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Effective lattice structures for separable
two-dimensional orthogonal wavelet transforms
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Abstract. Discrete two-dimensional orthogonal wavelet transforms find applications in many areas of analysis and processing of digital images.
In a typical scenario the separability of two-dimensional wavelet transforms is assumed and all calculations follow the row-column approach
using one-dimensional transforms. For the calculation of one-dimensional transforms the lattice structures, which can be characterized by
high computational efficiency and non-redundant parametrization, are often used. In this paper we show that the row-column approach can be
excessive in the number of multiplications and rotations. Moreover, we propose the novel approach based on natively two-dimensional base
operators which allows for significant reduction in the number of elementary operations, i.e., more than twofold reduction in the number of
multiplications and fourfold reduction of rotations. The additional computational costs that arise instead include an increase in the number
of additions, and introduction of bit-shift operations. It should be noted, that such operations are significantly less demanding in hardware
realizations than multiplications and rotations. The performed experimental analysis proves the practical effectiveness of the proposed ap-

proach.
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1. INTRODUCTION

Discrete two-dimensional orthogonal wavelet transforms find
wide applications in image compression, image processing,
classification of images, image watermarking, industrial infor-
matics, etc. (e.g., see [1-9]). The typical way to calculate two-
dimensional wavelet transforms is to assume their separabil-
ity and take advantage of row-column approach where one-
dimensional transformation is applied first to rows (columns)
and then to columns (rows) of an input image. Thus for calcu-
lation of two-dimensional wavelet transforms we can use one-
dimensional computational techniques. In recent years particu-
lar interest was laid in the development of adaptive techniques
which by parametrization allow to adapt the form of wavelet
transform according to the needs of the implemented task (see
[10—14]). In such cases it is required to describe wavelet trans-
form with a parametric model that can be characterized by non-
redundant number of parameters. In this case the effective tool
for calculation of one-dimensional (and also two-dimensional
by the means of row-column approach) orthogonal transforms
are lattice structures which, not only allow for the reduction of
the number of additions and multiplications, but also can be
characterized by accurate and non-redundant parametrization
(see [15-21]).

Due to their popularity, discrete orthogonal wavelet trans-
forms are hardware implemented in FPGA devices and also
with use of CORDIC processors. For example, in papers [22—
27] we can find the proposals of hardware implementations
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of one-dimensional orthogonal wavelet transforms for FPGA
units and this task is further extended to the problem of two-
dimensional data in papers [28-31]. It should be noted that in
many practical solutions the authors propose basic implementa-
tions based on convolution approach (see [23,26-29]). In some
papers the simple example of Haar wavelet is being considered
in both one- and two-dimensional cases (see [24,31]). How-
ever, the FPGA implementations of discrete orthogonal wavelet
transforms which are based on more computationally effective
lattice structure and lifting based approach can be also found in
papers [22,25], and [30] respectively. For two-dimensional data
the separability of transformations is being assumed and for
their calculation the authors use the well-known row-column
based approach (see [28,29,31]). Finally the studies regarding
the possible implementations of filters or discrete wavelet trans-
forms with CORDIC processor can be found in papers [32,33].

In this paper we propose a novel approach to calculation of
two-dimensional separable orthogonal wavelet transforms that
takes advantage of natively two-dimensional base operators.
The proposed approach allows for more than twofold reduc-
tion in the number of multiplications and fourfold reduction in
the number of rotations when compared to the row-column ap-
proach based on one-dimensional lattice structures. The pos-
sible improvement depends on the type of operations needed,
since rotations can be implemented by means of addition and
multiplication blocks or with use of CORDIC processor. The
additional costs that arise is an increase in the number of addi-
tions and the introduction of bit-shift operations. It should be
noted that additions and bit-shift operations need significantly
less resource requirements when implemented as logic circuits
(bit-shift operations in most cases can be hardwired). The sim-
ilar approach, but applied to the lifting scheme, is known in the
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literature by the name of Spatial Combinative Lifting Algorithm
(SCLA) [34]. The application of SCLA allowed to obtain more
than twofold reduction in the number of multiplications for
Cohen-Daubechies-Feauveau 9/7 biorthogonal wavelets both in
two- and three-dimensional cases [34, 35].

