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The design of structured LDPC codes
with algorithmic graph construction
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Abstract. Low-density parity-check (LDPC) codes are among the most effective modern error-correcting codes due to their excellent correction
performance and highly parallel decoding scheme. Moreover, the nonbinary extension of such codes further increases performance in the
short-block regime. In this paper, we review the key elements for the construction of implementation-oriented binary and nonbinary codes.
These quasi-cyclic LDPC (QC-LDPC) codes additionally feature efficient encoder and decoder implementation frameworks. We then present
a versatile algorithm for the construction of both binary and nonbinary QC-LDPC codes that have low encoding complexity and an optimized
corresponding graph structure. Our algorithm uses a progressive edge growth algorithm, modified for QC-LDPC graph construction, and then
performs an iterative global search for optimized cyclic shift values within the QC-LDPC circulants. Strong error correction performance is
achieved by minimizing the number of short cycles, and cycles with low external connectivity, within the code graph. We validate this approach
via error rate simulations of a transmission system model featuring an LDPC coder-decoder, digital modulation, and additive white Gaussian
noise channels. The obtained numerical results validate the effectiveness of the proposed construction algorithm, with a number of constructed
codes exhibiting either similar or superior performance to industry standard binary codes and selected nonbinary codes from the literature.
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1. INTRODUCTION
Error correction coding is a key operation within the physi-
cal layer of any data transmission system, and plays an im-
portant role in the recent advancements in timing and reliabil-
ity of broadband mobile networks. Binary low-density parity-
check (LDPC) [1] codes provide outstanding error correction
performance, and approach the limit set by the Shannon capac-
ity [2]. Such codes can be extended using the nonbinary Galois
field. The resulting GF(𝑞) codes [3] have been shown to further
improve performance when applied to short or moderate data
block lengths. The nonbinary LDPC coding is a highly active
research area, covering topics such as code design, decoding
algorithms, and hardware implementations [4–9].

The construction and optimization of LDPC codes is a key is-
sue under consideration by LDPC system researchers. The pri-
mary research goal is to provide optimized error correction per-
formance for the given use case. However, the code designs are
often constrained to implementation-oriented approaches due
to the requirement for the efficient implementation of hardware
codecs (both encoders and decoders). Quasi-cyclic LDPC (QC-
LDPC) codes [10,11] are particularly suitable for hardware im-
plementation [12,13], as the block structure of the parity check
matrix facilitates both the efficient routing of data paths within
the decoder [7, 14, 15], as well as the generation of a com-
pressed matrix representation. The parity check matrix H of a
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QC-LDPC code is composed of a set of submatrices. Each sub-
matrix is either a zero matrix or a circulant permutation matrix
(CPM). The error correction performance of QC-LDPC codes
can be degraded due to the existence of short cycles within the
code graph that represents the parity check matrix. This intro-
duces dependence on the information exchanged during the it-
erative decoding process, thereby reducing its effectiveness. To
avoid this, the code and corresponding graph must be designed
appropriately.

Certain algebraic and geometric designs have the potential to
support QC-LDPC code development methods [16, 17]. How-
ever, such approaches do not produce flexible code lengths
and submatrix sizes, and the resultant regular degree distri-
bution limits the waterfall correction performance in compar-
ison with irregular distributions. Alternative approaches, which
search for CPMs, can provide more design flexibility. The pro-
gressive edge growth (PEG) algorithm [18–20] is a classical
search method that achieves excellent results, but only for gen-
eral (non-QC) LDPC codes.

Important QC-LDPC code advancements have been made by
designing graphs with large girth – the length of the shortest
cycle within the code graph representation [5, 21, 22]. How-
ever, the girth optimization does not exhaust the possibilities
of cycle existence minimization. Moreover, typical construction
methods do not specifically account for the efficient encoding
of H [23]. It is also known that, in addition to the shortest cycle
length, further characteristics of existing cycles are important
for code performance: the external cycle connectivity, repre-
sented by the extrinsic message degree (EMD) or approximate
cycle EMD (ACE) [24, 25].
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In previous publications, we proposed an algorithmic design
method for certain constrained subclasses of QC-LDPC codes
[6, 26]. We proposed the design of nonbinary, quasi-regular
codes based on PEG [26], and a design method based on in-
teger programming that is usable for short to moderate code
lengths [6]. In this paper, we present a scalable non-exhaustive
search algorithm that can be used for any block length.

Numerous binary LDPC codes already exist, and have been
successfully applied in data communication standards such as
WiFi (IEEE 802.11n [27]), WiMAX (IEEE 802.16 [28]), and
5G NR ( [29]). It is likely that future deployments and non-
standard use cases will require additional codes with different
parameters such as block length, code rate, and possibly the
utilization of nonbinary codes. Therefore, the requirement ex-
ists for both a structured review of code development and sim-
ple algorithmic methods for the construction of both binary and
nonbinary LDPC codes with arbitrary parameters.

In this paper, we highlight the key features of the parity
check matrix, for both binary and nonbinary implementations
that produce a friendly LDPC code implementation on both the
encoding and decoding sides. We further highlight the proper-
ties of the associated code graph that influence the code per-
formance. We then provide a systematic, versatile design algo-
rithm that accounts for all such features, and can construct any
binary or nonbinary code that can be efficiently implemented.

The proposed algorithm consists of three stages. The first
stage is based on PEG, modified to produce QC-LDPC code.
Following this, the second stage searches iteratively for the shift
values of respective CPMs. The goal of this algorithm is both
to maximize the code graph girth, and minimize the number of
short cycles of length greater than or equal to the girth. The
cycle-length and cycle-number limits are configurable parame-
ters; this allows the algorithm to be scaled easily for different
use cases. The generated codes produce efficient encoding and
decoding structures. The obtained codes are efficiently imple-
mentable and simulation results show that, in some cases, they
provide a slight performance increase over standardized codes
and those from the literature.

