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On the state estimation for nonlinear continuous-time
fuzzy systems

Francois DELMOTTE, Mohamed Ali HAMMAMI and Nour El Houda RETTAB

A large class of nonlinear systems can be represented or well approximated by Takagi-
Sugeno (TS) fuzzy models, which in theory can approximate a general nonlinear system to
an arbitrary degree of accuracy. The TS fuzzy model consists of a fuzzy rule base. The rule
antecedents partition a given subspace of the model variables into fuzzy regions, while the
consequent of each rule is usually a linear or affine model, valid locally in the corresponding
region. In this paper, the observer design problem for a T-S fuzzy system subject to Lypschitz
perturbation is investigated. First, an observer of Kalman type is designed to estimate the
unknown system states. Then, the class of one-sided Lipschitz for a TS fuzzy system subject to
a sufficient condition on the bound is studied. The challenges are discussed and some analysis
oriented tools are provided. An example is given to show the applicability of the main result.
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1. Introduction

A state observer is a dynamical system which provides the estimation of
the internal states of the model. In most practical cases, the physical state of
the system cannot be determined by direct observation. The problem of state
observation for nonlinear systems is of main importance in automatic control.
Nonlinear state observer design has been an area of important research for the last
decades and despite important progress. In recent years many contributions have
been presented in literature that solve the observer design problem for classes of
nonlinear systems (see [4, 5, 9–11, 13]). Lipschitz analysis is extensively used in
control theory where the Lipschitz condition is one of the central concepts for the
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construction of nonlinear observer for control systems. Unlike the linear case, the
conception of observer is still a difficult task for nonlinear systems. The observer
synthesis is first suggested by Thau [19] for Lipschitz systems, he obtained a
sufficient condition to ensure the asymptotic stability of the observer. Thau’s
condition is a very useful analysis tool but does not address the fundamental
design problem. Encouraged by Thau’s result, several authors studied observer
design for Lipschitz systems (see [9,11] and references therein). However, the real
physical systems are often nonlinear. The design of state observers for non-linear
systems using Takagi-Sugeno models has been actively considered during the
last decades. TS models are currently being used for a large class of physical and
industrial processes, such as electrical machines and robot manipulators. As it is
delicate to synthesize an observer for an unspecified nonlinear system, it is prefer-
able to represent this system with the TS fuzzy model ( [3, 6–8, 12, 14, 15, 23]).
With a fuzzy observer, the estimated states error system is described as two parts:
unknown premise variable caused terms and observer error terms (see [18]).
Then based on the Lyapunov function method (see [1]), a series of linear matrix
inequality conditions are proposed to asymptotically stabilize the system, the
observer gain matrices are used to overcome the uncertainties. The approach used
by [2] for the analysis and design of observers for Takagi-Sugeno fuzzy systems
is based on extending sliding mode observer schemes to the case of interpolated
multiple local affine linear models. In [15], a new approach to build an interval
observer for nonlinear uncertain systems was presented for nonlinear systems
modeled in the Takagi-Sugeno form. In [20], the authors studied the problem of
fault detection and diagnosis of Takagi-Sugeno fuzzy expert model based soft
fault diagnosis for two tank interacting system. In [21], an observer and controller
errors augmented system is obtained based on the Lyapunov function method.
This work deals with an extension to this problem by introducing a more general
family of nonlinear functions, namely one-sided Lipschitz functions. The corre-
sponding class of systems is a superset of its well-known Lipschitz counterpart
and possesses inherent advantages with respect to conservativeness. In this paper,
an approach combining a Lyapunov function and Lipschitz analysis concept is
proposed in order to overcome the observer design problem using the Kalman like
configuration related to the Lipschitz constant and one sided-Lipschitz fuzzy sys-
tems. We give some sufficient conditions to ensure that the error fuzzy equation
is globally exponentially stable provided that the Lipschitz constant is small.