2. ONE-DIMENSIONAL ORTHOGONAL WAVELET
TRANSFORM AND LATTICE STRUCTURE

The one-dimensional discrete wavelet transform (DWT1D) in
the practical tasks of digital signal processing and analysis is
implemented in most cases as a two-channel bank of filters
with the structure depicted in Fig. 1 (see [15-19]). When us-
ing the polyphase notation an input signal can be described
in the following form X(z) = Xo(z%) + z~'X;(z?), where by

Nj2—1 N/j2-1
Xo(z) =), x(n)z"and X;(z) = Y, x(n+1)z”" we under-
n=0 n=0

stand even and odd indexed samples of input data respectively.
Then by analyzing the structure shown in Fig. 1, we can see that
both an input signal and its delayed version (z~' X (z)) are in the
first place decimated at blocks ({ 2) resulting in a vector of the
form [Xo(z),z~'X1(z)]7. The following step is the data filtering
stage where the obtained vector is transformed at the block of
filters described in a polyphase notation by a matrix E(z). This
matrix can be defined as follows:

Here, with Hy(z) and Go(z) we describe even indexed coeffi-
cients of impulse responses of filters, while H;(z) and G| (z)
stand for odd indexed ones. It should be noted that both filters
H(z) and G(z), in connection with decimators (| 2), form the
analysis stage of a two-channel bank of filters. The two compo-
nents [Vp(z),Vi(z)]7, that we obtain at the output of the analysis
stage, represent, respectively, the results of low-pass and high-
pass filtering of input signal. The next step is the synthesis stage
which is defined using polyphase notation by matrix F(z). It is
very important to select filters of both analysis and synthesis
stages in a way that allows to satisfy the perfect reconstruc-
tion (PR) condition F(z)E(z) = I, where I is an identity matrix.
Then, with this condition hold, it is possible to restore the in-
put signal at the output of the synthesis stage, i.e., X (z) = X (z),
with use of upsampling blocks (1 2), and under the assumption
that the components obtained at the output of the analysis stage
were undisturbed.

Vo(2)

O,

|

O,

Analysis stage

X(z)

)

Vi(z)

Synthesis stage

Fig. 1. The structure of a two-stage filter bank in polyphase notation

In the case of a bank of orthogonal filters E(z) is an uni-
tary matrix, which allows: (i) to obtain the synthesis stage fil-
ters directly from the following relation F(z) = ET (z71), (ii) to
determine the relationship between filters H(z), G(z) based on
the PR condition, where we assume Gy(z) = —(¥-VH, (z7h),
and Gy (z) = z_(%_UHO(Z’l), and that the PR condition for or-
thogonal filters Ho(z)Ho(z ') + Hi (z)Hi (z7!') = 1 is satisfied.
With parameter M we describe the size of filters. It should be
noted that filter G(z) is a reversed and modulated version of
filter H(z), which means that the coefficients of its impulse re-
sponse can be calculated as g(m) = —(—1)"h(M —m — 1) for
m=0,1,...,M — 1. Hence, the whole bank of filters is fully
described by a number of M coefficients h(m) of the impulse
response of filter H(z).

The operations within a two-channel bank of filters are com-
putationally effective and can be characterized by the linear
complexity, i.e., O(MN), where N is the size of input data vec-
tors. However, it should be noted that this efficiency can be in-
creased even more by using the lattice structures. Lattice struc-
tures enable to reduce a number of multiplications and additions
by almost two times. Moreover, they allow for non-redundant
parametrization understood in the sense of a number of free
parameters (see [15, 18]). In order to construct the lattice struc-
ture for a two-channel bank of filters it requires to factorize the
polyphase matrix E(z) into the product of simple matrices. In
accordance to [15, 18] such factorization in its straightforward
form (which is required for further considerations) can be de-
scribed in the following way:

