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Nonlinear magnetic circuit – self-inductance
definitions, passivity and waveforms distortion
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Abstract. The generalized magnetizing curve series for the nonlinear magnetic circuit is proposed. Subsequently, three definitions of self-
inductance for the nonlinear magnetic circuit are compared. The passivity of the magnetic circuit is reconsidered. Three theorems that describe
features of Fourier harmonics of distorted waveforms have been proved.
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LIST OF MAIN SYMBOLS
ck+1 – coefficients of current Maclaurin series,
dk+1 – coefficients of flux Maclaurin series,
B – magnetic flux density (magnitude Bm > 0),
Eµ – magnetic field energy stored in the magnetic cir-

cuit,
f – frequency,
H – magnetic field strength,
sgn( ) – sign function,
µ( ) – magnetic permeability (isotropic parameter or

one of the principal axes values),
ν( ) – reluctivity ν( ) = 1/µ( ),
νk – coefficients of reluctivity Maclaurin series,
ω = 2π f – angular speed.

1. INTRODUCTION
The paper deals with a few theoretical fundamental problems
of the nonlinear magnetic circuit. The main attention is paid to
• three definitions of self-inductance coefficient,
• passivity of the nonlinear circuit,
• Fourier series and waveform distortion for nonlinear mag-

netic circuit supplied by sine source.
The investigations aim to reach some criteria for the verifica-

tion of models of nonlinear magnetic circuits. There are formu-
lated criteria for generalized nonlinear magnetizing curves by
means of Maclaurin series coefficients.

The novelty of the approaches [1–3] presented in this paper
lies in taking into account
• terms of even powers 2p (not only of odd powers

2p + 1) for current–flux (flux–current) and H–B magne-
tizing curves,
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• the passivity of the nonlinear magnetic circuit,
• three new theorems (and proofs) describing harmonics of

distorted waveforms,
• examples of distorted waveform harmonics and their sig-

natures for different nonlinear magnetic circuits.

2. THREE DEFINITIONS OF SELF INDUCTANCE
COEFFICIENT

Let us consider three very fundamental definitions of the self-
inductance coefficient. From the mathematical point of view
and for engineering purposes, it is necessary to consider the
comparison between all definitions. The wide bibliography re-
veals three inductance definitions. Firstly, the so-called flux
(static) definition of self-inductance [4, 5]

L df
= Ψ/i, (1)

where Ψ denotes magnetic flux of magnetic circuit, i is cur-
rent (Fig. 1).

Secondly, the energy (integral) definition of self-inductance
is based on magnetic field energy Eµ as follows

LE
df
= 2Eµ/i2, (2)

Fig. 1. Nonlinear inductance (magnetic circuit) as a part
of electric circuit
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where magnetic field energy Eµ equals to

Eµ =

Ψ∫
0

idΨ. (3)

Thirdly, the dynamic (differential) self-inductance is defined
by the following derivative

LD
df
= dΨ/di, (4)

A unique relation between magnetic flux and current for the
stationary and non-hysteresis magnetic circuit is the most im-
portant curve. The relation must be a homeomorphic (bicontin-
uous) function (Table 1)

Ψ = Ψ(i) ⇔ i = i(Ψ). (5)

These relations are valid for isotropic, stationary, and non-
hysteresis magnetic regions where it can be written

H = ν(B)B. (6)

The functions (5) should be of the class C∞ (C – infinity
function) while quantum phenomena are not taken into account
[1, 6, 7]. The functions (5) have to be also odd, thus one of the
more extended formulas is proposed in the form of a series as
follows

Ψ = Ψ(i) =
∞

∑
k=0

dk+1|i|ki, (7)

where powers (exponents) are not only odd but also even (!).
Nevertheless, the function (7) is odd (because of the modulus).
The function is called the generalized magnetizing curve (se-
ries).

Table 1 presents some generalized magnetizing curves of sat-
uration features different, with odd and even powers (e.g. curves
4th, 6th, 8th).

The inverse function for current is also odd as given below

i = i(Ψ) =
∞

∑
k=0

ck+1|Ψ|kΨ. (8)

The derivative of each term (8) is set to zero at central point
Ψ = 0 (excluding the first term k = 0). Therefore the derivatives
on both sides of the central point are equal to zero, thus the
function (8) is of class C∞.