2. Preliminarily results

In control theory, a state observer is a system that provides an estimate of the
internal state of a given real system, from measurements of the input and output
of the real system. It is typically computer-implemented, and provides the basis of
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many practical applications. Knowing the system state is necessary to solve many
control theory problems; for example, stabilizing a system using state feedback.
In most practical cases, the physical state of the system cannot be determined by
direct observation. Instead, indirect effects of the internal state are observed by
way of the system outputs.
A class of nonlinear systems that has seen much attention in the literature is

the class of Lipschitz systems:

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢 + 𝑓 (𝑥, 𝑢), 𝑥(0) = 𝑥0, 𝑦(𝑡) = 𝐶𝑥(𝑡), (1)

where the function 𝑓 (𝑥, 𝑢) satisfies a uniformLipschitz condition globally in 𝑥, i.e,

‖ 𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢)‖ ¬ 𝑘 ‖𝑥 − 𝑥‖

for all 𝑢 and for all 𝑥 and 𝑥, 𝑘 > 0 is referred to as the Lipschitz constant which
is independent of 𝑥, 𝑢.
Given a nonlinear system (1), one can estimate the states by using an observer,

whose structure is as follows:

¤𝑥(𝑡) = 𝐺 (𝑥(𝑡), 𝑢(𝑡), 𝑦(𝑡)),

where 𝑥(𝑡) is the state of the observer. It is needed that the estimation error,
𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡) has to converge as fast as possible to zero. Most current
methods lead to the design of an exponential observer, exponential stability is the
most wanted. With the model given in (1), the problem is to design a continuous
observer with input 𝑦(𝑡) such that the estimates denoted by 𝑥(𝑡) converge to 𝑥(𝑡)
exponentially fast. We shall assume that the pair (𝐴,𝐶) is observable. Suppose
the observability matrix for the time invariant associated linear system. Then,
there exists a gain matrix 𝐿 (𝑛 × 𝑝) such that the matrix (𝐴 − 𝐿𝐶) is Horwitz. In
this condition, one can design an exponential observer for system (1) as:

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢 + 𝑓 (𝑥, 𝑢) − 𝐿 (𝐶𝑥(𝑡) − 𝑦(𝑡)). (2)

In presence of the function 𝑓 , the observer (2) can be designed provided the
Lipschitz constant 𝑘 is small enough. In such away, the system (2) is an exponential
observer for system (1),where thematrix 𝐿 is chosen such that (𝐴−𝐿𝐶)𝑇𝑃+𝑃(𝐴−
𝐿𝐶) = −𝑄, with 𝑃 and 𝑄 are (𝑛 × 𝑛) positive definite symmetric matrices and

𝑒𝑇𝑄𝑒 > 2𝑒𝑇𝑃(Δ 𝑓 ),

Δ 𝑓 = 𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢).
Here, we just consider the error equation:

¤𝑒(𝑡) = (𝐴 − 𝐿𝐶)𝑒(𝑡) + 𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢),

where 𝑒(𝑡) = 𝑥(𝑡) − 𝑥(𝑡) and use the condition imposed on Lipschitz constant 𝑘 .
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This observer design incorporates only the bound of the nonlinearities (un-
certainties), and does not require exact knowledge concerning the structure of
the plant nonlinearities 𝑓 (𝑥, 𝑢). A simple condition imposed on the Lipschitz
constant 𝑘 is that,

𝑘 <
1
2
𝜆min(𝑄)
𝜆max(𝑃)

.

Therefore, using a Kalman like observer, we can also design a state observer for
(1) as follows (see [9] and [10]):

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢 + 𝑓 (𝑥, 𝑢) − 𝑆−1𝜃 𝐶𝑇 (𝐶𝑥(𝑡) − 𝑦(𝑡)) ,
where 𝑆𝜃 satisfies the following stationary equation:

0 = −𝜃𝑆𝜃 − 𝐴𝑇𝑆𝜃 − 𝑆𝜃𝐴 + 𝐶𝑇𝐶, 𝜃 > 0,

𝑘 <
𝜃

2
𝜆min(𝑆𝜃)
𝜆max(𝑆𝜃)

and 𝑆𝜃 = lim
𝑡→+∞

𝑆𝑡

with 𝑆𝑡 ∈ S+ the cone of symmetric positive definite matrices on R𝑛 which
satisfies

¤𝑆𝑡 = −𝜃𝑆𝑡 − 𝐴𝑇𝑆𝑡 − 𝑆𝑡𝐴 + 𝐶𝑇𝐶.

In the next section, we will consider the case of fuzzy control systems. It is
well known that, Takagi-Sugeno fuzzy models are nonlinear systems described
by a set of if-then rules which gives local linear approximations of an underlying
system. Such models can approximate or describe a wide class of nonlinear
systems.