M
M_y

E(Z) = H A%iiDA(Zil) A(),
i=1

where the matrices used in formula (1) can be defined as:

o in @ 1 0 0 1
Ai = C?S ' s di s A(Z) = s D = .
sin@; —cos 0 z 1 0
Matrices A; fori =0,1,..., % — 1 represent rotation/reflection

operations and are parametrized by rotation angles ¢;. Taking
into account the orthogonality of matrices A;, and also the form
of matrices A(z) and D, it can be easily verified that E(z) is
unitary. The formula (1) represents the precise factorization of

matrix E(z) with a number of > free parameters, which is the

smallest possible number!. It can be also verified that the num-
ber of additions required by the lattice based on formula (1) is
almost twofold smaller when compared to the approach based
on convolution. However, if we want to reduce the number of
multiplications, then the formula (1) must be modified by tak-
ing out two multipliers from each A; matrix and moving them

IThis is the smallest number of parameters for two-channel bank of orthog-

M
onal filters. In case of DWT1D this number equals 5= 1 because one degree

of freedom is used by the postulate requiring to ensure the low-pass charac-
teristics of filter H(z) (and high-pass characteristics of filter G(z) at the same
time).
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forward to the supplementary diagonal matrix standing at the
end of the factorization formula (c.f. [18]).

In Fig. 2 we can see an example of lattice structure based on
factorization (1) for the size of input data N = 8 and the size
of filters M = 6 (see [36]). It should be noted that the assumed
boundary condition is a cyclic repetition of input data, which
means that input signal is assumed to be periodical. Symboli-
cally with ‘o’ we describe base operators implementing opera-
tions within A; matrices. It is straightforward to verify that for
the given values of N and M all operations within the lattice
structure from Fig. 2 can be described as v = Ux, where v is the
output of an analysis stage and U is a matrix defined as follows:

M
M

i=

2

with R describing cyclic rotation by one element and U; being
the block diagonal matrices with A; operations on their main
diagonals. Hence, the resulting matrix U is orthogonal by defi-
nition. Elements v and v; of vector v refer to components Vy(z)
and V) (z) respectively.

o o as
(0) vo(0)
(1) v1(0)
z(2) vo(1)
z(3) v1(1)
z(4) vo(2)
(5) v1(2)
(6) 0 (3)
(7) v (3)
Uy R Uy R Uz

Fig. 2. The lattice structure of an analysis stage for one-dimensional
bank of orthogonal filters for N =8 and M = 6

3. TWO-DIMENSIONAL SEPARABLE ORTHOGONAL
WAVELET TRANSFORMS

Let us assume that matrix X represents two-dimensional in-
put data. Then two-dimensional separable wavelet transform
(DWT2D) of matrix X can be calculated as V = UXUT in
a row-column based approach with use of DWTI1D described
by matrix U. It should be noted that separability of two-
dimensional wavelet transform is a basic assumption taken into
account in practical applications (c.f. [28-31]). By substituting
U with its definition (2) we can write further on:

V= (U%_IR...UIRU0> X (UORTUl...RTU%_l), 3)

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 3, p. e141005, 2022

since we have U] = U; (c.f. AT =A;) fori=0,1,..., % —1.For
example with M = 6 we obtain:

V = U,RU;RUyX UpRTU,R" U, .

Typically, in case of a row-column based approach first rows
(columns) and then columns (rows) of input data are processed
with the use of one-dimensional transforms in two consecu-
tive steps. However, if we start to analyze the formula (3) it
can be easily observed that the corresponding matrices com-
ing from row and column transforms can be combined together
into natively two-dimensional operators. In particular, we mean
here the operations realized within block diagonal matrices Uj;,
where two-dimensional variant of such operations could relate
to the U;X;U; product with X; describing the input data for the
i-th stage (Xo = X). It is worth noticing that such arrangement
of separable one-dimensional filters is a special case of a four
channel filter bank (c.f. [16, 17]).