The magnetic field energy stored equals to

Eµ =

Ψ∫
0

idΨ =
∞

∑
k=0

ck+1

k+2
|Ψ|k+2, (9)

hence
LE

L2 =
∞

∑
k=0

ck+1

k/2+1
|Ψ|kΨ/Ψ. (10)

Table 1
Nonlinear magnetic circuits – exemplary magnetizing curves

Curve Ψ = Ψ(i) Chart Ψ = Ψ(i)

1

Ψ = ΨT tan(i/IT )

20− 10− 0 10 20

5−

2.5−

2.5

5

1

1−

iL

Ψ(iL)Odd powers,
nontypical Convex curve (i > 0),
nontypical Saturation
(Asymptote) of i

2

Ψ = ΨSH sinh(i/ISH)

20− 10− 0 10 20

5−

2.5−

2.5

5

1

1−

iL

Ψ iL( )Odd powers,
nontypical Convex curve (i > 0),
Infinite i, Ψ

3

i =
Ψ

La
+

Ψ

a
20− 10− 0 10 20

2−
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1

2

1
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iL

Ψ iL( )

First power, Linear,
Infinite i, Ψ

4

i =
Ψ

La
+

Ψ|Ψ|κ−1

aκ

20– 10– 0 10 20
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1–

1

2

1
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iL
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Infinite i, Ψ;
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5

Ψ = ΨAHasinh(i/IAH)

20− 10− 0 10 20
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1

2

1
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iL

Ψ iL( )Odd powers,
Concave curve (i > 0),
Infinite i,Ψ

6

Ψ = ΨR
i

IR (1+ |i/IR|)
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Ψ iL( )
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7
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Ψ iL( )Odd powers,
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Ψ =±ΨEX

(
1− e
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If ck+1 ≥ 0 (considering k/2+1≥ 1), then for Ψ > 0 is

LE

L2 ≤
i

Ψ
=

1
L
, (11)
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thus
LE ≤ L, (12)

and the same inequality is valid for Ψ < 0, due to the odd sym-
metry of functions (7). Geometrical interpretation of inequal-
ity (12) presents Fig. 2, where the area crossed (magnetic en-
ergy) for concave functions satisfies the inequality

Eµ ≤ E∆ =
1
2

Ψi, (13)

which is equivalent to (12).

Fig. 2. Nonlinear concave magnetization curve of magnetic
circuit (i > 0)

Further, the reciprocal of dynamic inductance for Ψ > 0 sat-
isfies the following equality

1
LD

=
di

dΨ
=

∞

∑
k=0

(k+1)ck+1|Ψ|k, (14)

which represents the monotonically increasing function of Ψ

(as well as i and i2). Because the energy inductance is the mean
value of dynamic inductance in i2 space as follows

LE =
2
i2

i∫
0

LDidi =
1
i2

i2∫
0

LD d(i2), (15)

thus the mean value satisfies the relation for monotonically de-
creasing function LD

LD(i2 = 0)≥ LE ≥ LD(i2). (16)

The geometrical interpretation of (16) is shown in Fig. 2. The
triangle area of laterals LDi and i satisfies the relation

1
2

LDi2 ≤ Eµ =
1
2

LE i2, (17)

which confirms (16).
The relations (12) and (16) lead to the main concluding rela-

tions for self inductances

LD ≤ LE ≤ L, (18)

which are obtained for convex (Ψ > 0) generalized magnetiz-
ing curves. The equalities in (18) appear for linear magnetic
circuits.

The examples 4–8 (Table 1) satisfy the proved inequali-
ties (18). Figure 3 confirms the proved inequalities (18).

0 0.6 1.2 1.8 2.4 3

0.5

1

1.5

2

  L -  flux / static definition
LE - energy / integral definition
LD - dynamic / differential definition

L

LE

LD

i·In
−1

Fig. 3. Inductances vs. current for concave functions
4th up to 8th (Table 1)

For the curve characteristics which are given by the con-
vex magnetizing curve (i > 0), the relations are inversely set
then (18), i.e.

LD ≥ LE ≥ L. (19)

Figures 4 and 5 confirm the inequalities (19) graphically for
the convex magnetizing curve (i > 0).