3. T.S fuzzy dynamic model

The mathematical model of a system can be in different forms, such as alge-
braic equations, differential equations, finite state machines, etc. In the modeling
framework considered on rule based fuzzy models, the relationships between
variables are described by means of if- then rules, such as:
If input is high then output will increase fast.
These rules establish logical relations between the system’s variables by re-

lating qualitative values of one variable to qualitative values of another variable.
The structure of the fuzzy system is composed of a set of if-then rules, where

qualitative knowledge can be expressed in the form of rules IF ”𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛” THEN
”𝑎𝑐𝑡𝑖𝑜𝑛”. The condition part (premise) contains facts in the form of symptoms as
inputs and the conclusion part includes events as a logical cause of the facts. In
the T-S model, the inference is reduced to a simple algebraic expression, similar
to the fuzzy-mean defuzzification formula (Takagi and Sugeno [16, 17]). The
algorithm for the development of T-S fuzzy model has the following steps:



ON THE STATE ESTIMATION FOR NONLINEAR CONTINUOUS-TIME FUZZY SYSTEMS 61

(i) The optimal number of fuzzy rules is determined.

(ii) The relevant input variables as antecedents are selected.

(iii) The membership function parameters are estimated.

(iv) The consequent structure is selected.

(v) The consequent parameters are estimated.

Consider the following T.S fuzzy dynamic model:

¤𝑥 =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)
(
𝐴𝑖𝑥 + 𝐵𝑖𝑢

)
, (3)

𝑦 =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐶𝑖𝑥, (4)

where 𝑥 ∈ R𝑛 is the state, 𝑢 ∈ R𝑚 is the control input, and 𝑦 ∈ R𝑞 is the output.
The matrices 𝐴𝑖, 𝐵𝑖 and 𝐶𝑖 are of appropriate dimension, 𝑟 ­ 2 is the number
of rules, 𝑧 is the premise vector which may include unmeasurable variables. It is

assumed that 𝜇𝑖 (𝑧) ­ 0, for all 𝑖 = 1, . . . , 𝑟 and
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧) = 1, for all 𝑡 ­ 0.

In many practical control problems, the physical state variables of systems are
partially or fully unavailable for measurement, since the state variables are not
accessible by sensing devices and transducers are not available or very expensive.
In such cases, observer based control schemes should be designed to estimate the
state for (4), (7). Taking 𝑦̂ defined by

𝑦̂ =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐶𝑖𝑥.

In this case, an observer can be designed which has the form:

¤̂𝑥 =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)
(
𝐴𝑖𝑥 + 𝐵𝑖𝑢

)
−

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐿𝑖 ( 𝑦̂ − 𝑦). (5)

Takagi-Sugeno model has proved its effectiveness in the study of nonlinear sys-
tems. Indeed, it gives a simpler formulation from the mathematical point of view
to represent the behavior of nonlinear systems. Thanks to the convex sum property
of the weighing functions, it is possible to generalize some tools developed in the
linear domain to the nonlinear systems. This representation is very interesting in
the sense that it simplifies the problem of the observer design.
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3.1. Case of Lipschitiz systems

The topic on control and state estimation of nonlinear systems satisfying a
Lipschitz condition has been studied for almost four decades, resulting in abundant
amount of literature. Especially for the observer synthesis problem on Lipschitz
nonlinear system, it is often accomplished by using pseudo-linear techniques
which is based on the Lipschitz continuity assumption providing a norm-based
form of a nonlinear inequality substituted into the observer error dynamics and
the observer error dynamics turning out in a numerically tractable format that is
determined by a linear term. The proposed design method is dependent on the
solution of a Riccati equation.
In this part, we consider the following fuzzy model:

¤𝑥(𝑡) =
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)
(
𝐴𝑖𝑥 + 𝐵𝑖𝑢 + 𝑓𝑖 (𝑥, 𝑢)

)
(6)

with the output 𝑦 defined as in (4).
We assume that:

(H1)

‖ 𝑓𝑖 (𝑥, 𝑢) − 𝑓𝑖 (𝑥, 𝑢)‖ ¬ 𝑘𝑖‖𝑥 − 𝑥‖, 𝑘𝑖 > 0, 𝑖 = 1, 2, . . . , 𝑟, (7)

for all (𝑥, 𝑥) ∈ R𝑛 × R𝑛 and 𝑢 ∈ R𝑚.
Denotes,

𝑟∑︁
𝑖=1

𝑘𝑖 = 𝑘 > 0.