In Fig. 3 we can see the operators of the i-th stage, i.e., the
way they operate on square 2 x 2 element fragments of ma-
trix X; (see Fig. 3a), and how they should be interconnected
to form natively two-dimensional operators (see Fig. 3b). Such
two-dimensional operators Al-ZD are applied to 2x2 element frag-
ments of input data and can be characterized by computa-
tional complexity strictly proportional to the number of one-
dimensional operators used. However, it should be noted that
all component operators are parametrized with the same angle
of rotation ¢, which gives the possibility for further improve-
ments. Operations RX;R” form additional stages consisting of
shifting of elements of input matrix X;. All the described stages
form two-dimensional lattice structure for separable orthogonal
wavelet transform.

Q

Xﬂ_g X"Q X_Q ><

-

a. b.

Fig. 3. Two-dimensional separable transform: (a) places of application
and interaction between one-dimensional operators, (b) resulting basic
two-dimensional base operator AiZD

In order to construct an inverse DWT2D it is required to re-
verse the order of stages of two-dimensional lattice structure
and to inverse the operations within stages. It should be noted
that U,-T =U;fori=0,1,..., % — 1 and the only operation that
is not symmetrical is a cyclic rotation described by matrix R.
Hence, the operation of inverse DWT2D can be described as a
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product [34]:
X = (UR™ ...U\RTUy )V (Uy (RUY...RUs).  (4)

The symmetry of U; matrices results directly from the symme-
try of A; operations. The symmetry of A; matrices guarantees
the symmetry of A?P. Further, the symmetry of A?? matrices is
very practical and it means that precisely the same implementa-
tions of those operations can be used to calculate both forward
and inverse transforms.

4. OPTIMIZATION OF TWO-DIMENSIONAL BASE
OPERATORS

The base operator A?P transforms a vector of input data
x = [x00,%01,X10,%11]7 according to the formulay = A?Px, into a
vector y = [y00,Y01,Y10,¥11)" . Let ¢; = cos(e;) and s; = sin(a;).
Then two-dimensional operator AIZD in its basic form can be
defined as follows:

¢ 0 s 0 ¢ s 0 0

A.ZD _ 0 Ci 0 S;i ) S; —Cj 0 0

! si 0 —¢; O 0 0 ¢ s
0 s; 0 —¢ 0O 0 s —¢

By multiplying the matrices in the above expression, we get:

2 2
Ci S;Ci S;Ci S;
o —c2 2 —S.C
A.2D S;Ci C; S; S;Ci (5)
Lo 2 2
S;Ci S; —C; —S;Ci
S-2 —S;Cj S;Ci 01»2

In this paper we proposed three variants of optimized factoriza-
tions of two-dimensional operators AP that can be character-
ized by different numbers and types of component operations.

Variant 1. The first variant of proposed factorizations allows to
reduce the total number of arithmetical operations. In this case

the output of base operation can be described as follows:

Y00 151 X00
Yo1 15} —X01
= + ; (6)
Y10 15} —X10
11 -1 X11
where _
| |=ai bi| |x00—xn
= . ,
3 bi a;| |xo1+x10

and a; = siz, b; = ¢;s;. This factorization allows to calculate
y = A?Px with a number of 8 additions and 4 multiplications.
The data flow diagram for the first variant of factorization of
AIZD operator is shown in Fig. 4.

Variant 2. In the second variant of the proposed factorizations
matrix A?” is described as the product of sparce matrices:

1o o0 17t 0 00
oo L0 1 o) o & 05
l 01 -1 0| [0 0 1 0
1o 0o -1 [0 -5 0 7
10 0 1770001
01 1 0f 0010
; (7
01 -1 0f 0100
10 0 —1] [1 00 0

where ¢; = cos(f;), 5; = sin(f;) and B; = 20; + 7. It is simple
to verify that in order to calculate y = A,-ZDx with this variant
of factorization it requires 8 additions, one rotation by an angle
Bi, and 4 bit-shift operations (right by one bit) applied to the
outputs of the operator. However, bit-shift operations can be
potentially moved to the last stage of two-dimensional lattice
structure and there implemented in the form of scaling by factor
27M/2 1t should be also noted that in hardware realizations bit-
shift operations are trivial and can be implemented at the level
of connections between data bus lines. In Fig. 5 we present the
data flow diagram for the variant of factorization described by
formula (7).

