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Abstract: Msplit estimation is a novel method developed to process observation sets that
include two (or more) observation aggregations. The main objective of the method is to
estimate the location parameters of each aggregation without any preliminary assumption
concerning the division of the observation set into respective subsets. Up to now, two
different variants of Msplit estimation have been derived. The first and basic variant is the
squared Msplit estimation, which can be derived from the assumption about the normal
distribution of observations. The second variant is the absolute Msplit estimation, which
generally refers to the least absolute deviation method. The main objective of the paper
is to compare both variants of Msplit estimation by showing similarities and differences
between the methods. The main dissimilarity stems from the different influence functions,
making the absolute Msplit estimation less sensitive to gross errors of moderate magnitude.
The empirical analyses presented confirm that conclusion and show that the accuracy of
the methods is similar, in general. The absolute Msplit estimation is more accurate than
the squared Msplit estimation for less accurate observations. In contrast, the squared Msplit
estimation is more accurate when the number of observations in aggregations differs much.
Concerning all advantages and disadvantages of Msplit estimation variants, we recommend
using the absolute Msplit estimation in most geodetic applications.

Keywords: accuracy, influence function, absolute Msplit estimation, squared Msplit esti-
mation

1. Introduction

Msplit estimationwas introduced by (Wisniewski, 2009) as a development of themaximum
likelihood method. It is based on the general assumption that an observation set might
be a mixture of realizations of two random variables that differ in location parameters.
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Such an assumption leads to splitting the functional model into two competitive ones. It
also results in two competitive versions of the parameter and two versions of observation
errors. The main aim of Msplit estimation is to estimate such parameters without dividing
the observation set into the subsets preliminarily. Assignment of each observation to
either of the competitive functional models is automatic and done during an iterative
process. The first variant of Msplit estimation refers to the general assumptions of the
least squares method; hence, it is called the squared Msplit estimation (SMS). The general
formula of the objective function can be derived from the assumption that the normal
distribution is the stochastic model of observation errors. This variant was successfully
applied to several geodetic problems (Wisniewski, 2009; Janicka and Rapinski, 2013;
Li et al., 2013; Czaplewski et al., 2019; Nowel, 2019; Guo et al., 2020; Janicka et al.,
2020; Zienkiewicz and Baryla, 2020; Baselga et al., 2021; Zienkiewicz, 2022). The
main problem arises because SMS estimation is sensitive to the outlying observations
(observations that do not match two main observation groups); this fact was addressed in
(Duchnowski and Wisniewski, 2020). Thus, there was a need for a new variant of Msplit
estimation,whichwas less sensitive to outliers. For that reason, the second variant ofMsplit
estimation, called the absolute Msplit estimation (AMS), was introduced (Wyszkowska
and Duchnowski, 2019). In general, that variant refers to the fundamental assumptions of
the least absolute deviation method. Respective influence functions make the new variant
less sensitive to the observations, which errors have a more significant magnitude.
The main purpose of the paper is to present the main similarities and differences be-

tween the methods mentioned. It is essential to understand the fundamental differences in
features and computation ways of both variants ofMsplit estimation. It helps to understand
what observation sets can be processed by applying Msplit estimation and what outcomes
one can expect. Such knowledge would define the possible practical applications of both
variants. Up to now, such a comparison was not presented in one paper.

2. General assumptions

Msplit estimation is a modern development of the maximum likelihood estimation based
on a fundamental assumption that an observation set can consist of several groups of
observations. One can list different reasons for such a case. The differences between
the observation groups might stem from the measurement technique applied, different
accuracy of measurements, the occurrence of outliers, etc. Generally, we can assume that
the observation set is an unrecognized mixture of realizations of two or more random
variables, which differ at least in location parameters. It means that the classical functional
model should be split into two (or more) competitive ones:

y = AX + v ⇒ y = AX(𝑙) + v(𝑙) (1)

