
practical reasons, this Section gives a limited review
of the methods used to solve the considered problem:
we focus only on approaches that are closely related
to our work, i.e. NEH properties and NEH improve-
ments.

Due to its simplicity and the quality of the re-
sults generated, the NEH algorithm still remains the
most popular construction heuristics for the flowshop
scheduling problem and forms the basis for further re-
search on algorithms solving this problem. NEH has
a complexity of O(m - n?), but Taillard (1990) has
shown that its complexity can be reduced to O(m-n?).
Ruiz and Maroto (2005) have examined 25 different
heuristics and have shown that the NEH algorithm
gives the best results among all heuristics examined
and, additionally, in a much shorter time.

Dong, Huang and Chen (2008) presented a variant
of the NEH heuristic based on the deviation of pro-
cessing times (NEH-D). It employs a special priority
rule for the sorting phase of the NEH algorithm as-
signing higher priority to the jobs that have a larger
deviation of the processing times on each machine.
The authors used the sum of average processing time
and the standard deviation of processing times for the
first phase of their NEH-D algorithm. In the second
phase (inserting jobs into a partial sequence) they de-
veloped a special mechanism able to decide which job
should be taken if the partial sequence for them is
equal (a tie situation). With the computational com-
plexity of O(m - n?), when using Taillard speed-up
method, NEH-D is able to provide better solutions
than the original NEH algorithm by 11.9% (Rossi et
al., 2016) in terms of ARPD (Average Percentage Rel-
ative Deviation). At the same time Kalczynski and
Kamburowski (2007) proposed another tie-breaking
strategy in the second phase of the NEH algorithm
that is based on makespan calculation for partial se-
quences. However, an average gain over the original
NEH algorithm was only 5.1%. Later in (2008) and
(2009) Kalczynski and Kamburowski proposed new
strategies for both phases of the NEH algorithm, but
the results on average were not better than 7.9%,
comparing to the original NEH algorithm. Rad, Ruiz
and Boroojerdian (2009) proposed a more complex
heuristic called FRB3 in which all jobs from the cur-
rent sequence were reinserted in the second phase of
the NEH method. Such strategy led to an average
gain of 48.0% over the NEH algorithm, however, for
the cost of the increased computational complexity
of O(m - n%). Finally, Fernandez-Viagas and Frami-
nan (2014) used a tie-breaking strategy that selects
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the sequence minimizing the estimation of total idle
time. Such strategy gave better results than the origi-
nal NEH algorithm by 8.2% on average with the com-
plexity of O(m - n?). The most popular extensions of
the original NEH algorithm have been recently com-
pared by Rossi, Nagano and Nero (2016). The authors
also present yet another approach that can bring an
average improvement of 57.6% over the original NEH
heuristic, however average computational time was
twice as big as in the case of FRB3 heuristic, so far
the most demanding in this respect.

According to Vasiljevic and Danilovic (2016), many
NEH improvements are described in a very impre-
cise manner, which makes it impossible to deter-
mine whether the advantages (simplicity, efficiency,
low computational complexity) of the original algo-
rithm are met.

The review presented above shows that there is still
a room for improvement of the original NEH algo-
rithm, however, more studies analysing the impact of
job processing times patterns are required. Improve-
ments to the NEH algorithm apply to either the cri-
teria for building an initial order or a tie-breaking
procedure.

The problem of input sequence of jobs
in NEH algorithm

Various results of NEH performance for the same
instances of known benchmarks have been reported
in the literature (e.g. Semanco and Modrak, 2012 vs
Ying and Lin, 2013). Such an ambiguous operation of
the well-known, constructive algorithm results from
different interpretations of sorting (step 1) and selec-
tion of the best partial sequence (next steps). In the
case of the sorting step three issues should be consid-
ered:

1. What order is accepted for jobs with equal total
processing times?

2. Is it possible that different sorting algorithms give
different results?

3. Can the input sequence of jobs cause NEH to give
different results?

Let T;; and T'y; be the total processing time of job
J; and job J; (i <> j), respectively. Sorting in a “non-
increasing order” is trivial if Ty; > Ty; or Ty < Ty :
in the first case job J; will precede job J; in the initial
sequence, in the second case — the sequence will be
reversed. But if T7;; = T);, the initial sequence will
depend on input (before sorting) order of jobs, on the
inequality operator used (“>" vs “>"), and — what will
be shown later — the sorting algorithm itself.