2. TRANSMISSION SYSTEM MODEL WITH LDPC ERROR
CORRECTION CODING

We investigate LDPC coding over the field GF(𝑞), where
𝑞 = 2𝑝 , 𝑝 ≥ 1. We use 2𝑋 -ary digital modulations, correspond-
ing to a transmission model with potentially high spectral ef-
ficiency. Specifically, we consider the following modulation
schemes: binary phase shift keying (BPSK), for which 𝑋 = 1;
quadrature phase shift keying (QPSK), for which 𝑋 = 2; and
2𝑋 -quadrature amplitude modulation (2𝑋 -QAM) with a square
constellation, for 𝑋 ∈ {4,6,8, . . .}. We assume that an LDPC
code over any field can be combined with a modulation of any
order, which provides spectral efficiency flexibility. For clar-
ification, Figures 1a and 1b show a generalized transmission
model block diagram and a specific example using GF(8) and
16-QAM, respectively.

To investigate the coding system performance, we combine
the transmitter model with a software model of an additive

white Gaussian noise (AWGN) channel, a demodulator, and an
LDPC decoder, which uses the belief propagation (BP) [1] and
fast Fourier transform BP [4] algorithms for binary and nonbi-
nary codes, respectively.

Fig. 1. Transmitter model: a) NB-LDPC coded 2𝑋 -ary modulation;
b) an example for (1120,672) code over GF(8) combined

with 16-QAM

3. LDPC CODING DEFINITIONS
LDPC codes are a class of linear block error correcting codes.
To encode an (𝑁,𝐾) code, 𝑀 = 𝑁 −𝐾 redundant elements are
inserted into the information vector u = {𝑢1, 𝑢2, . . . , 𝑢𝐾 }, giving
the code vector c = {𝑐1, 𝑐2, . . . , 𝑐𝑁 }, where 𝑐𝑖 ∈ GF(𝑞)∀𝑖, with
𝑞 = 2 for binary codes, and 𝑞 > 2 for nonbinary codes.

An (𝑁,𝐾) LDPC code is defined by its parity check matrix
H𝑀×𝑁 , which is sparse and contains GF(𝑞) elements. The de-
coder confirms a row vector ĉ of length 𝑁 to be an error-free
code word if it satisfies the parity check equation Hĉ𝑇 = 0𝑀×1
over GF(𝑞). If this equation is not satisfied, the BP error cor-
rection decoding procedure is executed [1, 4].

3.1. Degree distribution
The error correction capabilities of a given LDPC code are de-
pendent upon the properties of the corresponding code graph.
A key parameter of the code is the node degree distribution of
the code graph. This parameter is equivalent to the distribution
of column weights of H, which is given by 𝝀 = [𝜆1,𝜆2, . . . ,𝜆𝑁 ],
where 𝜆𝑛 denotes the weight (the number of nonzero ele-
ments) of the 𝑛-th column of H. If 𝜆𝑛 values are constant for
𝑛 = 1, . . . , 𝑁 , the code is a regular LDPC code; otherwise the
code is irregular. The node degree distribution influences the
waterfall region of the coding performance curve [30].

The first step of a typical LDPC code construction algo-
rithm is to determine the distribution of column weights 𝝀.
For nonbinary codes, a quasi-regular distribution is often fa-
vorable [31], for which 𝜆𝑛 ∈ {2,3}∀𝑛. Effective quasi-regular
distributions for different nonbinary codes can be found in pre-
vious works [32, 33].

3.2. Nonbinary structured codes
The parity check matrix H of a binary QC-LDPC code consists
of a set of square circulant permutation matrices and square
zero matrices. A CPM P𝑠 is a 𝑃× 𝑃 matrix obtained by cycli-
cally shifting rows of the identity matrix I𝑃×𝑃 to the right by
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(𝑠 mod 𝑃) positions. The matrix H can be presented as fol-
lows for a general nonbinary case:

H =


𝑧1,1P𝑠1,1 𝑧1,2P𝑠1,2 · · · 𝑧1,𝐽P𝑠1,𝐽

𝑧2,1P𝑠2,1 𝑧2,2P𝑠2,2 · · · 𝑧2,𝐽P𝑠2,𝐽
...

...
. . .

...

𝑧𝐼 ,1P𝑠𝐼 ,1 𝑧𝐼 ,2P𝑠𝐼 ,2 · · · 𝑧𝐼 ,𝐽P𝑠𝐼 ,𝐽


, (1)

where the 𝑠𝑖, 𝑗 ∈ {0,1, . . . , 𝑃− 1} define the circulant shift val-
ues (CSVs) and 𝑧𝑖, 𝑗 indicates the positions of zero and nonzero
submatrices within H. For a binary code, 𝑧𝑖, 𝑗 ∈ {0,1}; for a non-
binary code 𝑧𝑖, 𝑗 ∈ GF(𝑞) and additionally indicates the GF(𝑞)
coefficients of the submatrices.

The matrix H in equation (1) has a size of 𝐼𝑃×𝐽𝑃 and defines
a binary QC-LDPC code over GF(2) or a nonbinary structured
code over GF(𝑞 > 2). The coefficients 𝑧𝑖, 𝑗 form the code base
matrix, of size 𝐼 × 𝐽. Similarly, the 𝑠𝑖, 𝑗 form a matrix of CSVs
S𝐼×𝐽 . Every QC-LDPC code is fully defined by the base matrix
Z, the submatrix size 𝑃, and the CSV matrix S.

3.3. Dual diagonal structure for efficient encoding
The structured matrix H is appropriate for the implementation
of fast, semi-parallel decoders. In contrast, efficient LDPC en-
coding, using the method introduced by Richardson and Ur-
banke [23], requires the parity check matrix to take an approx-
imately lower triangular form. For a QC-LDPC code with sub-
matrix size 𝑃×𝑃, this form can be represented as

H =

[
A B T
C D E

]
, (2)

where T is a lower triangular matrix of size (𝐼 −𝑔)𝑃× (𝐼 −𝑔)𝑃,
submatrix A is of size (𝐼−𝑔)𝑃× (𝐽− 𝐼)𝑃, B is of size (𝐼−𝑔)𝑃×
𝑔𝑃, C is of size 𝑔𝑃× (𝐽− 𝐼)𝑃, D is of size 𝑔𝑃×𝑔𝑃, E is of size
𝑔𝑃× (𝐼 −𝑔)𝑃, and 𝑔 is a positive integer.

3.4. Code graph definitions
An alternative to the matrix H is the bipartite Tanner graph [1]
representation. Such a representation has variable nodes corre-
sponding to the data symbols associated with the columns of H,
check nodes corresponding to parity checks associated with the
rows of H, and edges corresponding to the positions of nonzero
entries within H. Similarly, a base graph representation of the
base matrix Z can be defined.