Fig. 4. Nonlinear convex magnetization curve
of magnetic circuit (i > 0)
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  L -  flux / static definition
LE - energy / integral definition
LD - dynamic / differential definition
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Fig. 5. Inductances vs. current for convex curves
1st and 2nd (Table 1)

3. PASSIVITY OF NONLINEAR INDUCTANCE
An element of any circuit is passive if two conditions are satis-
fied. Firstly, the following integral is nonnegative

W (t) =
t∫

−∞

u(t)i(t)dt ≥ 0, (20)

secondly, the following equivalence is satisfied⋂
t∈(−∞,t0)

(u(t) = 0 ⇔ i(t) = 0) . (21)

FORCED  VOLTAGE 

3.94 3.95 3.96 3.97 3.98 3.99 4

4−

2−

2

4

ΨN

time                

3− 2− 1− 0 1 2 3

3−

1.5−

1.5

3

Ψ

ΨN = Ψ1sin(ωt)

3.94 3.95 3.96 3.97 3.98 3.99 4

1− 103×

500−

500

1 103×

uN

time

3.94 3.95 3.96 3.97 3.98 3.99 4

6−

3−

3

6

INr

∫ • td)(

uN = U1cos(ωt) iN  = I1sin(ωt) – I3sin(3ωt) + I5sin(5ωt) – I7sin(7ωt) + ... 

I·Iodn
−1

Fig. 6. Graphical method of analysis of nonlinear magnetic circuit while forcing magnetic flux density (flux, voltage) – waveform distortion
(Theorem 3)

On the contrary, if the element is not passive, then it is called
active. Hence, each element of the magnetic circuit is either
passive or active (exclusive or). Passivity is the feature of the
circuit that classifies an element of the circuit as a receiver of
energy.

Regarding (21) for t0 = 0 is satisfied

W (t) =
t∫

0

uidt =
Ψ∫

0

idΨ =
∞

∑
k=0

ck+1

k+2
Ψ

k+2. (22)

If all coefficients ck+1 are nonnegative, thus the passivity is
guaranteed

W (t)≥ 0. (23)

If some coefficients ck+1 are negative the passivity for a par-
ticular nonlinear magnetic circuit must be thoroughly checked.
In some cases, the nonlinear magnetic circuit may be active.
This effect could be technically caused by magnets or electro-
magnets set into a magnetic circuit.

For example, for the magnetizing curve number 4 (Table 1)
at parameters as follows U1 = 650

√
2 V, R = 0.09 Ω, La =

0.159 H, κ = 3, a = −0.8 Wb·A−1/κ , the condition (23) is
not satisfied. The magnetic circuit is active (is not passive).

4. FOURIER HARMONICS FOR NONLINEAR MAGNETIC
CIRCUIT – MAIN REMARKS

The nonlinear magnetic circuit working under sine source of
either voltage or magnetic flux generates waveform distortion in
either current or magnetic field strength, respectively – Fig. 6.
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Let us assume that magnetic flux density is forced along with
one of the reluctivity principal axes as follows

B(t) = Bm sin(ωt), (24)

thus appears waveform distortion [4, 8–10] of magnetic field
strength

H(t) = ν(B(t))B(t), (25)

which is described by the Fourier series as follows

H(t) =
∞

∑
h=0

ah cos(hωt)+bh sin(hωt). (26)

The coefficients of series (26) are given by relations

a0 =
1
T

T/2∫
−T/2

ν(Bm sin(ωt))Bm sin(ωt)dt, (27)

ah =
2
T

T/2∫
−T/2

ν(Bm sin(ωt))Bm sin(ωt) · cos(hωt)dt, (28)

bh =
2
T

T/2∫
−T/2

ν(Bm sin(ωt))Bm sin(ωt) · sin(hωt)dt. (29)

Subsequently, it is assumed that reluctivity is even a function
of magnetic flux density

ν(−B) = ν(B). (30)

As a consequence, the following conclusions are derived
1) a0 = 0 – no constant term,
2) ah = 0−H(t) is odd function of time,
3) b2k = 0 – harmonics of orders h = 2k vanish,
hence H(t) is odd H(−t) =−H(t) and periodically asymmetric
H(t +T/2) =−H(t) function of time [4].

5. FOURIER HARMONICS FOR NONLINEAR MAGNETIC
CIRCUIT – THREE THEOREMS

In this section, the features of the distorted waveform are con-
sidered by means of rigorous harmonics analysis.