34

To illustrate the above mentioned operating princi-
ple of the NEH algorithm we have used the process-
ing times contained in Table 1 and comprising 5 jobs
processed on 3 machines. We do not want to draw at-
tention to the problem of tie-breaking in the jobs in-
sertion step, but to different results of the NEH algo-
rithm depending on the input order of jobs with equal
total processing time (in the described case these are
jobs no. 3 and 4).

Table 1
Sample input data for PFSP

Job/mach. M; Mo M3 TPT
Ji 3 7 4 14
Jao 5 3 4 12
J3 5 4 2 11
Ju 5 5 1 11
Js 3 4 3 10

The problem is presented in three scenarios; Fig-
ures 1 and 2 illustrate the results: the Figures contain
indexes of jobs as well as the completion time of each
job. In the first scenario, the criterion for sorting jobs
is given by strict inequality 7T'y; > T'y; and the order of
jobs with equal processing time in the input sequence
is J3—Jy (Figure 1a). In the second scenario, the sort-
ing criterion is the same, but the input order of jobs
with equal processing time is Jy — J3 (Figure 1b).

It is clear that in these two scenarios the first job
from a subsequence of jobs with equal times is always
the first in the initial sequence (after sorting). In other
words, the subsequence of jobs with an equal indicator
in the initial sequence will always be the same as the
order of those jobs in the input sequence. In the third
scenario, the criterion of sorting jobs is given by weak
inequality T'y; > Ty; (Figure 2). Also, in this case, tie-
breaking in the second step was not considered, and
the difference in the ranking results only from weak-
ening inequalities in the insertion phase (“>” instead
of “>7). If weak inequality is used the subsequence of
jobs with equal total processing time in the initial se-
quence will always be the reversed order of those jobs
in the input sequence.

Based on the presented example, it can be con-
cluded that both the strictness of the inequality in
the sorting process and the input order of jobs have
an influence on the final value of the makespan. More-
over, we can say that the original NEH is, in fact,
a non-deterministic algorithm, because the resulting
solutions depend on the de facto accidental input or-
der of jobs (if at least two jobs exist with equal total
processing time).

Volume 13 @ Number 1 e March 2022
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Fig. 1. Different results of the NEH algorithm depending
on the sequence of jobs with equal total processing time

There is another problem with the first step of
the NEH algorithm: the silent assumption is that the
initial sequence of jobs is independent of the sort-
ing algorithm used, but our research indicates that
this is not true. We have compared the NEH results
for two commonly used sorting algorithms, i.e. bub-
ble sort (BS) and Quicksort (QS): the NEH results
over Taillard and VRF benchmark sets are summa-
rized in Table 2. As a performance measure (and fur-
ther in the text) the ARPD (Average Relative Per-
cent Deviation) was used. The ARPD is calculated
by (C max, —Best)/Best x 100%, where C'maxy4 is
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Fig. 2. The result of the NEH algorithm for non-strict
inequality of sorting criterion

makespan obtained by the algorithm under considera-
tion, Best is the corresponding best-known makespan
found in the literature.

Table 2
Summary of NEH results for different sorting algorithms
employed in step 1

VRF
small

VRF
large*

Benchmark/
sorting
algorithm QS | BS | QS| BS| QS| BS

Taillard

Average ARPD from

all instances |%)] 335

3.32(3.87|3.84|3.32| 3.33

Average ARPD for
instances where all
jobs have different
TPT [%]

4211421291291 - -

Average ARPD for
instances with at
least two jobs with
equal TPT [%]

3.1813.15|4.30 | 4.26 | 3.32 | 3.33

Number of instances
with better results
than a competitive
sorting algorithm
(from instances with
at least two jobs with
equal TPT)

37/ | 40/ | 45/ | 33/ |116/|122/
100 | 100 | 166 | 166 | 240 | 240

* all instances of VRF large contain at least two jobs with

equal TPT
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Differences only apply to the instances with jobs
with equal TPT and result from the way the Quicksort
algorithm works (QS is an unstable algorithm which
means that it does not preserve the original order of
elements when sorting by a non-unique value).