+
+

Yo1

Zoo
Zo1 ;@_
n,
+
:17 ) —a; bz

+j E b, a;

+: )
T10
T11

Fig. 4. The first variant of 2D operator based on matrix multiplication by vector multiplication (8 additions and 4 multiplications)
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11 +® i ) > 1 Yoo
+f +
T10 +® 4 b)) > 1 Yo1

<

Zo1 -~ @
- ROT),
Zoo ~ @

) > 1 Y10

Y >1 Y11

L

+

Fig. 5. The proposed variant of 2D operator based on rotation matrix (8 additions, 1 rotation and 4 bit-shift operations)

T11 i @ " b)) > 1 Yoo
+T +
S S 4
T10 by by ¥ > 1 Yo1
5/ O/
+ + +
L] L]
o1 > @ ~( > 1 Y10
H- —] :
+ +
() e e ;
Zoo b)) b)) b)) ¥ > 1 Y11
E J \”/ 2/ \

Fig. 6. The proposed variant of 2D operator based on lifting steps (11 additions, 3 multiplications and 4 bit-shift operations)

Variant 3. The last proposed variant of optimized factorization
of operator A,-ZD is based on lifting steps. It is well know that
operation of rotation can be factorized into a product of three
lifting steps in the following way:

Sl R e
—S8; Cj u; 1 0 1 u; 1

where ¢; = cos(f;) and 5; = sin(f;). The lifting steps coeffi-
cients u; and v; are defined according to the following equa-

tions:
~ cos(f;) -1

YT gy

Taking into account formula (9) in factorization (8) we obtain
the third variant of optimized two-dimensional operator with
the data flow diagram of the form depicted in Fig. 6. The result-
ing factorization can be characterized by a number of 11 addi-
tions, 3 multiplications and 4 bit-shift operations. The reduc-
tion of one multiplication can be advantageous since multipli-
cations are far more demanding in case of hardware realizations
than additions. Moreover the explicit feature of lifting steps is
the ability to perfectly reconstruct input image even if opera-

vi = sin(f;). )

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 3, p. e141005, 2022

tions in vertical branches of the structure (here multiplication
by coefficients u; and v;) are not invertible (e.g., because of the
reduced binary representation of the resulting value). It should
be noted that this variant may not be implemented directly for

T . .
o; = —k with k being an integer number. However, such cases

are trivial and result in an identity or negative identity matrix in
equation (8).

5. DISCUSSION OF COMPUTATIONAL COMPLEXITIES

In Table 1 we specify the numbers of arithmetic operations re-
quired to calculate two-dimensional separable wavelet trans-
form in row-column approach with aid of various methods:
(i) convolution based approach, (ii) lattice structures using AiZD
operator in its basic form (see definition (5)), (iii) lattice struc-
ture based on tangent multipliers, (iv)—(vi) lattice structures
based on three proposed optimized variants of the base opera-
tor. The results are expressed as the numbers of arithmetical op-
erations (addition, multiplication, rotation, bit-shift operation)
required for every 4 elements of input data.

By the convolution based method we understand one-dimen-
sional convolution used to calculate two-dimensional wavelet
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Table 1
Numbers of operations required for every 4 elements of input data
Computational method used Additions Multiplications Rotation B1t—sh1ft
operations