Let the base graph be defined as G = (V𝑐 ∪V𝑣 ,E). This is
a bipartite graph, where V𝑐 = {𝑐1, 𝑐2, . . . , 𝑐𝐼 } is the set of check
nodes representing nodes of Z, V𝑣 = {𝑣1, 𝑣2, . . . , 𝑣𝐽 } is the set
of variable nodes representing columns of Z, and E ⊆ V𝑐 ×V𝑣
is the set of edges E = {𝑒1, 𝑒2, . . . , 𝑒𝑇 }. An edge 𝑒𝑡 = (𝑐𝑖 , 𝑣 𝑗 )
belongs to E if and only if there exists an element of the base
matrix 𝑧𝑖 𝑗 ≠ 0. The total number of edges in G, denoted by 𝑇 , is
equal to the number of nonzero elements in Z.

Furthermore, let the code graph representing H in equa-
tion (1) be denoted as G (𝑃) = (V (𝑃)

𝑐 ∪V (𝑃)
𝑣 ,E (𝑃) ). The check

nodes in V (𝑃)
𝑐 are denoted as 𝑐𝑖, 𝑝 , where 𝑖 ∈ {1, . . . , 𝐼} is the in-

dex of the corresponding macro-row in H, and 𝑝 ∈ {0, . . . , 𝑃−1}

is the row position within the macro-row. Similarly, the vari-
able nodes in V (𝑃)

𝑣 are denoted as 𝑣 𝑗 , 𝑝 , where 𝑗 ∈ {1, . . . , 𝐽}
is the index of the corresponding macro-column in H, and 𝑝 ∈
{0, . . . , 𝑃−1} is the column position within the macro-column.
Hence, G (𝑃) contains the node sets V (𝑃)

𝑐 = {𝑐𝑖, 𝑝 : 1 ≤ 𝑖 ≤ 𝐼; 0 ≤
𝑝 ≤ 𝑃−1} and V (𝑃)

𝑣 = {𝑣 𝑗 , 𝑝 : 1 ≤ 𝑗 ≤ 𝐽; 0 ≤ 𝑝 ≤ 𝑃−1}.
The subset of edges within G (𝑃) that correspond to the sub-

matrix P𝑠𝑖, 𝑗 in equation (1) can be presented as{
(𝑐𝑖,𝑠𝑖, 𝑗 , 𝑣 𝑗 ,0), (𝑐𝑖,𝑠𝑖, 𝑗 ⊕1, 𝑣 𝑗 ,1), . . . , (𝑐𝑖,𝑠𝑖, 𝑗 ⊕𝑃 , 𝑣 𝑗 ,𝑃)

}
, (3)

where 𝑠 ⊕ 𝑝 = (𝑠+ 𝑝) mod 𝑃.

Since any edge within this subset clearly defines the entire cir-
culant subset, the proposed initial circulant insertion procedure
searches for only a single new edge. This edge becomes a gen-
erating edge, and is used to generate the entire subset of 𝑃 edges
within a substructure representing a CPM.

3.5. PEG algorithm
The PEG algorithm [18, 19] is a greedy edge placement con-
struction method that is applied to an initially edge-empty graph
G to obtain a Tanner graph representation of an LDPC code.
PEG inserts edges into the graph such that when a cycle sub-
sequently arises, its length takes the maximum possible value
within the current graph structure. The PEG algorithm is versa-
tile and convenient, but does not support direct QC-LDPC code
design.

4. CODE GRAPH STRUCTURAL PROPERTIES
For brevity, we henceforth denote the CSVs within H as the
single-indexed 𝑠𝑡 . By s = {𝑠1, 𝑠2, . . . 𝑠𝑇 }, we denote all CSVs
corresponding to nonzero submatrices P𝑠𝑖, 𝑗 in equation (1). For
each 𝑧𝑖, 𝑗 ≠ 0 in equation (1), the corresponding 𝑠𝑖, 𝑗 is repre-
sented by a single-indexed 𝑠𝑡 ∈ s, corresponding to an edge
𝑒𝑡 = (𝑐 𝑗 , 𝑣 𝑗 ) ∈ E .

Now consider the key graph structural properties. The pres-
ence of short cycles within the code graph substantially influ-
ences the performance the corresponding LDPC code. A cycle
of length 2𝑙 is a sequence of adjacent edges, which starts and
ends at the same vertex, and satisfies the condition that no edge
appears more than once in the sequence. Let such a cycle be
denoted as 𝑒𝑡1 ∼ 𝑒𝑡2 ∼ · · · ∼ 𝑒𝑡2𝑙 ∼, where 𝑡1, 𝑡2, . . . , 𝑡2𝑙 index the
constituent edges.

Two consecutive edges of a cycle in G (𝑃) correspond to dis-
tinct CPMs in H. The CPMs must be located within the same
macro-row or macro-column. Therefore, every cycle of length
2𝑙 in a code graph G (𝑃) is associated with an ordered series of
nonzero CPMs:

P𝑠𝑡1 → P𝑠𝑡2 → ·· · → P𝑠𝑡2𝑙 → P𝑠𝑡1 , (4)

where 𝑡𝑖 ≠ 𝑡𝑖+1 for 1 ≤ 𝑖 < 2𝑙 and consecutive submatrices
P𝑠𝑡𝑖 , P𝑠𝑡𝑖+1 are located within either the same macro-row or the
same macro-column of H [11]. In general, the chain shown
in equation (4) can contain repeated submatrices of index 𝑖
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and 𝑗 , where 𝑗 ≥ 𝑖 + 4. Due to the possibility of edge repeti-
tions, the corresponding sequence of edges in the base graph
𝑒𝑡1 ∼ 𝑒𝑡2 ∼ · · · ∼ 𝑒𝑡2𝑙 ∼ does not necessarily form a cycle. Rather,
such a closed sequence of adjacent edges, with possible repeti-
tions, is known as a closed walk [6, 34].

Every closed walk within the base graph specifies a chain
of CPMs (4). However, a closed chain of CPMs does not nec-
essarily indicate a cycle within code graph G (𝑃) . The ordered
CSV series 𝑠𝑡1 , 𝑠𝑡2 , · · · , 𝑠𝑡2𝑙 defines the condition for the exis-
tence of a cycle within G (𝑃) corresponding to a closed walk in
G [10, 11]. Using our presented notation, we now reformulate
this condition.