Although the differences between results for the
NEH algorithm employing the two sorting algorithms
examined are not big, they are unacceptable in the
case of a constructive algorithm. They indicate also
that the sorting algorithm is important for determin-
ing the initial sequence and only stable sorting algo-
rithms (e.g. bubble, block, insertion, merge, odd-even
sort) should be used. This is an unexpected conclu-
sion pointing to one more ambiguity (apart from the
previously discussed) of the first stage of the NEH al-
gorithm. However, this aspect is also directly related
to the problem of equal TPT for some jobs.

Analysis of test instances

As the most common benchmarks for the permuta-
tion flowshop scheduling problem are 120 instances
presented by Taillard and 480 instances of VRF,
the statistical analysis has been performed on these
benchmarks. We report the average number of sub-
sequences with k& (k = 2,3,4; k > 5) jobs with
equal TPT, and related to the number of these sub-
sequences: average, minimum and maximum number
of possible NEH initial sequences. For example, if we
have two subsequences with jobs with equal TPT in
the input sequence, one containing 2 jobs and another
containing 4 jobs, we can generate 48 (2 - 4) differ-
ent initial sequences. The results are presented in Ta-
bles 3, 4 and 5 for Taillard, small VRF and large VRF

Table 3
Basic statistics for Taillard instances

The average number of subsequences The number of possible sequences
nxm with £ jobs of NEH initial sequence
k=2 k=3 k=4 k>5 Avg. Min Max
205 0.8 0.0 0.0 0.0 2.3 1 8
20 x 10 0.3 0.1 0.0 0.0 1.9 1 6
20 x 20 0.5 0.0 0.0 0.0 1.6 1 4
50 X 5 5.0 0.4 0.0 0.0 304.0 16 2304
50 x 10 3.0 0.1 0.0 0.0 14.4 4 48
50 x 20 2.1 0.0 0.0 0.0 10.6 1 64
100 x 5 13.0 1.7 0.7 0.0 1.3E9 5.1E2 1.2E10
100 x 10 10.0 1.7 0.0 0.0 7.3E5 3.8E2 7.1E6
100 x 20 7.6 0.4 0.0 0.0 2.0E3 1.6E1 1.2E4
200 x 10 30.0 6.5 1.0 0.2 2.6E17 2.2E13 2.3E18
200 x 20 23.6 3.7 1.0 0.1 4.1E14 1.5E8 4.0E15
500 x 20 80.7 324 10.3 2.3 1.5E75 1.5E61 1.5E76
Table 4
Basic statistics for VRF small instances
The average number of subsequences The number of possible sequences
nxm with £ jobs of NEH initial sequence
k=2 k=3 k=4 k>5 Avg. Min Max
10 xm 0.0 0.0 0.0 0.0 1.0 1 2
20 x m 0.5 0.0 0.0 0.0 1.6 1 6
30 x m 1.3 0.1 0.0 0.0 5.2 1 48
40 x m 1.7 0.2 0.0 0.0 6.7 1 48
50 x m 3.2 0.2 0.0 0.0 29.8 1 384
60 x m 4.1 0.3 0.1 0.0 140.3 1 1152
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Table 5
Basic statistics for VRF large instances

The average number of subsequences The number of possible sequences

nxm with k£ jobs of NEH initial sequence

k=2 k=3 k=4 k>5 Avg. Min Max
100 x m 6.9 0.6 0.0 0.0 6.3E3 3.2E1 1.5E5
200 x m 2.6 3.0 0.3 0.0 4.3E13 6.6E4 1.2E15
300 x m 40.8 8.2 1.3 0.1 1.6E27 2.4E14 2.5E28
400 x m 62.2 14.7 3.2 0.7 1.0E51 2.5E24 3.2E52
500 x m 82.0 22.5 6.5 1.3 7.7ET5 7.7TE36 2.5E77
600 x m 95.8 34.8 9.6 3.4 1.4E103 9.1E56 4.4EK104
700 X m 110.0 43.6 15.3 6.8 1.5E140 1.2E74 3.6E141
800 x m 123.0 53.0 22.0 10.8 8.8E174 8.9E101 2.6E176

instances, respectively. As the VRF benchmarks are
very extensive, the statistics for them are given only
for the number of jobs n (without breaking down into
the number of machines m).