Convolution based approach 8(M—1) M 0 0
Lattice structure based on basic Al-zD operator 4M SM 0 0
Lattice structure based on tangent multipliers 4M AM +4 0 0
Lattice structure with optimized operator in variant 1 4M 2M 0 0
Lattice structure with optimized operator in variant 2 4M 0 %M 2M
Lattice structure with optimized operator in variant 3 S%M I%M 0 2M

transform in row-column approach. This method can be charac-
terized by the highest total number of arithmetical operations.
The second considered method is based on lattice structure us-
ing two-dimensional operator A%D in its basic form resulting
from applying one-dimensional lattice structure in row-column
approach. In this case the number of additions can be reduced
almost two times but the number of multiplications stays the
same when compared to the convolution approach. It is well
known that the cosine multipliers (i.e., ¢; coefficients) can be
moved outside each one-dimensional operator ‘o’ leading to the
following modification of operator A?P:

1 4 ot

—op i —1 & —
A=, (10)
t; t -1 -t
? -t -t 1

where t; = s;/c; = tan(o;) is a tangent multiplier. The scaling
factor ci2 can be easily moved to the last stage of the lattice
structure and there included into the values of operator coeffi-
cients at that stage. We can do the same operation at the follow-

M
ing stages fori=1,2,..., 5~ 2,1.e., except the last one. In this

way we can obtain the lattice structure based on tangent multi-
pliers which is characterized by almost twofold smaller number
of multiplications when compared to the lattice structure based
on operators AizD . Of course this method may not be applied to

T
o = 5 + kx for k being an integer number. But this includes

trivial cases resulting in A?? being an identity matrix.

It should be noted that the computational complexity of two-
dimensional lattice structure can be reduced further on if we
take into account the proposed variants of optimized base op-
erators. With the first variant the number of multiplications can
be reduced more by two times keeping the number of additions
precisely at the same level. The number of multiplications can
be reduced further more by 25% with the third variant of the op-
erator. Here the number of additions increases and supplemen-
tary operations in the form of bit-shifts arise. It is well known,
however, that additions are far less resource consuming when
it comes to hardware realizations than multiplications and bit-
shifts can be implemented as connections between the subse-
quent computational blocks. If we want to use the CORDIC
processors in order to realize rotation operations the second
variant would be the appropriate one. It allows to reduce the

number of rotations required by the base operator from 4 to 1.
Except one rotation it requires only additions (in the same num-
ber as lattice structure based on AizD operator) and supplemen-
tary bit-shift operations.

6. EXPERIMENTAL RESULTS

The last part of research was focused on the comparison of both
well-known operators, i.e., basic A%D operator and operator
with tangent multipliers, and the proposed optimized variants of
two-dimensional operators in terms of selected aspects of their
implementations in FPGA devices. The mentioned aspects in-
clude: number of logic cells required by the implementation,
the length of the critical path, i.e., the time of signal propaga-
tion from input to the output of the operator along the longest
path, and the representation accuracy. The number of logic cells
describes a number of building elements required to implement
the given variant of the operator and it is a measure of resource
utilization in FPGA devices. The length of the critical path de-
termines the time required from the moment the signal appears
at the input until the correct response is obtained at the output
of the circuit. It also defines the maximum allowable frequency
of the clock that can be used to synchronize the calculations.
It should be noted that in all of the considered cases the oper-
ators are implemented as a single stage of the computational
pipeline in a form of a network of wired connections between
basic blocks realizing addition and multiplication operations.
Finally, the representation accuracy describes the accuracy of
calculated results when compared to the results obtained with
double floating-point precision. The calculations within oper-
ators were performed on the basis of integer arithmetic in a
way limiting the accuracy of computations. Specifically, we as-
sume that input data, i.e., elements xqg, xo1, xX10 and xy;, are
coded as signed 8-bit integers, i.e., numbers from —128 to 127,
which corresponds to one component of image representation.
The output values ypo, Yo1, Y10 and yj; are 12-bit signed inte-
gers, where the number of bits results directly from the number
of operations realized within operators. It should be noted that
in the performed experiment the values of operator parameters
(.e., a;, b;, ci, s, Ci, §i, t;, and u;, v;) where coded with 8-bit pre-
cision as integer numbers in two’s complement code. In order to
measure the accuracy of output data representation we carried
out a series of tests by changing the value of ¢; according to
the formula o; = i, for i =0,1,...,359 with o, = atan(27#)