where: y – observation vector, A – coefficient matrix, X – parameter vector, v – mea-
surement error vector, X(𝑙) , v(𝑙) – variants of parameter vector or measurement error
vector, respectively. The most applications of Msplit estimation assume that there are two
competitive models, hence 𝑙 = 1 or 2 (Wyszkowska and Duchnowski, 2019; Zienkiewicz
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and Baryla, 2020; Wyszkowska et al., 2021). The main objective of Msplit estimation is to
estimate the competitive versions of the parameters of the model of Eq. (1) by solving the
general optimization problem by minimization of the objective function in the following
general form (Wisniewski, 2009; Wyszkowska and Duchnowski, 2020):

𝜑
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X(1) ,X(2)

)
=

𝑛∑︁
𝑖=1
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where: 𝜌 and 𝜌 (𝑙) might result from the probabilistic model of observation errors or be
arbitrarily chosen functions. We might assume that the accuracy of all observations is the
same; however, if the observations differ from each other in a priori accuracy, then the
standardized errors should be the arguments of functions in Eq. (2) (Wisniewski, 2010).
We can use theNewtonmethod to solve the optimization problem and find the competitive
estimates X̂(1) , X̂(2) (Wisniewski, 2010).We have two possible iterative processes in such
a context. The traditional iterative process is defined as follows (Wisniewski, 2009):
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where: H(𝑙) (◦) – Hessian, g(𝑙) (◦) – gradient. The respective Hessians and gradi-
ents are computed by applying the respective weight functions 𝑤 (1) (𝑣 (1) , 𝑣 (2) ) and
𝑤 (2) (𝑣 (1) , 𝑣 (2) ):
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The parallel iterative process can be written as (Wyszkowska and Duchnowski, 2019):
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where 𝑎 = 1 and 𝑏 = 2 or 𝑎 = 2 and 𝑏 = 1, respectively. Both iterative processes
end when both gradients g(1)

(
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)
, g(2)

(
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(1) ,X
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)
are equal to 0 (or at least

when each parameter changes no more than 𝜀 between subsequent iterative steps, where
𝜀 – an assumed small positive number, e.g., 0.01% of parameter values). Hence finally,
X̂(1) = X𝑘

(1) and X̂(2) = X𝑘
(2) , where 𝑘 – the number of the last iterative step. The general

schemes of both iterative processes are presented in Figure 1.

Fig. 1. Schemes of both iterative processes

In both iterative processes, the weight functions play a significant role. What is
more, the choice of either of the algorithms depends on the properties of the functions
mentioned (Wyszkowska and Duchnowski, 2019). Considering the general formulas of
the weight functions (they are presented in the next section), one can recommend the
traditional iterative process for SMS estimation and the parallel iterative process for AMS
estimation (Wyszkowska and Duchnowski, 2020).
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3. Comparison of squared and absolute Msplit estimation

The first difference between SMS and AMS estimations is given in the previous section,
and it concerns the type of iterative process convenient for each method. However, it is
not the most essential difference. The crucial theoretical dissimilarities stem from the
assumed objective functions, hence also from the influence and weight functions. It also
influences the practical use of both methods. To compare the basic theoretical features
and practical usages of both methods, let us assume the following univariate functional
model:

y = 1𝑛𝑋 + v ⇒
{

y = 1𝑛𝑋(1) + v(1)
y = 1𝑛𝑋(2) + v(2)

(7)

where: 1𝑛 – all-ones vector (𝑛 – observation number), 𝑋 – parameter, 𝑋(𝑙) – its competitive
versions. Such an assumption lets us compare the methods and present results more
clearly, and the general conclusion can be applied to the multivariate case. Referring to
Eq. (2) and taking the model of Eq. (7), one can write the following objective functions
of SMS or AMS estimations (Wisniewski, 2009; Wyszkowska and Duchnowski, 2019):

𝜑SMS
(
𝑋(1) , 𝑋(2)

)
=

𝑛∑︁
𝑖=1
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𝑣𝑖 (1) , 𝑣𝑖 (2)
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𝑣𝑖 (1) , 𝑣𝑖 (2)
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𝑛∑︁
𝑖=1

��𝑣𝑖 (1) �� ��𝑣𝑖 (2) �� (8)

The difference between such functions is noticeable; however, their graphs seem
similar in shape generally (see, Fig. 2).