On the basis of the presented statistics we have ob-

served the following:
e 83.3% of the Taillard instances (100 out of 120)

and 84.6% of the VRF instances (406 out of 480)
contain at least two jobs with equal total process-
ing time,

e the number of subsequences with k (k = 2,3,4;
k > 5) jobs in an input sequence and the related
number of possible initial sequences increases ex-
ponentially with the increase in the number of
jobs n,

e the smaller the number of machines with the same
number of jobs, the more jobs with the same TPT
exists,

e all instances from VRF large set and Taillard large
set (n > 100 jobs) contain at least 2 jobs with

equal TPT.
The collected statistics indicate the importance of

the problem of equal total processing times for the
stable operation of the NEH algorithm and for possi-
ble attempts to improve it.

Computational experiments

The aim of the experiments was to assess the in-
fluence of the presence of jobs with equal TPT in the
input sequences on the results obtained by the clas-
sical NEH algorithm and its variants. For computa-
tional reasons we decided to perform an exhaustive
search (ES) for small-size instances (VRF small and
Taillard n < 100) and random search (RS) for large-
sized instances (VRF large and Taillard n > 100). In

Volume 13 @ Number 1 e March 2022

all small cases, the maximum possible sequences (de-
noted as Max in Tables 3 and 4) were generated and
evaluated while for large instances 1000 and 5000 ran-
dom sequences were evaluated. “Random” in this case
means a random order of jobs in subsequences con-
taining jobs of the same TPT — remaining jobs are
taken according to their order in the initial sequence.
In all cases the Taillard acceleration procedure was
used.

For the implementation of the algorithm, Python
2.7 was used as the programming language while the
code was run in the PyPy environment to speed up the
calculations. Computations were performed on a com-
puter with Xeon 1220 CPU 3.8 GHz.

Results for NEH

The results obtained for ES and RS are presented
in Tables 6-9 and they are compared to the results
achieved by the classical version of the NEH algo-
rithm. The tables contain mean, worst and best of
ARPD for those and only those instances in which
TPT problems are present. As VRF instances with
10 jobs contain only one interesting instance and with
only one pair of jobs with equal TPT, this case — as
statistically irrelevant — was not included in Table 8.

Based on the above data we investigated the con-
firmatory hypothesis that the proper sequence of
TPT jobs has a significant effect on NEH results.
a Wilcoxon signed-rank test was used to compare dif-
ferences in outcomes between NEH and ES/RS. Con-
firmatory testing at a significance level of 5% showed
statistically significant improvements in all instances
(p <0.001). We can also observe that there are sig-
nificant differences between the results obtained by
the random search with different number of evaluated
sequences: RS1000 and RS5000.

37



N

www.czasopisma.pan.pl P N www.journals.pan.pl

.

R. Puka, J. Duda, A. Stawowy: Input Sequence of Jobs on NEH Algorithm for Permutation Flowshop Scheduling. ..

Table 6
ARPD [%)] of exhaustive search for Taillard small instances
(n < 100)
nxm NEH £5
Worst Best Mean
20 x 5 3.0214 3.4687 2.6699 3.0693
20 x 10 4.2063 5.6178 4.2063 4.9121
20 x 20 3.9564 4.1499 3.1245 3.9749
50 x 5 0.7272 1.1917 0.3720 0.6850
50 x 10 5.0729 5.7989 4.6917 5.1581
50 x 20 6.8798 7.1504 6.0551 6.5637
Average 3.9773 4.5629 3.6325 4.0605
Table 7
ARPD [%)] of random search for Taillard large instances
(n > 100)
nxm | NEH RS1000 RS5000
Worst | Best | Mean | Worst | Best | Mean
100 x5 [ 0.53 | 0.99 [0.21] 0.49 | 1.02 |0.19| 0.50
100 x 10| 2.22 | 3.63 |1.17| 2.26 | 3.74 |1.11| 2.26
100 x 20| 5.35 | 6.83 [4.45| 5.57 | 6.88 |4.45| 5.57
200 x 10} 1.26 | 2.22 |0.75| 1.33 | 2.32 |0.64| 1.33
200 x 20| 4.41 | 5.71 |3.18| 4.40 | 5.90 |3.07 | 4.39
500 x 20| 2.07 | 2.86 |1.56| 2.17 | 2.95 |1.49| 2.16
Average | 2.64 | 3.71 [1.89| 2.70 | 3.80 |1.82| 2.70
Table 8