The code graph G (𝑃) contains 𝑃 length-2𝑙 cycles correspond-
ing to a length-2𝑙 closed walk 𝑒𝑡1 ∼ 𝑒𝑡2 ∼ · · · ∼ 𝑒𝑡2𝑙 ∼ in the base
graph G, if and only if the following condition is satisfied for
the CSVs 𝑠𝑡1 , 𝑠𝑡2 , . . . , 𝑠𝑡2𝑙 that correspond to the edges of the
closed walk:

2𝑙∑︁
𝑘=1

(−1)𝑘−1𝑠𝑡𝑘 ≡ 0 mod 𝑃. (5)

Figure 2 presents a base graph fragment that contains a
length-4 cycle, a length-6 cycle, and a length-10 closed walk,
indicated in red. Following the expansion of the graph into G (𝑃)

with 𝑃 = 4, the CSVs are such that no corresponding length-10
cycle exists within G (𝑃) .

Fig. 2. Example graph expansion

Cycles do not degrade performance uniformly. Results can
be improved with the use of construction methods that account
for the external connectivity of cycles. Cycle connectivity can
be represented by EMD – the number of check nodes that are
singly connected to the cycle variable node subset [24] – and
ACE. The ACE of a length-2𝑙 cycle is

∑
𝑖 (𝜆𝑡𝑖 −2), where 𝜆𝑡𝑖 is

the degree of the variable node 𝑣𝑡𝑖 within the cycle [24].
The performance of an LDPC code with a message passing

decoding is determined by its graph structure. In addition to cy-
cles, more complex substructures can impact performance. Un-
desirable error floors in bit error rate curves have been shown
to relate to trapping sets – a small number of variable nodes
that lock one another into incorrect beliefs. Trapping sets of
variable nodes are represented by clusters of short cycles in
the corresponding graph. The existence of these clusters can be
reduced by avoiding short cycles; particularly those with low
external connectivity, as defined by the EMD and ACE met-
rics [24, 25, 35].

Based on the presented considerations, our design objective
is to develop a method that minimizes the number of short cy-
cles within the code graph of a structured QC-LDPC code. Ac-

cordingly, we present a versatile construction algorithm that can
be used for any binary or nonbinary code. The resulting code is
efficiently implementable in hardware due to the structured H
and possible dual-diagonal form for efficient encoding.

5. ITERATIVE CONSTRUCTION ALGORITHM
This section presents our versatile design algorithm, which is
based on the iterative optimization of the code graph. The pro-
cess consists of three principal stages:
1) definition of the code base graph or base matrix;
2) base graph cyclic lifting, or expansion of the base matrix

into the binary parity check matrix; and
3) in the case of nonbinary codes, replacement of the ones with

non-zero entries over GF(𝑞).
For binary non-QC LDPC code graphs, the base graph is typi-
cally designed using an algebraic or algorithmic construction
method [19, 24]. Our method takes a different approach: we
modify the classic PEG algorithm [18] such that during each
iteration of the algorithm, 𝑃 edges (rather than a single edge)
are inserted into the graph. These 𝑃 edges represent a single
circulant in the parity check matrix. In this manner, a single
procedure both produces a PEG-optimized base graph and ini-
tially optimizes the CSVs in the QC-LDPC matrix.

The algorithm is presented as Algorithm 1. In this form, the
algorithm uses notation taken from the PEG publication [18],
defined as follows. The set N 𝑙

𝑣𝑗,𝑝
contains all check nodes that

can be reached by a subgraph spreading from symbol node 𝑣 𝑗 , 𝑝
within depth 𝑙. The complementary set is N̄ 𝑙

𝑣𝑗,𝑝
= V (𝑃)

𝑣 \N 𝑙
𝑣𝑗,𝑝

.
The desired degree of symbol nodes in the 𝑗-th macro-column
𝑣 𝑗 , 𝑝 is denoted as 𝜆 𝑗 . The degree vector 𝝀 = [𝜆1,𝜆2, . . . ,𝜆𝐽 ] is
an input parameter to the algorithm. The degree of check node
𝑐𝑖, 𝑝 under the current graph settings is denoted as 𝑑 (𝑐𝑖, 𝑝). This
value changes as the algorithm progresses. The notation 𝑥 := 𝑦
is defined as “𝑥 becomes 𝑦”. For brevity, ⊕ denotes mod𝑃 ad-
dition.

Once Algorithm 1 has obtained the initial CSVs in S, they
are further optimized to decrease the number of cycles in G (𝑃) .
For each cycle of length 2𝑙 and ACE parameter

∑
𝑖 (𝜆𝑡𝑖 − 2),

we define a heuristic metric 𝑤 = 10𝑙 + 10−ACE. The algorithm
attempts to minimize the total sum of metrics 𝑤 over all closed
walks within the base graph G that generate cycles within the
optimized graph G (𝑃) . That is cycles for which equation (5) is
satisfied.

Formally, we define the optimization goal (or cost function
that is minimized) 𝐶 as

𝐶 = w ·1P

(
A · s𝑇

)
. (6)

The variables within equation (6) are defined as follows.
• The ordered vector s = [𝑠1, 𝑠2, . . . , 𝑠𝑇 ] contains all elements

within S, in positions corresponding to nonzero elements
within the base matrix Z, that is, nonzero CSVs 𝑠𝑖, 𝑗 .

• The matrix A is is of size 𝐷 ×𝑇 , where 𝐷 is the number of
identified base graph closed walks. The rows of A are de-
noted as A1,A2, . . . ,A𝐷 , where every row A𝑑 defines a con-
dition (as shown in equation (5)) for a corresponding closed
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Algorithm 1: Base graph design and circulant initialization
Input: Dimensions of base matrix (𝐼, 𝐽), submatrix 𝑃, column

weights 𝝀
Output: Code graph (V (𝑃) ,E (𝑃) ), base matrix Z𝐼×𝐽 , set of

initialized circulants S𝐼×𝐽
1 {Initialization:}

2 (V (𝑃) := V (𝑃)
𝑐 ∪V (𝑃)