Fig. 2. The component of the objective function 𝜌(𝑣 (1) , 𝑣 (2) ) of SMS and AMS estimations

The dissimilarity between the respective objective functions yields much more
critical differences in the influence functions, defined as 𝜓 (𝑙) (𝑣𝑖 (𝑙) ; 𝑦𝑖 , 𝑋(𝑘) ) =
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𝜕𝜌(𝑣𝑖 (1) , 𝑣𝑖 (2) )/𝜕𝑣𝑖 (𝑙) , where 𝑘 = 1 or 2 and 𝑘 ≠ 𝑙, and presented as follows:

𝜓SMS(1)
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)
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−
��𝑣𝑖 (2) �� for 𝑣𝑖 (1) < 0��𝑣𝑖 (2) �� for 𝑣𝑖 (1) > 0
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(9)

The values of the influence function of AMS estimation for the moderate and high
absolute values of 𝑣 (1) (the left panel of Fig. 3) are much smaller than the values of the
influence function of SMS estimation (the same is for the 𝑣 (2) – presented in the right
panel of Fig. 3). It means that AMS estimation is less sensitive to such errors, including
gross errors of moderate magnitude. However, it should be mentioned that the influence
functions of both variants ofMsplit estimation are not bounded; hence, themethods cannot
be classified as robust against outliers.

Fig. 3. The influence functions 𝜓 (1) (𝑣𝑖 (1) ; 𝑦𝑖 , 𝑋(2) ) and 𝜓 (2) (𝑣𝑖 (2) ; 𝑦𝑖 , 𝑋(1) ) of SMS and AMS estimations

As mentioned in the previous section, their weight functions are essen-
tial in practical computations. Taking 𝑤 (𝑙) (𝑣𝑖 (𝑙) , 𝑣𝑖 (𝑘) ) = 𝑤 (𝑙) (𝑣𝑖 (𝑙) ; 𝑦𝑖 , 𝑋(𝑘) ) =

𝜓 (𝑙) (𝑣𝑖 (𝑙) ; 𝑦𝑖 , 𝑋(𝑘) )/2𝑣𝑖 (𝑙) , one can write them as follows:
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(10)

where: 𝑑 – a small positive constant (usually very close to 0, e.g., 0.001). Here, such
a constant is introduced to avoid possible singularity (the original weight functions of
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AMS estimation can be found in (Wyszkowska and Duchnowski, 2019)). The respective
graphs are presented in Figure 4.

Fig. 4. The weight functions 𝑤 (1) (𝑣 (1) ; 𝑦, 𝑋(2) ) and 𝑤 (2) (𝑣 (2) ; 𝑦, 𝑋(1) ) of SMS and AMS estimations

The differences between the weight functions of both methods are significant. In
AMS estimation, the weight functions have the highest values for minimal absolute
values of 𝑣 (1) or 𝑣 (2) , respectively. The values obtained for bigger absolute errors are
much smaller. In the case of SMS estimation, the range of the weight functions for
small and high absolute 𝑣 (1) (or 𝑣 (2) ) is much smaller. One can say that AMS estimation
“prefers” the observations with small errors.
The elemental analysis of the influence or weight functions gives theoretical clues

about method sensitivity to outlying observations. This method feature can also be
described empirically by applying the empirical influence function (EIF). In the paper
context, one can use EIF in the following form (Rousseeuw and Verboven, 2002)