ARPD [%)] of exhaustive search for VRF small instances

nxXm NEH ES

Worst Best Mean
20 x m 3.7486 3.7922 3.4555 3.6153
30 xm 4.4966 4.8497 4.1738 4.4967
40 x m 4.2235 4.5939 3.8818 4.2261
50 x m 4.3576 4.9590 3.8606 4.3834
60 x m 4.2258 5.2415 3.5990 4.3369
Average 4.2104 4.6873 3.7941 4.2117

Results for other NEH-based algorithms

In order to check the significance of the problem
of sequencing jobs with equal total processing time,
the performance of the NEHKK algorithm (Kalczyn-
ski and Kamburowski, 2007) was analysed. NEHKK
uses the same initial sorting as the NEH algorithm

38

Table 9
ARPD [%)] of random search for VRF large instances

nxm |NEH RS1000 RS5000

Worst | Best | Mean | Worst | Best | Mean
100 x m | 5.37 | 6.36 |4.42| 5.34 | 6.38 |4.40| 5.34
200 x m| 4.45 | 5.65 |3.37| 4.46 | 5.84 |3.20| 4.46
300 x m| 3.67 | 4.59 |2.79| 3.66 | 4.78 |2.67| 3.66
400 x m| 3.26 | 4.01 | 243 3.20 | 4.11 |2.37| 3.20
500 x m | 2.86 | 3.55 |2.17| 2.83 | 3.64 |2.10| 2.83
600 x m| 2.55 | 3.19 |1.97| 2.55 | 3.26 |1.90| 2.55
700 x m|231] 2.89 |1.81] 231 | 295 |1.71| 2.31
800 x m| 2.13 | 2.70 |1.70| 2.18 | 2.77 |1.63| 2.18
Average | 3.33 | 4.12 |2.58 | 3.32 | 4.22 |2.50| 3.32

(sum of job processing times in a non-increasing or-
der). The NEHKK algorithm additionally employs
a tie-breaking approach in the inserting phase. The
results are presented in Table 10 and Table 11 for the
same benchmarks as were considered in previous Sec-
tion. ES, RS1000, and RS5000 means the best ARPD
results.

Table 10
ARPD [%] of NEHKK and exhaustive search for small
benchmarks
Instances NEH NEHKK ES
Small Taillard 3.9773 3.8148 3.3960
Small VRF 4.2104 4.0387 3.5891
Table 11
ARPD [%] of NEHKK and random search for large bench-
marks
Instances NEH | NEHKK | RS1000 | RS5000
Large Taillard | 2.6383 | 2.5284 1.7742 | 1.7207
Large VRF 3.3316 | 2.6831 2.0391 | 1.9617

Similarly, as in the case of the NEH algorithm,
a Wilcoxon signed-rank test confirms that sequenc-
ing jobs with equal TPT has a significant impact on
the NEHKK results.

In order to emphasize the importance of the prob-
lem of jobs with equal total processing time, the re-
sults of the NEH and NEHKK algorithms were com-
pared with the results of other algorithms presented in
the review paper (Fernandez-Viagas et al., 2017). The
summary shown in Table 12 presents the results for
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the large Taillard instances used in the previous tests.
The results obtained (quoted only to outline the prob-
lem, not to compare the efficiency of the algorithms)
are sorted by decreasing ARPD values.