Let consider for (6) an observer of the form:

¤̂𝑥 =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)
(
𝐴𝑖𝑥 + 𝐵𝑖𝑢 + 𝑓𝑖 (𝑥, 𝑢)

)
−

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐿𝑖 ( 𝑦̂ − 𝑦), (8)

where 𝑦̂ is given by:

𝑦̂ =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐶𝑖𝑥.

Taking into account (6) and (8), the system error is given by:

¤𝑒 =

𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝜇𝑖 (𝑧)𝜇 𝑗 (𝑧)
(
𝐴𝑖 − 𝐿 𝑗𝐶𝑖

)
𝑒 +

𝑟∑︁
𝑖=1

𝜇𝑖
(
𝑓𝑖 (𝑥, 𝑢) − 𝑓𝑖 (𝑥 − 𝑒, 𝑢)

)
. (9)
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Thus,

¤𝑒 =

𝑟∑︁
𝑖=1

𝜇2𝑖 Υ𝑖 𝑗𝑒 + 2
∑︁
𝑖< 𝑗

𝜇𝑖𝜇 𝑗 (𝑧)Υ𝑖 𝑗𝑒 +
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)
(
𝑓𝑖 (𝑥, 𝑢) − 𝑓𝑖 (𝑥 − 𝑒, 𝑢)

)
,

where
Υ𝑖𝑖 = 𝐴𝑖 − 𝐿𝑖𝐶𝑖,

and
Υ𝑖 𝑗 =

1
2
(
𝐴𝑖 − 𝐿 𝑗𝐶𝑖 + 𝐴 𝑗 − 𝐿 𝑗𝐶𝑖

)
.

Now, we can state the following theorem.

Theorem 1 Suppose that (H1) holds and there exist positive symmetric defi-
nite matrices 𝑃, 𝑄 and some matrices 𝐿𝑖, 𝑖 = 1, . . . , 𝑟, such that the following
inequalities hold,

Υ𝑇
𝑖𝑖𝑃 + 𝑃Υ𝑖𝑖 < −𝑄, 𝑖 = 1, . . . , 𝑟, (10)

and
Υ𝑇
𝑖 𝑗𝑃 + 𝑃Υ𝑖 𝑗 < −𝑄, 1 ¬ 𝑖 < 𝑗 ¬ 𝑟, (11)

then the system error (9) is guaranteed to be globally uniformly exponentially

stable provided that 𝑘 <
1
2

𝜆0

‖𝑃‖
, where 𝜆0 = 𝜆min(𝑄), 𝜆min denoting the smallest

eigenvalue of the matrix.

Remark 1 (10) and (11) can be written as LMIs by a simple congruence as in
(Tanaka et al. [16]), with the terms 𝑋 = 𝑃−1, 𝐿 𝑗 = 𝑃𝑁 𝑗 and 𝐻 = 𝑋𝑄𝑋.

Proof. Consider the Lyapunov function candidate 𝑉 (𝑒) = 𝑒𝑇𝑃𝑒. It’s derivative
with respect to time is given by:

¤𝑉 (𝑒) =
𝑟∑︁
𝑖=1

𝜇2𝑖 𝑒
𝑇

(
Υ𝑇
𝑖𝑖𝑃 + 𝑃Υ𝑖𝑖

)
𝑒 + 2

∑︁
𝑖< 𝑗

𝜇𝑖𝜇 𝑗𝑒
𝑇

(
Υ𝑇
𝑖 𝑗𝑃 + 𝑃Υ𝑖 𝑗

)
𝑒

+ 2𝑒𝑇𝑃
𝑟∑︁
𝑖=1

𝜇𝑖
(
𝑓𝑖 (𝑥, 𝑢) − 𝑓𝑖 (𝑥 − 𝑒, 𝑢)

)
.

On the one hand, we have

𝑒𝑇
(
Υ𝑇
𝑖𝑖𝑃 + 𝑃Υ𝑖𝑖

)
𝑒 ¬ −𝜆0‖𝑒‖2, 𝑖 = 1, . . . , 𝑟,
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and
𝑒𝑇

(
Υ𝑇
𝑖 𝑗𝑃 + 𝑃Υ𝑖 𝑗

)
𝑒 ¬ −𝜆0‖𝑒‖2, 1 < 𝑖 < 𝑗 < 𝑟.