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 3, p. e141005, 2022
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The experimental results obtained for Cyclone IV GX device for a single operator

Table 2

. No. of Critical path Representation accuracy [dB]
Computational method used .
logical cells length [ns] n=0.5 u=1.0 =15
Lattice structure based on basic AIZD operator 2145 15.95 37.12 37.16 37.19
Lattice structure based on tangent multipliers 826 14.67 42.72 42.75 42.41
Lattice structure with optimized operator in variant 1 456 10.75 41.49 41.05 40.79
Lattice structure with optimized operator in variant 2 474 10.52 44.47 44.59 44.48
Lattice structure with optimized operator in variant 3 424 23.65 43.36 43.41 43.94

and ¢ > 0, and by taking into account only the selected values
of the resulting parameters (values in range [—1,1)). For each
value of ¢, and the resulting values of remaining parameters,
a set of 100 input data vectors was randomly selected and the
results obtained at the output of the operator where compared
to the results obtained with double floating-point precision. The
accuracy of representation was measured as the Signal-to-Noise
Ratio (SNR) scaled in decibels. The results obtained with Cy-
clone IV GX FPGA device for three different values of param-
eter u are collected in Table 2.

The implementation of operator AI.ZD in its basic form
(see (5)) requires the highest number of logic cells. In the re-
maining cases those numbers are smaller and the optimized
operator in variant 3 can be characterized by the smallest uti-
lization of the device resources. Such results are fully expected
since multiplications are the most resource consuming opera-
tions. In case of the length of the critical path the proposed
operator in variant 3 requires the longest time of 23.65 ns to
propagate the signal. It is a result of its specific structure com-
posed of a sequence of three addition and three multiplication
blocks (see Fig. 6). The smallest time of signal propagation is
required by the proposed operator in variant 2, though the result
obtained with the first variant is comparable. It is a direct conse-
quence of the small number of multiplications and the compact
structures of both operators (c.f. Figs. 4 and 5). The accuracy of
output data is also a very important characteristic. In this case
the operator in variant 2 (see (7)) can be characterized by the
highest accuracy with a result close to 44.5 dB. It should be
noted, that the second best results between 43 and 44 dB can be
obtained with the proposed operator in variant 3. As so the pro-
posed operator in variant 2 is a good compromise in the sense
of the considered metrics. It can be characterized by reasonably
small number of logic cells (though the highest among the pro-
posed ones), high accuracy of representation of output data, and
the shortest time of signal propagation.

7. CONCLUSIONS

In this paper we propose the novel optimized variants of lattice
structures allowing for calculation of two-dimensional separa-
ble orthogonal wavelet transforms. The application of natively
two-dimensional base operators allowed to obtain a significant
reduction in the number of rotations (fourfold) or multiplica-
tions (more than twofold) depending on the variant of the base
operator. The proposed optimizations were possible due to the
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redundant number of operations of rotation by the same an-
gle resulting from the direct implementation of separable two-
dimensional transforms in a row-column approach with use of
one-dimensional transformations. The reduction in the number
of multiplications and rotations caused an increase in the num-
ber of additions, and introduced additional bit-shift operations.
However, the latter operations are much less demanding when
it comes to hardware implementations in logic circuits, which
allows for an overall improvement of efficiency. The obtained
experimental results with Cyclone IV GX FPGA device show
the advantage of the proposed operators in practical implemen-
tations. They can be characterized by significantly smaller (1.7—
1.9 times) utilization of logic cells when compared to the oper-
ator using tangent multipliers and even 4.5-5.0 times smaller
when compared to the basic two-dimensional operator. More-
over, the selected form of the proposed operators can be char-
acterized by the shortest times of signal propagation (around
10 ns while tangent multipliers based operator required 14.67
ns and the basic operator even 15.95 ns) and allow to obtain
good (more than 40 dB) accuracy of output data representation
(significantly higher than basic operator but a little smaller in
variant 1 than the accuracy obtained with operator using tan-
gent multipliers).
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