Table 12
ARPD [%] of NEH-based algorithms for large Taillard
benchmark
Algorithm* | ARPD Algorithm* ARPD
RAER 3.0514 KKER-di 2.2810
RAER-di 2.7931 NEHD-di 2.1981
NEH 2.6383 FRB4 2 1.9721
NEHKK 2.5284 NEH RS1000 1.8860
NEMR 2.5080 NEH RS5000 1.8247
NEH-di 2.4851 FRB4 4 1.8131
NEHR 2.4801 | NEHKK RS1000 1.7742
NEHKK2 | 2.4754 | NEHKK RS5000 1.7207
NEHKKI1-di | 2.4737 FRB4_ 8 1.6668
NEH1-di 2.4549 FRB4 6 1.6152
KKER 2.4211 FRB2 1.6131
CL_WTS | 2.3565 FRB4 12 1.5604
NEHR-di | 2.3481 FRB4 10 1.5386
NEHFF 2.3146 FRB3 1.3459
NEMR-di | 2.2999 FRB5 1.1403

* abbreviations — according to Fernandez-Viagas, Ruiz and
Framinan (2017), page 709

Based on the data presented in Table 12 it can be
concluded that the NEH algorithm could potentially
give better results than most of its improvements pre-
sented in the literature. The results of the NEHKK al-
gorithm are even more promising (see Table 12). It is
worth noting again that both algorithms use the same
initial order of jobs which are sorted in non-increasing
order by TPT. We did not modify the operating prin-
ciples of the analysed algorithms, but only examined
what are the effects of the inaccuracy resulting from
the lack of sorting rules.

Potential directions

Previous Section has proved that the NEH algo-
rithm and its variants can be significantly improved
by the proper ordering of jobs with equal TPT that
are present in the input sequence. There are two ob-
vious ways to address this problem:
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1. Developing a sorting criterion that uniquely iden-
tifies the initial sequence.
2. Developing a procedure that gives the best order/s

of jobs with equal TPT in sub-sequence/s.
Of course, the NEH algorithm extensions developed

over the last few years, which use complex sorting cri-
teria, somehow determine an unambiguous initial se-
quence. However, our research shows that such meth-
ods do not solve the considered problem — these algo-
rithms usually give worse results than NEH RS5000
(see Table 12). For example, ARPD for NEH RS5000
is on average 35.1% better than for NEHKK1 that
uses a non-increasing sum of weighted processing
times as a priority rule and 20.1% than for NEH-D
that uses a descending sum of mean and standard de-
viation of processing times. Therefore we decided to
check two simple approaches for generating the proper
order in subsequences of jobs with equal TPT.

Both of the proposed approaches use a greedy
mechanism of inserting jobs with equal total process-
ing times into the sequence, searching for locally best
solutions. In both algorithms strict inequality was ap-
plied in the criterion of inserting jobs for scheduling
and no tie-breaking rule was employed (same as in the
original NEH algorithm — the first position is selected
when ties exist).

NEH-First algorithm

The NEH-First algorithm is a modification of the
NEH algorithm that uses the following three-steps ap-

proach to select jobs with equal total processing time:
1. For s scheduled jobs (in accordance with the NEH

algorithm), a check is made of what the makespan
will be after inserting each of the k jobs with the
same total processing time into the sequence.

2. The job for which the completion time is the small-
est is selected for insertion into the sequence. The
number of jobs in the sequence increases to s+1,
while the number of jobs k decreases by 1 (by the
job inserted into the sequence).

3. If k is greater than 1, the algorithm returns to
step 1; otherwise, execution of the algorithm is
continued based on the operation scheme of the
classical NEH algorithm until another occurrence

of jobs with equal total processing time.
The operation of the NEH-First algorithm has been

demonstrated in Figure 3, based on the data from Ta-
ble 1. For the example presented, the modification dis-
tinguishing between the NEH-First algorithm and the
NEH was only used once because only one pair of jobs
(no. 3 and 4) had equal total processing times. In the
NEH-First algorithm, the computations enable the se-
lection of the job (from the set of jobs with equal pro-
cessing times), the insertion of which allows to obtain
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the shortest makespan for the given set of jobs. After
inserting one job from the two-element set of equal
processing time jobs, there is only one remaining job
that should be added to the sequence and therefore
the further operation of the algorithm was identical
to the operation of the original NEH algorithm.