𝑣 , E (𝑃) := ∅)
3 Z := 0𝐼×𝐽
4 S := 0𝐼×𝐽
5 {Insert edges corresponding to the dual-diagonal part of H:}
6 for (𝑖, 𝑗) = (𝐼 , 𝐽 ) , (𝐼 −1, 𝐽 −1) , . . . , (1, 𝐽 − 𝐼 +1) do
7 for 𝑝 = 0, 1, . . . , 𝑃−1 do
8 E (𝑃) := E (𝑃) ∪ (𝑐𝑖,𝑝 , 𝑣𝑗,𝑝) {first diagonal}
9 E (𝑃) := E (𝑃) ∪ (𝑐𝑖−1, 𝑝 , 𝑣𝑗,𝑝) {second diagonal}

10 {Insert edges corresponding to the remaining part of H:}
11 for 𝑗 = 𝐽 − 𝐼 , 𝐽 − 𝐼 −1, . . . , 1 do
12 {Initial edges for variable nodes 𝑣𝑗,𝑝:}
13 Select check nodes with minimum 𝑑 (𝑐𝑖,0); from these

randomly select the 𝑐𝑖𝑔 ,0. Then
14 for 𝑝 = 0 to 𝑃−1 do
15 E (𝑃) := E (𝑃) ∪ (𝑐𝑖𝑔 , 𝑝 , 𝑣𝑗,𝑝)
16 Store the CSV: 𝑠𝑖𝑔 , 𝑗 := 0
17 {Subsequent edges for variable nodes 𝑣𝑗,𝑝:}
18 for 𝑘 = 2, . . . , 𝜆 𝑗 do
19 Track the current graph from variable node 𝑣𝑗,0 up to 𝑙

edges deep, such that N̄ 𝑙
𝑣𝑗,0 ≠ ∅ but N̄ 𝑙+1

𝑣𝑗,0 = ∅ or

N̄ 𝑙+1
𝑣𝑗,0 = N̄ 𝑙

𝑣𝑗,0 .

20 From set N̄ 𝑙
𝑣𝑗,0 , select candidate nodes with minimum

𝑑 (𝑐𝑖,𝑝); from these select candidate nodes with the
greatest ACE of the shortest consequent cycles; from
these randomly select 𝑐𝑖𝑔 , 𝑝𝑔 as the generating edge
(𝑐𝑖𝑔 , 𝑝𝑔 , 𝑣𝑗,0) .

21 {Place a generated subset of edges in the graph G (𝑃) :}
22 for 𝑝 = 0 to 𝑃−1 do
23 E (𝑃) := E (𝑃) ∪ (𝑐𝑖𝑔 , 𝑝⊕𝑝𝑔 , 𝑣𝑗,𝑝)
24 Store the CSV: 𝑠𝑖𝑔 , 𝑗 := 𝑝𝑔

25 From the obtained G (𝑃) , determine the corresponding base matrix Z.

walk. Each element 𝐴𝑑,𝑡 is equal to the number of encoun-
ters with edge 𝑒𝑡 in the 𝑑-th closed walk. If edge 𝑒𝑡 is not
encountered, 𝐴𝑑,𝑡 = 0. For the existence of a cycle due to the
𝑑-th closed walk, equation (5) can then be reformulated as

A𝑑 · s𝑇 ≡ 0 mod 𝑃. (7)

• The vector w = [𝑤1,𝑤2, . . . ,𝑤𝐷] contains weights corre-
sponding to 𝐷 closed walks. Each element is the cycle metric
of the 𝑑-th length-2𝑙 closed walk:

𝑤𝑑 = 10𝑙 (𝑑) +10−ACE(𝑑) . (8)

• The function 1P (𝛼) indicates that 𝛼 ∈ P = {. . . ,−2𝑃,𝑃,0,
𝑃,2𝑃, . . .}, and can be defined for scalar 𝛼 as

1P (𝛼) =
{

1, 𝛼 ≡ 0 mod 𝑃
0, otherwise .

(9)

For vector 𝛼, 1P (𝛼) is a vector of the same size, to which
equation (9) can be applied for each element of 𝛼. Making

use of 1P (.), condition in (7) can be reformulated as

1P

(
A𝑑 · s𝑇

)
= 1. (10)

The optimization goal given in equation (6) is therefore equal
to the sum of metrics 𝑤𝑑 for the closed walks which satisfy
equation (10).
The CSV optimization algorithm, presented as Algorithm 2,

acts iteratively on the rows A𝑑 in A. For every 𝑑 for which equa-
tion (10) is satisfied, the algorithm constructs an additive mod-
ification 𝚫𝑑 to the vector s such that 1P

(
A𝑑 · (s𝑇 ⊕𝚫𝑇

𝑑
)
)
= 0,

where ⊕ is an element-wise mod𝑃 addition. Such modifica-
tions break the corresponding cycles, but can also create ad-
ditional cycles. Therefore the total global cost 𝐶 is calculated
during each iteration. If this 𝐶 is lower than the previous best
solution, it is selected as the new best solution.

The maximum size of the closed walks considered by the al-
gorithm is defined as 𝑙max, and the maximum number of close
walks considered is defined as 𝐷max. These parameters are cus-
tomizable, and allow the algorithm to be scaled to fit the re-
quirements of varied use cases.

Algorithm 2: The optimization of CSVs in S
Input: Base matrix Z𝐼×𝐽 (corresponding graph G), submatrix

size 𝑃, set of initialized circulants S𝐼×𝐽 , 𝐷max and/or
𝑙max.

Output: Binary matrix H𝐼 𝑃×𝐽𝑃 consisting of 𝐼 × 𝐽 circulants of
size 𝑃×𝑃

1 Arrange nonzero 𝑠𝑖, 𝑗 in S𝐼×𝐽 into a vector s1×𝑇
2 {Identify closed walks in the base graph:}
3 𝑙 := 2
4 while 𝐷 < 𝐷max and 𝑙 < 𝑙max do
5 for 𝑗 = 1, 2, . . . , 𝐽 do
6 Track the base graph G from node 𝑣𝑗 up to depth 𝑙; for

nodes met multiple times at depth-𝑙, note a length-2𝑙
closed walks from the corresponding paths in the graph.
Memorize the closed walks.