Then, one gets

¤𝑉 (𝑒) ¬ −𝜆0‖𝑒‖2
𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝜇𝑖𝜇 𝑗 + 2𝑒𝑇𝑃
𝑟∑︁
𝑖=1

𝜇𝑖
(
𝑓𝑖 (𝑥, 𝑢) − 𝑓𝑖 (𝑥 − 𝑒, 𝑢)

)
.

It follows that

¤𝑉 (𝑒) ¬ −𝜆0‖𝑒‖2 + 2𝑒𝑇𝑃
𝑟∑︁
𝑖=1

𝜇𝑖
(
𝑓𝑖 (𝑥, 𝑢) − 𝑓𝑖 (𝑥 − 𝑒, 𝑢)

)
.

On the other hand, we have




 𝑟∑︁
𝑖=1

𝜇𝑖
(
𝑓𝑖 (𝑥, 𝑢) − 𝑓𝑖 (𝑥 − 𝑒, 𝑢)

)




 ¬ 𝑟∑︁
𝑖=1

𝑘𝑖‖𝑒‖.

Taking into account the above expressions, it follows that

¤𝑉 (𝑒) ¬ −𝜆0‖𝑒‖2 + 2‖𝑃‖𝑘 ‖𝑒‖2.

Since
𝑉 (𝑒) = 𝑒𝑇𝑃𝑒 ¬ 𝜆max(𝑃)‖𝑒‖2,

one gets

¤𝑉 (𝑒) ¬ − (𝜆0 − 2𝑘 ‖𝑃‖)
𝜆max(𝑃)

𝑉 (𝑒).

Thus, we obtain the following estimation:

‖𝑒(𝑡)‖ ¬
(
𝜆max(𝑃)
𝜆min(𝑃)

)1/2
‖𝑒(0)‖𝑒−

1
2
(𝜆0−2𝑘 ‖𝑃 ‖)
𝜆max (𝑃)

𝑡
.

Using the fact that the Lipschitz constant 𝑘 satisfies,

𝑘 <
1
2

𝜆0

‖𝑃‖
,

then, we deduce that (8) is an exponential observer for (6). 2
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Proposition 1 Suppose that (H1) is satisfied, there exist positive symmetric def-
inite matrices 𝑃, 𝑄 and some matrices 𝐿𝑖, 𝑖 = 1, . . . , 𝑟, such that the inequalities
(10) and (11) hold and there exists a nonnegative constant 𝛼 > 0, such that(

−𝜆0 + 2𝛼𝑘2
)
𝐼 + 1

𝛼
𝑃𝑇𝑃 < 0,

then the system error (9) is guaranteed to be globally uniformly exponentially
stable.
Proof. Consider the Lyapunov function candidate 𝑉 (𝑥) = 𝑒𝑇𝑃𝑒. It’s derivative
with respect to time along the trajectories of (9) is given by,

¤𝑉 (𝑒) =
𝑟∑︁
𝑖=1

𝜇2𝑖 𝑒
𝑇

(
Υ𝑇
𝑖𝑖𝑃 + 𝑃Υ𝑖𝑖

)
𝑒 + 2

∑︁
𝑖< 𝑗

𝜇𝑖𝜇 𝑗𝑒
𝑇

(
Υ𝑇
𝑖 𝑗𝑃 + 𝑃Υ𝑖 𝑗

)
𝑒

+ 2𝑒𝑇𝑃
𝑟∑︁
𝑖=1

𝜇𝑖
(
𝑓𝑖 (𝑥, 𝑢) − 𝑓𝑖 (𝑥 − 𝑒, 𝑢)

)
.

Therefore, by the young inequality, we have for all 𝛼 > 0,

2𝑒𝑇𝑃
𝑟∑︁
𝑖=1

𝜇𝑖
(
𝑓𝑖 (𝑥, 𝑢)− 𝑓𝑖 (𝑥−𝑒, 𝑢)

)
¬ 2

𝑟∑︁
𝑖=1

𝑘𝑖𝛼‖ 𝑓𝑖 (𝑥, 𝑢)− 𝑓𝑖 (𝑥−𝑒, 𝑢)‖2+
1
𝛼
‖𝑃𝑒‖2.

Thus,

2𝑒𝑇𝑃
𝑟∑︁
𝑖=1

𝜇𝑖
(
𝑓𝑖 (𝑥, 𝑢) − 𝑓𝑖 (𝑥 − 𝑒, 𝑢)

)
¬ 2𝛼𝑘2‖𝑒‖2 + 1

𝛼
‖𝑃𝑒‖2.