[11]4]
[n[sa]  [12]12]
[12[58]—_ [12]19]
P NS T
i) [T [
[afz] [sass] [12]8) NEH-FIRST
[2[2a] [12]21] [13]20] [2]2s] [12[22] |14 ]as]
RGN, W
[3[ua] " [sa]aa] [s2]2a] [s2]14]
[af20] [i3[16] [12[18) [12]18]
[2]2a] [2[21] [13]20] |sa[10]
Lal2s| [saf2a] [1a]2a] [13]24]
[s1]aa] [s2]2a] [12]2a] [12]14]
Ds[17] [s3[16) [u3]16| [16]
[3f20] |21} |u2]21 [21]
[2[25| |u2[as| [15]2a| |1a[24]
il27] [af27] [1a]27] [15]30]

Fig. 3. Operation scheme of the NEH-First algorithm

The essence of the NEH-First algorithm is inserting
such a job from the list of jobs with equal processing
times for which the makespan will be the smallest
and then repeating this operation for the other, not
yet sequenced jobs. This means that for one set of k
jobs with equal total times, the NEH-First algorithm

will be run by (Zf;ll z) times more (for the given
sequence) than the original NEH algorithm.

NEH-Combination algorithm

Operation of NEH-Combination for equal TPT jobs
can be described by the following steps:

1. For s scheduled jobs, all permutations of the pos-
sible sequences of inserting k jobs with equal total
processing times are generated (e.g. for three jobs:
A, B and C, the following permutations will be
generated: ABC, ACB, BCA, BAC, CAB, CBA).

2. Jobs forming the generated permutations are in-
serted into the sequence using the NEH insertion
procedure. The selected permutation is the one
that allows obtaining the minimum makespan.

Operation of the NEH-Combination algorithm has

been presented in Figure 4.

Performance of the NEH-Combination algorithm
consists in checking all the possible permutations of
the set of k jobs with equal total processing times.
For each of the permutations, completion time is com-
puted for the last job in the permutation in the way
corresponding to the operation of the NEH algorithm.
Checking the time for all possible permutations causes
an increase in the computational complexity for each
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Fig. 4. Operation scheme of the NEH-COMBINATION
algorithm

set of k jobs with equal processing times by k!-1 com-
pared with the classical NEH algorithm.

Analysis of algorithms’ results

For both algorithms, a limit of the maximum cal-
culation time for a single instance has been set to
30 minutes. This time was exceeded by the NEH-
Combination algorithm for four VRF benchmark in-
stances (three instances in 700x20 set and one in-
stance in 800x20 set). Therefore, it is impossible to
present the average results obtained by the NEH-
Combination heuristics for the large VRF benchmark.
It should be noted that there are cases for which
the NEH-Combination algorithm works inefficiently
in terms of computational time. ARPD values for the
NEH-First and NEH-Combination algorithms are pre-
sented in Tables 13 and 14. Table 15 presents average
execution times for the instances containing a mini-
mum of two jobs with equal total processing times for
Taillard and VRF benchmarks.

From the above data, it can be concluded that
the proposed approaches did not always allow to ob-
tain better results than the NEH algorithm. It can,
therefore, be concluded that both — quite advanced
approaches — do not work as expected, because the
proper input sequence must take into account the per-
mutation of all jobs with equal TPT. In the case of the
proposed algorithms, if there are several subsequences
of jobs with equal TPT, these subsequences are con-
sidered consecutively, independently of each other. It
appears that this local approach is not sufficient and
that the overall (global) sequence of tasks in all subse-
quences should be taken into account. This conclusion
is confirmed by the data in Tables 6-9 and Tables 13—
14: in all cases the results of our algorithms are much
worse than the best results for NEH ES and NEH RS.

From the results reported in Table 15, it can be seen
that both approaches are more time-consuming than
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Table 13
ARPD [%)] of proposed approaches for Taillard instances