7 𝑙 := 𝑙 +1
8 set 𝐷 to the total number of identified closed walks up to

length-2𝑙.
9 {Construct matrix A}

10 for 𝑑 = 1, . . . , 𝐷 do
11 Create A𝑑 , the 𝑑-th row of A, corresponding to 𝑑-th identified

closed walk in the memorized list. Calculate the metric
(weight) 𝑤𝑑 according to equation (8)

12 𝐶min := w ·1P
(
A · s𝑇

)
13 for 𝑑 = 1, . . . , 𝐷 do
14 s′ := s
15 if 1P

(
A𝑑 · s𝑇

)
= 1 then

16 {Search for modification of s with additive 𝚫𝑑:}

17 foreach 𝚫𝑑 : 1P
(
A𝑑 · (s𝑇 ⊕𝚫𝑇

𝑑
)
)
= 0 do

18 𝐶 := w ·1P
(
A · (s𝑇 ⊕𝚫𝑇

𝑑
)
)

19 if 𝐶 < 𝐶min then
20 s′ := s ⊕𝚫𝑑

21 𝐶min :=𝐶

22 s := s′

23 With obtained CSVs s = [𝑠1, 𝑠2, . . . , 𝑠𝑇 ] and the base matrix Z,
construct H as in (1).
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Using Algorithms 1 and 2, the complete QC-LDPC construc-
tion algorithm is formulated and presented as Algorithm 3. We
have successfully used the complete algorithm to construct both
binary and nonbinary codes, over any GF(𝑞), and with a wide
range of code lengths 𝑁 , coderates 𝑅, and submatrix sizes 𝑃.

Algorithm 3: The design of QC-LDPC code over GF(𝑞)
Input: Code length (𝑁,𝐾), submatrix size 𝑃, maximum column

weight 𝜆max, order 𝑞.
Output: Parity check matrix H(𝑁−𝐾 )×𝑁 over GF(𝑞)

1 Set base matrix size to (𝐼 × 𝐽 ) , where 𝐼 = (𝑁 −𝐾 )/𝑃 and 𝐽 = 𝑁 /𝑃
2 Determine column degree distribution 𝝀 = [𝜆1, 𝜆2, . . . , 𝜆𝐽 ], where

0 ≤ 𝜆 𝑗 ≤ 𝜆max, which can be done with known optimization
methods [30] or taken from tables and charts of optimized
distributions [30, 32, 33].

3 Construct initial code graph, according to Algorithm 1.
4 Construct binary parity check matrix, according to Algorithm 2
5 if NB code (𝑞 > 2) then
6 for i=1,2,. . . ,I do
7 For z𝑖 , that is 𝑖-th row of Z, randomly choose and rearrange

a sequence of coefficients over GF(𝑞) , e.g., from
a collection of sequences in Table 1, subject to a degree of
the considered row.

8 Multiply consecutive nonzero submatrices P𝑠𝑖, 𝑗 in a
macro-row of H corresponding to the row z𝑖 by the
selected GF(𝑞) coefficient sequence.

For nonbinary codes, the final step of the construction algo-
rithm is the selection of GF(𝑞) values to replace the ones within
the binary matrix. These values can be selected randomly from
GF(𝑞), which will produce satisfactory results in some cases.
However, ultra-sparse nonbinary LDPC codes obtained using
this approach tend to possess an error floor in the performance
curve [36].

Poulliat et al. [36] propose a superior selection method, by
using the binary images of the nonbinary parity-checks. Based
on this method, and using an implemented search algorithm,

Table 1
Example row coefficient sequences for several row degrees (𝑑𝑐)

[6, 36]; the provided values are the exponents of the power
representation 𝛼𝑖

𝑑𝑐 GF(16) GF(32) GF(64)

3 {0, 4, 8} {0, 6, 15} {0, 15, 41}
{0, 4, 9} {0, 7, 15} {0, 18, 44}
{0, 5, 10} {0, 5, 13} {0, 16, 41}

4 {0, 3, 7, 11} {0, 5, 16, 23} {0, 9, 22, 37}
{0, 2, 7, 11} {0, 5, 17, 23} {0, 6, 15, 41}
{0, 2, 6, 10} {0, 6, 15, 22} {0, 7, 18, 44}

5 {0, 1, 4, 8, 11} {0, 5, 10, 17, 22} {0, 7, 18, 44, 53}
{0, 1, 5, 7, 11} {0, 5, 10, 18, 23} {0, 7, 33, 42, 52}
{0, 1, 5, 8, 11} {0, 5, 11, 19, 24} {0, 7, 33, 42, 55}

6 {0, 1, 4, 6, 8, 11} {0, 5, 10, 15, 20, 25} {0, 7, 33, 42, 49, 55}
{0, 1, 4, 7, 8, 11} {0, 4, 9, 14, 19, 24} {0, 7, 18, 34, 44, 53}
{0, 1, 4, 8, 11, 12} {0, 4, 9, 14, 20, 25} {0, 6, 13, 19, 43, 52}

we have computed a collection of GF(𝑞) coefficient sequences
for nonzero elements in the rows of the base matrix. Our col-
lection is larger than that provided by Poulliat et al. [36], as it
includes additional possibilities for the row degrees. This pre-
computed collection can be used in the final step of Algorithm 3
for nonbinary codes. For every row of Z, a sequence of nonzero
coefficients is chosen independently from the precomputed se-
quence for a given row degree, and rearranged arbitrarily. Ta-
ble 1 shows an example sequence from the precomputed col-
lection, with GF(8), GF(16), and GF(64), and check degrees
up to 6.

6. RESULTS
To verify our code construction algorithms, we evaluated the er-
ror correction performance of binary and nonbinary QC-LDPC
codes using Monte Carlo simulations. Numerical results were
obtained using the system model developed in Matlab, with 2𝑋 -
ary modulation, an AWGN channel, and LLR-BP decoding al-
gorithms. The results are presented as bit error rate or block
error rate versus signal-to-noise ratio (SNR).

Figure 3 presents the simulated performance of the con-
structed binary QC-LDPC codes in comparison with two in-
dustrial standard irregular codes: WiFi [27] of rate 𝑅 = 1/2
and WiMAX [28] of rate 𝑅 = 2/3. We constructed irregular
(1296,648) QC-LDPC dual-diagonal codes with the same dis-
tribution 𝝀 as WiFi code and a variety of submatrix sizes. Each
constructed code displays a similar performance to that of the
WiFi reference code, with a marginal performance improve-
ment visible in the higher SNR region, particularly for the
code with submatrix size 𝑃 = 18. We also constructed irregu-
lar (2304,1536) QC-LDPC dual-diagonal codes with the same
distribution 𝝀 as WiMAX code and a variety of submatrix sizes.
As with the WiFi code, marginally improved performance is
achieved in the higher SNR region.