Firstly, the third harmonic is investigated. According to (29)
it can be written

b2k+1 = (−1)k 4Bm

π

π∫
0

ν(Bm sinϕ) · sinϕ

· sin((2k+1)ϕ) dϕ, (31)

for h = 2k+1, ϕ = ωt.

Theorem 1. If the reluctivity function ν(.) is positive, odd, and
increasing (or decreasing) constantly, then for magnetic flux
density (29) it follows

H(t) = H1 sin(ωt)±H3 sin(3ωt) . . . (32)

Proof. According to (31) it follows.

b3 =−
8Bm

π

π/2∫
0

ν(Bm sinϕ)sinϕ sin(3ϕ)dϕ. (33)

Applying theorem about mean value ( [11] p. 186) for certain
c ∈
(

0,
π

2

)
, one obtains

b3 =−
8Bm

π
ν(Bm sin0)

c∫
0

sinϕ sin(3ϕ)dϕ

− 8Bm

π
ν

(
Bm sin

(
π

2

)) π/2∫
c

sinϕ sin(3ϕ)dϕ, (34)

hence, finally

b3 =−
2Bm

π
{ν(Bm)−ν(0)}(1− cos2c)sin2c, (35)

which leads to conclusions
if ν( ) monotonically increases then

b3 =−|b3|=−H3 < 0,
if ν( ) monotonically decreases then

b3 =+|b3|=+H3 > 0.

Theorem 2. If reluctivity ν( ) takes the form of uniformly con-
vergent even series as follows

ν(B) =
∞

∑
n=0

νn|B|n, (36)

thus for (24), the magnetic field strength takes the form of

H(t) =
∞

∑
i=0

b2i+1 sin((2i+1)ωt) , (37)

where harmonic coefficients are equal to

b2k+1 =
4Bm

π

∞

∑
n=0

αk,nνnBn
m = sgn(b2k+1)H2k+1 , (38)

where H2+1 = |b2k+1|.
For even n = 2p it is satisfied

αk,n =


(−1)kπ

22p+1

(
2p+1
p− k

)
if p≥ k,

0 if p < k,

(39)

and for odd n = 2p−1

αk,n =



(−1)k2p+1 p!(2p−1)!!
(2p+2k+1)!!(2p−2k−1)!!

if p≥ k,

(−1)p2p+1 p!(2p−1)!!(2k−2p−1)!!
(2p+2k+1)!!

if k ≥ p.

(40)
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Remark 1. Double factorial can be presented for even and odd
numbers as follows

(2p)!! = 2p p! = 2p
Γ(p+1), (2p−1)!! =

2p
√

π
Γ

(
p+

1
2

)
,

respectively.

Proof. According to (31) and (36), it follows

b2k+1 =
4Bm

π

∞

∑
n=0

νnBn
m

π∫
0

|sin(ϕ)|n sinϕ sin((2k+1)ϕ)dϕ.

(41)
The integral (denoted by Ik,n) is determined by means of

direct integrations. Finally, Authors of [12] (p. 397, equation
3.631.6) give the results for even n = 2p

Ik,n =


(−1)kπ

22p+1

(
2p+1
p− k

)
if p≥ k

0 if p < k

= αk,2p (42)

and for odd n = 2p−1 ( [12] p. 397, equation 3.631.5)

Ik,n =


(−1)k2p+1 p!(2p−1)!!

(2p+2k+1)!!(2p−2k−1)!!
if p≥ k

(−1)p2p+1 p!(2p−1)!!(2k−2p−1)!!
(2p+2k+1)!!

if k ≥ p


= αk,2p−1 . (43)

Often, when the constitutive relation for the magnetic cir-
cuit (36) is given only by even coefficients, i.e. ν2p−1 = 0 and
odd coefficients ν2p are nonnegative, hence Theorem 2. leads
to Theorem 3.

Theorem 3. Under the assumptions of Theorem 2, ν2p−1 = 0
and ν2p ≥ 0 is satisfied

H(t) = H1 sin(ωt)−H3 sin(3ωt)

+ H5 sin(5ωt)−H7 sin(7ωt)+ . . . , (44)

where the coefficients of harmonics are changing sign alterna-
tively, i.e. signature is (+,−,+,−,+,−, . . .).