Taking into account the above expression with the fact that

𝛼𝑘2‖𝑒‖2 + 1
𝛼
‖𝑃𝑒‖2 = 𝑒𝑇

(
𝛼𝑘2𝐼 + 1

𝛼
𝑃𝑇𝑃

)
𝑒,

it follows that
¤𝑉 (𝑒) ¬ 𝑒𝑇

(
−𝜆0𝐼 + 2𝛼𝑘2𝐼 +

1
𝛼
𝑃𝑇𝑃

)
𝑒.

Hence, because of (
−𝜆0 + 2𝛼𝑘2

)
𝐼 + 1

𝛼
𝑃𝑇𝑃 < 0,

for a certain 𝛼 > 0, then the estimation error of equation (9) converges exponen-
tially to the origin. 2

Note that, to design a Kalman type observer, one can take the gain matrices as
𝐿𝑖 = 𝑆−1

𝜃
𝐶𝑇
𝑖
, 𝑖 = 1, . . . , 𝑟 , where 𝑆𝜃 satisfies the following stationary equations:

0 = −𝜃𝑆𝜃 − 𝐴𝑇
𝑖 𝑆𝜃 − 𝑆𝜃𝐴𝑖 + 𝐶𝑇

𝑖 𝐶𝑖, 𝜃 > 0.
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3.2. One sided Lipschitz systems

Control and state estimation of nonlinear systems satisfying a Lipschitz condi-
tion have been important topics in nonlinear system theory for over three decades,
resulting in a substantial amount of literature. Inspired by the above section,
we extend this concept to the nonlinear observer design problem and consider
stabilization of the observer error dynamics based on the one-sided Lipschitz
condition. The advantages gained through this approach is that the broad family
on nonlinear systems includes the well-known Lipschitz systems as a special case
which can guarantee stability only for small values of Lipschitz constants which
directly translates into small stability regions.
Let consider the following input-output nonlinear system.

¤𝑥(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢 + 𝑓 (𝑥(𝑡), 𝑢(𝑡)), 𝑦(𝑡) = 𝐶𝑥(𝑡), (12)

where 𝑥(0) = 𝑥0, and the function 𝑓 (𝑥, 𝑢) satisfies a uniform one-sided Lipschitz
condition globally in 𝑥, i.e,

〈 𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢), 𝑥 − 𝑥〉 ¬ 𝑘̃ ‖𝑥 − 𝑥‖2

for all 𝑢 and for all 𝑥 and 𝑥, 𝑘̃ > 0 is referred to as the one-sided Lipschitz constant
which is independent of 𝑥, 𝑢 (see [22]).
Note that, wile the Lipschitz constant must be strictly positive, the one-sided

Lipschitz constant can be positive, zero or even negative. Moreover, remark that
any Lipschitz function is also one-sided Lipschitz, however the converse is not
true.
Similarly to the Lipschitz property, the one-sided Lipschitz condition might

be local or global and one has,

| 〈 𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢), 𝑥 − 𝑥〉 | ¬ ‖ 𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢)‖‖𝑥 − 𝑥‖,
it follows that, if 𝑓 (., .) is Lipschitz, then

| 〈 𝑓 (𝑥, 𝑢) − 𝑓 (𝑥, 𝑢), 𝑥 − 𝑥〉 | ¬ 𝑘 ‖𝑥 − 𝑥‖.
Therefore, any Lipschitz function is also one-sided Lipschitz. The converse is not
true, it suffices to take for example the function:

𝑓 (𝑥) = −sgn (𝑥)
√︁
|𝑥 |

where sgn(.) denotes the sign function.
Next, we consider the following fuzzy model:

¤𝑥(𝑡) =
𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)
(
𝐴𝑖𝑥 + 𝐵𝑖𝑢 + 𝑓𝑖 (𝑥, 𝑢)

)
(13)

with the output 𝑦 defined as in (4).
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Let consider for (13) an observer of the form:

¤̂𝑥 =

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)
(
𝐴𝑖𝑥 + 𝐵𝑖𝑢 + 𝑓𝑖 (𝑥, 𝑢)