Small Taillard Large Taillard
n X m NEH NEH-First NEH-Comb n X m NEH NEH-First NEH-Comb
20 x 5 3.02 3.04 3.12 100 x 5 0.53 0.46 0.54
20 x 10 4.21 4.21 5.35 100 x 10 2.22 2.22 2.19
20 x 20 3.96 3.99 3.80 100 x 20 5.34 5.50 5.52
50 x 5 0.73 0.58 0.75 200 x 10 1.26 1.31 1.25
50 x 10 5.07 5.05 5.07 200 x 20 4.41 4.41 4.18
50 x 20 6.88 6.60 6.66 500 x 20 2.07 2.07 2.02
Avg. 3.98 3.91 4.13 Avg. 2.64 2.66 2.62
Table 14
ARPD [%] of proposed approaches for VRF instances
Small VRF Large VRF
nxm NEH NEH-First NEH-Comb nxm NEH NEH-First NEH-Comb
20 x m 3.75 3.72 4.18 100 x m 5.37 5.49 5.71
30 xm 4.50 4.54 4.67 200 x m 4.50 4.56 4.80
40 x m 4.22 4.25 4.35 300 x m 3.67 3.59 4.02
50 x m 4.36 4.38 4.72 400 x m 3.26 3.15 3.66
60 X m 4.23 4.44 4.48 500 x m 2.86 2.74 3.36
600 x m 2.55 2.47 3.03
700 X m 2.31 2.20 -
800 x m 2.13 2.08 -
Avg. 4.21 4.27 4.48 Avg. 3.33 3.28 -
Table 15 It is an interesting question why much complicated
Average algorithms’ execution times [sec] NEH-Combination approach gives worse results than
the First one (only results of large Taillard benchmark
Benchmark NEH | NEH-First | NEH-Comb set are slightly better). One reason is that the First
Small Taillard 2.23 2.38 2.75 approach works on a principle more similar to the
Large Taillard | 78.73 110.20 439,05 original NEH than the Comb approach, which makes
better use of the NEH algorithm advantages. Another
Small VRF 2.80 2.97 3.03 reason may be that a better partial schedule gener-
Large VRF 745.56 1099.33 N/A ated in the beginning stage of the Combination ap-

NEH, but the differences of computational time are
relatively small, especially for small-size instances. On
the other hand, the computational time of the NEH-
Combination algorithm for the large VRF benchmark
exceeded the accepted time limit. These differences
are natural, as additional time is needed to calcu-
late the variants of subsequences containing jobs with
equal TPT.
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proach did not guarantee a better complete schedule
that were finally obtained.

Proposition

The above analysis showed that there is no obvious
way to solve the problem under consideration — de-
spite the use of seemingly promising approaches, no
better results than NEH were achieved. There is no
doubt that a more complex, perhaps intelligent, way
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of arranging the input sequence of jobs with equal
TPT should be developed. a temporary solution to
the problem may be as follows:
e for small instances (up to 60 jobs) ES can be used,
o for large instances (above 60 jobs) RS1000 can be
suitable.

Both approaches provide a significant improvement
in NEH results (see Tables 6-9), but at the cost
of a significant increase in calculation time (several
dozen times for ES and 1000 times for RS1000). Nev-
ertheless, it can be a good reference point for design-
ing algorithms to address the problem of equal total
processing time of some jobs in the input sequence.

Conclusions

In this article, we pointed out two problems related
to the performance of the well-known NEH algorithm.
First of all, we showed that the order of jobs with
the same total processing time in the initial sequence
affects the results of the makespan calculations. Sec-
ondly, we demonstrated that sorting algorithms can
give different initial sequences, which causes the NEH
algorithm to work ambiguously. It means that the
method of sorting jobs with equal total processing
times should be included as a parameter of the NEH
algorithm or should be included in the name of the
algorithm (similarly to the introduced tie-breaking
mechanism for the job insertion phase). This is related
to the results obtained by us, which may potentially
be much better (as in the case of NEH ES and NEH
RS) from the results of the NEH itself.

We tried to find a method for sequencing jobs with
equal total processing time, which would allow ob-
taining results even at least similar to the best re-
sults of NEH ES and NEH RS. The study analysed
the possibility of using two local searching approaches
to neutralize the effects of using different sorting
methods for jobs with equal total processing time.
The proposed NEH-First and NEH-Combination ap-
proaches did not always allow to obtain results better
than the NEH algorithm not implementing such local
searching.

In our opinion, the work aimed at determining the
proper order of jobs in subsequences with the same
TPT should be carried out in three directions:

e an unambiguous order in the input sequence (e.g.
pre-sorting) to avoid the random operation of the
NEH algorithm,

e a more complicated (smarter) way of generating
the order of these subsequences,

e application of alternative indicators for TPT al-
lowing the unambiguous resolution of the sorting
problem.
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