Proof. Equations (38), (39) and ν2p−1 = 0 enable us to put
down the following relation for harmonics coefficients

b2k+1 = (−1)k4
∞

∑
p=k

ν2p

(
2p+1
p− k

)(
Bm

2

)2p+1

= (−1)kH2k+1 . (45)

Relation (45) implies the sufficient and necessary condition
for alternative changes of signs of coefficients b2k+1. Namely,
the equivalence is as given below

∞

∑
p=k

ν2p

(
2p+1
p− k

)(
Bm

2

)2p+1

≥ 0 ⇔ H2k+1 ≥ 0. (46)

In particular, the sum is positive for ν2p ≥ 0, which means
the signs of consecutive coefficients of series (44) change alter-
natively.

Remark 2. If for k >N the coefficients ν2k = 0 (i.e. Maclaurian
series reduces to polynomial of N-th degree), then b2k+1 = 0.

6. EXAMPLES
The presented Theorem 2 gives us insight into all harmonic
values, generally. Particularly, Theorem 3 determines signs and
moduli of harmonics of distorted waveforms by means of nec-
essary and sufficient conditions (46).

For example, for concave magnetizing curves (Table 1, 4th–
8th rows), according to Theorem 2 and (38), the signs of har-
monics are changing alternatively as shown in Fig. 7. The ap-
propriate prolate distorted waveform is presented in Fig. 8 (and
in Fig. 6).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1−

1

0.5−

0.5

brh

3 7

h

Fig. 7. Current harmonics vs. harmonic numbers h of the concave
generalized magnetizing curve sgn(x)[1− exp(−|x|)] – the distorted

waveform signature is alternate (+,−,+,−,+,−, . . .)

1.94 1.95 1.96 1.97 1.98 1.99 2

2.4−

1.2−

1.2

2.4

INr

time

Fig. 8. Current vs. time of the concave generalized magnetizing curve
sgn(x)[1− exp(−|x|)] – the distorted waveform is prolate

On the contrary, for the convex magnetizing curve (Table 1,
1st and 2nd rows), according to Theorem 2 and (38), it results
that the signs remain unaltered – Fig. 9. The appropriate oblate
distorted waveform is presented in Fig. 10.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
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1

0.5−

0.5

brh

3 7

h

Fig. 9. Current harmonics vs. harmonic numbers h of the convex
magnetizing curve tan(x) – the distorted waveform signature

is unaltered (+,+,+,+,+,+, . . .)

1.94 1.95 1.96 1.97 1.98 1.99 2

3−

1.5−

1.5

3

INr

time

Fig. 10. Current vs. time of the convex magnetizing curve tan(x) –
the distorted waveform is oblate

7. CONCLUSIONS
There are considered nonlinear magnetic circuits described
by the generalized magnetizing curve (series) given by (7)
and (36). These series contain not only odd and also even pow-
ers. The even terms are incorporated with the help of the mod-
ulus function. The generalized magnetizing curve allows us to
describe more precisely the nonlinear magnetic circuit. Exem-
plary magnetizing curves are presented in Table 1.

For the generalized magnetizing curves the three fundamen-
tal self-inductance definitions are revised and are ordered by
means of inequality relations.

The passivity of the nonlinear magnetic circuit is reconsid-
ered with respect to the generalized magnetizing curve formula.
Examples of passive and active nonlinear magnetic circuits are
presented.

Fourier series of current and distorted magnetic field strength
are focused on nonlinear magnetic circuits. Three theorems are
proved that describe values and signatures of harmonics (mag-

netic field strength, current). The first theorem is about the third
harmonic sign (32). The second theorem describes generally
the values (sign and modulus) of harmonics for distorted wave-
forms (38). The second and third theorems describe harmonics
signatures of distorted waveforms, e.g. (+,+,+,+,+,+, . . .) or
(+,−,+,−,+,−, . . .). Moreover, the third theorem formulates
the necessary and sufficient condition (46) for harmonics sig-
nature of distorted waveform.

The presented generalized magnetizing curve and three the-
orems enable us to verify models of the nonlinear magnetic cir-
cuits, e.g. the accuracy of approximation applied, the passivity
of the circuit, and the harmonics signature of distorted wave-
forms.

The presented theoretical approaches can be used for com-
parison proposes and verification of other results.
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