)
−

𝑟∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐿𝑖 ( 𝑦̂ − 𝑦). (14)

with
𝑓𝑖 (𝑥, 𝑢) = 𝑃−1 𝑓̃𝑖 (𝑥, 𝑢), 𝑖 = 1, . . . , 𝑟,

where 𝑃 is (𝑛 × 𝑛) is the unique symmetric positive definite solution of the
Lyapunov equations (10) and (11) for a given symmetric positive definite matrix
𝑄, for all 𝐿𝑖, 𝑖 = 1, . . . , 𝑟, and 𝑓̃𝑖 satisfy the following one-sided Lipschitz
condition:
(H2)〈

𝑓̃𝑖 (𝑥, 𝑢) − 𝑓̃𝑖 (𝑥, 𝑢), 𝑥 − 𝑥

〉
¬ 𝑘̃ ‖𝑥 − 𝑥‖2, 𝑘̃𝑖 > 0, 𝑖 = 1, . . . , 𝑟, (15)

for all (𝑥, 𝑦) ∈ R𝑛 × R𝑛 and 𝑢 ∈ R𝑚.
Let

𝑟∑︁
𝑖=1

𝑘̃𝑖 = 𝑘̃ > 0.

Theorem 2 Under the assumption (H2) with 𝑘̃ <
1
2
𝜆0, the system (14) is an

exponential fuzzy observer for the fuzzy system (13).

Proof. Consider the Lyapunov function candidate 𝑉 (𝑒) = 𝑒𝑇𝑃𝑒. It’s derivative
with respect to time is given by:

¤𝑉 (𝑒) =
𝑟∑︁
𝑖=1

𝜇2𝑖 𝑒
𝑇

(
Υ𝑇
𝑖𝑖𝑃 + 𝑃Υ𝑖𝑖

)
𝑒 + 2

∑︁
𝑖< 𝑗

𝜇𝑖𝜇 𝑗𝑒
𝑇

(
Υ𝑇
𝑖 𝑗𝑃 + 𝑃Υ𝑖 𝑗

)
𝑒

+ 2𝑒𝑇𝑃
𝑟∑︁
𝑖=1

𝜇𝑖
(
𝑓𝑖 (𝑥, 𝑢) − 𝑓𝑖 (𝑥 − 𝑒, 𝑢)

)
.

On the one hand, we have

𝑒𝑇
(
Υ𝑇
𝑖𝑖𝑃 + 𝑃Υ𝑖𝑖

)
𝑒 ¬ −𝜆0‖𝑒‖2, 𝑖 = 1, . . . , 𝑟,

and
𝑒𝑇

(
Υ𝑇
𝑖 𝑗𝑃 + 𝑃Υ𝑖 𝑗

)
𝑒 ¬ −𝜆0‖𝑒‖2, 1 < 𝑖 < 𝑗 < 𝑟.
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Then, one gets

¤𝑉 (𝑒) ¬ −𝜆0‖𝑒‖2
𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝜇𝑖𝜇 𝑗 + 2𝑒𝑇𝑃
𝑟∑︁
𝑖=1

𝜇𝑖
(
𝑓𝑖 (𝑥, 𝑢) − 𝑓𝑖 (𝑥 − 𝑒, 𝑢)

)
.

Thus,

¤𝑉 (𝑒) ¬ −𝜆0‖𝑒‖2
𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝜇𝑖𝜇 𝑗 + 2𝑒𝑇
𝑟∑︁
𝑖=1

𝜇𝑖𝑃

(
𝑃−1 𝑓̃𝑖 (𝑥, 𝑢) − 𝑃−1 𝑓̃𝑖 (𝑥 − 𝑒, 𝑢)

)
.

It follows that

¤𝑉 (𝑒) ¬ −𝜆0‖𝑒‖2 + 2
𝑟∑︁
𝑖=1

𝜇𝑖𝑒
𝑇

(
𝑓̃𝑖 (𝑥, 𝑢) − 𝑓̃𝑖 (𝑥 − 𝑒, 𝑢)

)
.

On the other hand, from (H2), we have




 𝑟∑︁
𝑖=1

𝜇𝑖𝑒
𝑇

(
𝑓̃𝑖 (𝑥, 𝑢) − 𝑓̃𝑖 (𝑥 − 𝑒, 𝑢)

)




 ¬ 𝑟∑︁
𝑖=1

𝑘̃𝑖‖𝑒‖2.

Taking into account the above expressions, it follows that

¤𝑉 (𝑒) ¬
(
2𝑘̃ − 𝜆0

)
‖𝑒‖2.