EIF(𝑥) = 𝑇𝑛 (𝑦1, 𝑦2, 𝑦3, . . . , 𝑦𝑛−1, 𝑥) (11)

where: 𝑇𝑛 – the estimator under examination. The other forms, which might be advisable
in other problems, can be found in (e.g., Duchnowski and Wyszkowska, 2018, 2022). Let
SMS and AMS estimates be examined by assuming that 𝑋(1) = 0 and 𝑋(2) = 5, and the
observation errors are normally distributed with the expected value equal to 0 and the
standard deviation 𝜎 = 1. Since the sensitivity to outlying observations depends on the
size of the observation set, here, we consider four variants that differ from each other in
the number and location of observations (𝑛1 – number of observations in the first group
of observations, 𝑛2 – number of observations in the second group of observations):
– Variant I: 𝑛 = 10, 𝑛1 = 5, 𝑛2 = 5;
– Variant II: 𝑛 = 20, 𝑛1 = 10, 𝑛2 = 10;
– Variant III: 𝑛 = 20, 𝑛1 = 15, 𝑛2 = 5;
– Variant IV: 𝑛 = 13, 𝑛1 = 3, 𝑛2 = 10.
Empirical influence functions for these variants are presented in Figure 5, which

shows how estimates change for the growing value of 𝑥. SMS estimates are affected
by changing 𝑥 in all variants. The correct and accepted results are obtained only when
𝑥 ∈ 〈−2, 7〉. It means that the method is locally robust (is not sensitive to the observa-
tions between the main observation groups (Duchnowski and Wisniewski, 2020)). AMS
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estimation provides correct results in the first three variants. The changing value of 𝑥
influences the results only in a small way. One can say that AMS estimation is robust
against outlying observations for 𝑥 ∈ 〈−15, 20〉. Considering the previous publications
(Wyszkowska and Duchnowski, 2019; Duchnowski, 2021), one can say that for more
significant values of 𝑥, results of AMS estimation would also be badly affected and un-
acceptable. In the last variant, the disproportion between the numbers of observations in
both groups is higher, and the first observation group includes only a few observations.
In such a case, AMS estimation does not bring good results for all values of 𝑥. It mainly
concerns the estimates of 𝑋(1) . The results of SMS estimation are like in the previous
variants, and they seem worse than the results of AMS estimation.

Fig. 5. Empirical influence functions EIF(𝑥)

In the previous section, two different iterative processes are introduced. Let us check
the length of the iterative processes by taking the assumptions of Variant I and simulating
1000 observation sets. The mean number of iterative steps for the traditional iterative
process and SMS estimation is about 4, whereas, for the parallel iterative process and
AMS estimation, it is about 20. It is also interesting that the maximum number of iterative
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steps is 5 for SMS estimation and more than 600 for AMS estimation. Such a discrepancy
stems from the general features of themethods in question, especially from the differences
in values of the weight functions. Generally, the iterative process of AMS estimation is
much longer than the traditional iterative process. The processing of the observation
sets presented here is four times longer for AMS estimation than for SMS estimation. In
the case of the single observation sets, the time difference has no practical significance.
A more detailed examination of both iterative processes can be found in (Wyszkowska
and Duchnowski, 2020).
From a practical point of view, the accuracy of the estimates seems quite essential. By

applying the Monte Carlo simulations, we can compare the root-mean-square deviations
(RMSD) of both variants of Msplit estimation. Figure 6 presents their RMSDs obtained
for the set containing ten observations (𝑛 = 10) and assuming 𝑋(1) = 0 and 𝑋(2) = 5 in
two variants: for different values of the observation standard deviation 𝜎 and the equal
number of observations in aggregations, namely 𝑛1 = 𝑛2 = 5 (panel a); for a different
number of observations in the aggregations, namely for 𝑛 = 10 = 𝑛1 + 𝑛2 (panel b).