Fig. 3. Performance of the constructed binary QC-LDPC codes with
different submatrix sizes, in comparison to two industrial standard ir-
regular codes: WiFi 802.11n Rate-1/2 (1296,648) and WiMAX Rate-

2/3 (2304,1536), combined with QPSK modulation
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Figure 4 presents the simulated performance of the con-
structed nonbinary quasi-regular QC-LDPC codes over GF(8)
with rate 𝑅 = 1/2 and different block lengths, in comparison
with girth-optimized GF(8) LDPC codes of the same block
lengths taken from the work of Huang et al. [21]. In a simi-
lar manner to Huang et al. [21], we used the BPSK modula-
tion model. For lengths 𝑁 = 492 and 𝑁 = 756 our codes display
similar performance to that of the reference codes. For length
𝑁 = 1596, our code noticeably outperforms the reference code.

Fig. 4. Performance of the constructed QC-LDPC Rate-1/2 GF(8)
codes with different block lengths, in comparison with girth-optimized

GF(8) LDPC codes with the same lengths from [21]

Figure 5 presents the performance of the constructed QC-
LDPC codes over different fields with rate 𝑅 = 0.6 and block
lengths selected such that GF(8), GF(16), and GF(64) are con-
verted into the same number of bits. This demonstrates the cod-
ing gains that can be achieved by using nonbinary codes.

Fig. 5. Performance of the constructed QC-LDPC codes with rate
𝑅 = 0.6 over different fields, combined with QPSK modulation

Finally, the results presented in Fig. 6 demonstrate how the
combination of QC-LDPC coding and higher order modulation
can be adjusted to a broad range of channel impairment levels,
represented by 𝐸𝑏/𝑁0 in an AWGN model. Combinations with
higher spectral efficiency – for example, (2048,1536) codes
with rate 𝑅 = 0.75 combined with 16-QAM – require a greater
𝐸𝑏/𝑁0 than the less efficient combinations of lower-rate codes
and lower-order modulation. Figure 6 also demonstrates the
gain that can be achieved with increasing block length: for ev-
ery combination of code rate and modulation order, two differ-
ent block lengths are presented; the greater block length pro-
vides an additional gain of approximately 0.2 dB.

Fig. 6. Performance of the constructed nonbinary GF(8) codes with
different rates 𝑅 and block lengths 𝑁 , combined with QPSK and

QAM-16 modulation

7. CONCLUSIONS
In this paper, we proposed a vectorized formulation for the
elimination of cycles from LDPC code graphs, and the defini-
tion of a global objective for graph optimization. From this for-
mulation, we developed a versatile QC-LDPC code construc-
tion algorithm. The algorithm can construct both binary and
nonbinary codes, with a wide range of block lengths, code rates,
and irregular distributions. The parity check matrix is structured
to provide efficient decodability, and the dual diagonal structure
provides efficient encodability.

Numerical results validate the effectiveness of the proposed
construction method. The constructed codes exhibit similar or
improve performance when compared to industry standard bi-
nary codes and codes selected from the literature. We conclude
that the developed method can be used to construct strongly per-
forming codes for a broad range of future deployment require-
ments and non-standardized usage of implementation-oriented
LDPC coding systems.

ACKNOWLEDGEMENTS
This work was supported by the Polish Ministry of Science and
Higher Education funding for statutory activities.

Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 4, p. e141592, 2022 7



W. Sułek

REFERENCES
[1] D.J.C. MacKay, “Good Error-Correcting Codes Based on Very

Sparse Matrices,” IEEE Trans. Inf. Theory, vol. 45, no. 3, pp.
399–431, 1999.

[2] J. Pawelec, “Shannon theory. Myths and reality,” Bull. Pol. Acad.
Sci. Tech. Sci., vol. 56, no. 3, pp. 247–251, 2008.

[3] M.C. Davey and D. MacKay, “Low-Density Parity Check Codes
over GF(q),” IEEE Commun. Lett., vol. 2, no. 6, pp. 165–167,
1998.

[4] D. Declercq and M. Fossorier, “Decoding Algorithms for Nonbi-
nary LDPC Codes Over GF(q),” IEEE Trans. Commun., vol. 55,
no. 4, pp. 633–643, 2007.

[5] I.E. Bocharova, B. Kudryashov, and R. Johannesson, “Search-
ing for Binary and Nonbinary Block and Convolutional LDPC
Codes,” IEEE Trans. Inf. Theory, vol. 62, no. 1, pp. 163–183,
2016.

[6] W. Sulek, “Protograph Based Low-Density Parity-Check Codes
Design with Mixed Integer Linear Programming,” IEEE Access,
vol. 7, pp. 1424–1438, 2019.

[7] W. Sulek, “Non-binary LDPC Decoders Design for Maximiz-
ing Throughput of an FPGA Implementation,” Circuits Syst. Sig.
Process., vol. 35, no. 11, pp. 4060–4080, 2016.

[8] V. Wijekoon, E. Viterbo, Y. Hong, R. Micheloni, and A. Marelli,
“A Novel Graph Expansion and a Decoding Algorithm for NB-
LDPC Codes,” IEEE Trans. Commun., vol. 68, no. 3, pp. 1358–
1369, 2020.

[9] T.X. Pham, T.N. Tan, and H. Lee, “Minimal-Set Trellis Min-Max
Decoder Architecture for Nonbinary LDPC Codes,” IEEE Trans.
Circuits Syst. II, vol. 68, no. 1, pp. 216–220, 2021.

[10] M.P.C. Fossorier, “Quasi-Cyclic Low-Density Parity-Check
Codes from Circulant Permutation Matrices,” IEEE Trans. Inf.
Theory, vol. 50, no. 8, pp. 1788–1793, 2004.

[11] S. Myung, K. Yang, and J. Kim, “Quasi-Cyclic LDPC Codes
for Fast Encoding,” IEEE Trans. Inf. Theory, vol. 51, no. 8, pp.
2894–2901, 2005.

[12] W. Sulek, “Pipeline processing in low-density parity-check
codes hardware decoder,” Bull. Pol. Acad Sci. Tech. Sci., vol. 59,
no. 2, pp. 149–155, 2011.