The last expression in conjunction with the fact that the Lyapunov function is
quadratic, yields

¤𝑉 (𝑒) ¬ − (𝜆0 − 2𝑘̃)
𝜆max(𝑃)

𝑉 (𝑒).

Thus, we obtain the following estimation:

‖𝑒(𝑡)‖ ¬
(
𝜆max(𝑃)
𝜆min(𝑃)

)1/2
‖𝑒(0)‖𝑒−

1
2
(𝑡𝑖𝑙𝑑𝑒𝜆0−2𝑘̃)
𝜆max (𝑃)

𝑡
.

Using the fact that the one-sided Lipschitz constant 𝑘̃ satisfies, 𝑘̃ <
1
2
𝜆0, then the

system (14) is an exponential fuzzy observer for the fuzzy system (13). 2

Remark 2 For many problems, one-sided Lipschitz constant can be found which
are significantly smaller than the classical Lipschitz constant. This makes the
one-sided Lipschitz constant much more appropriate for estimating the influence
of non-linear terms.
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4. Example

Consider the following nonlinear fuzzy planar system,
¤𝑥 =

2∑︁
𝑖=1

𝜇𝑖 (𝑧)
(
𝐴𝑖𝑥 + 𝐵𝑖𝑢 + 𝑓𝑖 (𝑥, 𝑢)

)
𝑦 =

2∑︁
𝑖=1

𝜇𝑖 (𝑧)𝐶𝑖𝑥,

where 𝑥(𝑡) =
[
𝑥1(𝑡) 𝑥2(𝑡)

]𝑇 , is the state vector, 𝑢(𝑡) is the input vector, 𝑦(𝑡) is
the output vector, 𝑡 ­ 0.

𝑧 = sin(𝑥1), 𝐴1 =

[
−1 0
1 1

]
, 𝐴2 =

[
−1 0
1 −1

]
,

𝐵1 = 𝐵2 =

[
1
1

]
, 𝐶1 = 𝐶2 =

[
−1 1

]
,

𝑓1(𝑥, 𝑢) =
[−𝜖 sin 𝑢 cos 𝑥2
−𝜖 (𝑥21 + 𝑥22)

1/2

]
, 𝑓2(𝑥, 𝑢) =

[−𝜖 sin 𝑢 cos 𝑥2
𝜖 (𝑥21 + 𝑥22)

1/2

]
,

We define the membership functions as:

𝜇1(𝑡) =
1 − sin(𝑥1(𝑡))

2
and 𝜇2(𝑡) = 1 − 𝜇1(𝑡).

A classical T-S fuzzy model would require 8 rules for 3 nonlinearities, and it
would depend on unmeasured variables. The nonlinearities are 𝜖-Lipschitizian
and for the conception of the observer we can take 𝜖 < 0.01. Using an LMI
optimization algorithm, we obtain the following gains matrices:

𝐿1 =
[
422.7991 483.2676

]𝑇 and 𝐿2 =
[
85.9898 101.2911

]𝑇
.

Consider the following fuzzy observer:
¤̂𝑥 =

2∑︁
𝑖=1

𝜇𝑖 (𝑧) (𝐴𝑖𝑥 + 𝐵𝑖𝑢 + 𝑓𝑖 (𝑡, 𝑥, 𝑢) − 𝐿𝑖 ( 𝑦̂ − 𝑦)) ,

𝑦̂ =

2∑︁
𝑖=1

𝜇𝑖 (𝑧) 𝐶𝑖𝑥 .
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Therefore, the T-S fuzzy error equation:

¤𝑒 =

𝑟∑︁
𝑖=1

𝑟∑︁
𝑗=1

𝜇𝑖𝜇 𝑗

(
𝐴𝑖 − 𝐿 𝑗𝐶𝑖

)
𝑒 +

𝑟∑︁
𝑖=1

𝜇𝑖 ( 𝑓𝑖 (𝑥, 𝑢 (𝑥)) − 𝑓𝑖 (𝑥 − 𝑒, 𝑢 (𝑥)))

is globally exponentially stable.

5. Conclusion

In this paper a new way to simplify the design of observers for T-S fuzzy
models is presented. It concerns the cases of non linearity that either meets a
Lipschitz condition or simply one-sided Lipschitz. Some results are obtained, the
observer can therefore be designed under some sufficient conditions. Moreover,
an illustrative example is given.
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