Fig. 6. RMSDs of SMS and AMS estimations

The differences between the accuracies of both Msplit estimates are not high. Panel a)
of Figure 6 shows that with the growing standard deviation of observations, the accuracy
of all estimates decreases. One can conclude that AMS estimation is more accurate than
SMS estimation for higher values of observation standard deviation. On the other hand,
when the observation aggregations differ in the number of observations, SMS estimation
provides a little bit more accurate results (Panel b) of Fig. 6).

4. Discussion

The paper presents a basic comparison of two variants of Msplit estimation. The general
assumption concerning an observation set for which the method in question should be
applied is common for both variants. The main differences between the variants stem
from the fundamental assumptions concerning the respective objective functions, hence
also the influence andweight functions. The dissimilarity of the influence functions deter-
mines different sensitivity to observations with moderate errors. AMS estimation holds
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advantages over SMS estimation in such a context. Such a conclusion is also confirmed
by empirical influence functions that show both methods’ responses to observations of
the mentioned type. The forms of the weight functions also determine the application of
different iterative processes. The parallel iterative process is dedicated to AMS estima-
tion (the traditional process is not applicable in such a context). SMS estimation might
use both iterative processes; however, the traditional iterative process is recommended
(Wyszkowska and Duchnowski, 2020). The accuracy of both estimation methods seems
similar; however, AMS estimation is advisable when the observation accuracy is lower.
A slight disadvantage of AMS estimation is its sensitivity to higher discrepancies in the
numbers of observations in aggregations. The number of observations in many modern
measurement techniques is high; thus, such a disadvantage seems meaningless.
The summary of similarities and differences between SMS and AMS estimations is

presented in Table 1.

Table 1. Similarities and differences between SMS and AMS estimations

Similarities between SMS and AMS estimations
Applicable when an observation set is a mixture of realizations of two random variables

The same split functional model y = AX(𝑙) + v(𝑙)
They cannot be classified as robust against outliers in general

Similar accuracy
Differences

SMS estimation AMS estimation
Different objective, influence, and weight functions

Traditional iterative process Parallel iterative process
Shorter iterative process
– less time-consuming

Longer iterative process
– more time-consuming

More sensitive to gross errors Less sensitive to gross errors of moderate mag-
nitude

Less sensitive to different numbers of observa-
tions in aggregations

More sensitive to different numbers of observa-
tions in aggregations

Accuracy decreases faster with growing obser-
vation standard deviation

Accuracy decreases slower with growing obser-
vation standard deviation

5. Conclusions

The Introduction section shows that Msplit estimation might be applied in processing
geodetic observation sets in many practical problems. It especially concerns new mea-
surement methods which provide big data sets, like, light detection and ranging systems
(LiDAR) or global navigation satellite systems (GNSS). The respective observation sets
are usually heterogeneous, stemming from measurements of different objects or occur-
rence of outlying observations; hence, they are predestinated to be processed by the
method in question. The choice between SMS or AMS estimation should depend on
the features of those variants presented in that paper. The advantage of AMS estimation
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is less sensitivity to outlying observations. On the other hand, SMS estimation is less
time-consuming and less sensitive to discrepancies between the number of observations
in main observation aggregations. In such a context, the choice between the variants
should also consider the character of the observation set, e.g., a possible (expected) share
of the outlying observations, a number of aggregations, etc.
Summing up the pros and cons of both Msplit estimation variants, we suggest the

application of AMS estimation, especially when we suspect that the observation set
includes outlying observations. However, SMS estimation is recommended when there
is a high discrepancy between the numbers of observations in aggregations.
Msplit estimation is still a developing method, and it will allow us to create new

modifications in the future. The characteristic of observations frommodern measurement
systems inclines us to consider new Msplit estimation variants that would be robust
against outlying observations. Such robustness should stem from a priori assumptions
and guarantee the estimate robustness in a more general and traditional way than AMS
estimation.Another future researchmay focus on developingAMSestimation for three (or
more) functional models. The general idea of such a variant is known; however, it requires
an investigation of a scheme of iterative process or example application computations.
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