[13] H. Cui, F. Ghaffari, K. Le, D. Declercq, J. Lin, and Z. Wang,
“Design of High-Performance and Area-Efficient Decoder for
5G LDPC Codes,” IEEE Trans. Circuits Syst. I, vol. 68, no. 2,
pp. 879–891, 2021.

[14] T.T. Nguyen-Ly, V. Savin, D. Declercq, F. Ghaffari, and
O. Boncalo, “Analysis and Design of Cost-Effective, High-
Throughput LDPC Decoders,” IEEE Trans.VLSI Syst., vol. 26,
no. 3, pp. 508–521, 2018.

[15] M. Li, V. Derudder, K. Bertrand, C. Desset, and A. Bourdoux,
“High-Speed LDPC Decoders Towards 1 Tb/s,” IEEE Trans.
Circuits Syst. I, vol. 68, no. 5, pp. 2224–2233, 2021.

[16] G. Zhang, R. Sun, and X. Wang, “New Quasi-Cyclic LDPC
Codes with Girth at Least Eight based on Sidon Sequences,” in
7th International Symposium on Turbo Codes and Iterative In-
formation Processing, Gothenburg, Sweden, August 2012, pp.
31–35.

[17] J. Li, K. Liu, S. Lin, and K. Abdel-Ghaffar, “Algebraic Quasi-
Cyclic LDPC Codes: Construction, Low Error-Floor, Large
Girth and a Reduced-Complexity Decoding Scheme,” IEEE
Trans. Commun., vol. 62, no. 8, pp. 2626–2637, 2014.

[18] X.Y. Hu, E. Eleftheriou, and D.M. Arnold, “Regular and Irreg-
ular Progressive Edge-Growth Tanner Graphs,” IEEE Trans. Inf.
Theory, vol. 51, no. 1, pp. 386–398, 2005.

[19] D. Vukobratovic and V. Senk, “Generalized ACE Constrained
Progressive Edge-Growth LDPC Code Design,” IEEE Commun.
Lett., vol. 12, no. 1, pp. 32–34, 2008.

[20] X. He, L. Zhou, and J. Du, “PEG-Like Design of Binary QC-
LDPC Codes Based on Detecting and Avoiding Generating
Small Cycles,” IEEE Trans. Commun., vol. 66, no. 5, pp. 1845–
1858, 2018.

[21] J. Huang, L. Liu, W. Zhou, and S. Zhou, “Large-Girth Nonbinary
QC-LDPC Codes of Various Lengths,” IEEE Trans. Commun.,
vol. 58, no. 12, pp. 3436–3447, 2010.

[22] A. Tasdighi, A.H. Banihashemi, and M.-R. Sadeghi, “Efficient
Search of Girth-Optimal QC-LDPC Codes,” IEEE Trans. Inf.
Theory, vol. 62, no. 4, pp. 1552–1564, 2016.

[23] T.J. Richardson and R.L. Urbanke, “Efficient Encoding of Low-
Density Parity-Check Codes,” IEEE Trans. Inf. Theory, vol. 47,
no. 2, pp. 638–656, 2001.

[24] T. Tian, C. Jones, J.D. Villasenor, and R.D. Wesel, “Selective
Avoidance of Cycles in Irregular LDPC Code Construction,”
IEEE Trans. Commun., vol. 52, no. 8, pp. 1242–1247, 2004.

[25] X. Zheng, F.C.M. Lau, and C.K. Tse, “Constructing Short-
Length Irregular LDPC Codes with Low Error Floor,” IEEE
Trans. Commun., vol. 58, no. 10, pp. 2823–2834, 2010.

[26] W. Sulek, “Nonbinary Quasi-Regular QC-LDPC Codes Derived
From Cycle Codes,” IEEE Commun. Lett., vol. 20, no. 9, pp.
1705–1708, 2016.

[27] Local and metropolitan area networks – Specific requirements –
Part 11: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications Amendment 5: Enhancements
for Higher Throughput, IEEE Std. 802.11n, 2009.

[28] Local and Metropolitan Area Networks Part 16: Air Interface for
Broadband Wireless Access Systems, IEEE Std. 802.16, 2012.

[29] 5G; NR; Multiplexing and channel coding (3GPP TS 38.212 ver-
sion 15.2.0 Release 15), ETSI Std. TS 138 212 V15.2.0, 2018.

[30] T.J. Richardson, M.A. Shokrollahi, and R.L. Urbanke, “Design
of Capacity-Approaching Irregular Low-Density Parity-Check
Codes,” IEEE Trans. Inf. Theory, vol. 47, no. 2, pp. 619–637, 2001.

[31] G. Li, I.J. Fair, and W.A. Krzymien, “Density Evolution for
Nonbinary LDPC Codes Under Gaussian Approximation,” IEEE
Trans. Inf. Theory, vol. 55, no. 3, pp. 997–1015, 2009.

[32] B. Rong, T. Jiang, X. Li, and M. R. Soleymani, “Combine LDPC
Codes Over GF(q) With q-ary Modulations for Bandwidth Effi-
cient Transmission,” IEEE Trans. Broadcast., vol. 54, no. 1, pp.
78–84, 2008.

[33] W. Sulek and M. Kucharczyk, “Column Weights Optimization
for Semi-Regular Nonbinary LDPC Codes,” in Proc. (IEEE)
38th International Conference on Telecommunications and Sig-
nal Processing (TSP), Prague, Czech Republic, July 9-11 2015,
pp. 172–176.

[34] R. Diestel, Graph Theory. Berlin: Springer-Verlag, 2006.
[35] G. Han, Y.L. Guan, and L. Kong, “Construction of Irregular QC-

LDPC Codes via Masking with ACE Optimization,” IEEE Com-
mun. Lett., vol. 18, no. 2, pp. 348–351, 2014.

[36] C. Poulliat, M. Fossorier, and D. Declercq, “Design of Regu-
lar (2,dc)-LDPC Codes over GF(q) Using Their Binary Images,”
IEEE Trans. Commun., vol. 56, pp. 1626–1635, October 2008.

8 Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 4, p. e141592, 2022


	Introduction
	Transmission system model with LDPC error correction coding
	LDPC coding definitions
	Degree distribution
	Nonbinary structured codes
	Dual diagonal structure for efficient encoding
	Code graph definitions
	PEG algorithm

	Code graph structural properties
	Iterative construction algorithm
	Results
	Conclusions

