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Maximizing performance of linear model predictive
control of glycemia for T1DM subjects

Martin DODEK and Eva MIKLOVIČOVÁ

The primary objective of this paper is the custom design of an effective, yet relatively easy-
to-implement, predictive control algorithm to maintain normoglycemia in patients with type
1 diabetes. The proposed patient-tailorable empirical model featuring the separated feedback
dynamics to model the effect of insulin administration and carbohydrate intake was proven
to be suitable for the synthesis of a high-performance predictive control algorithm for artificial
pancreas. Within the introduced linear model predictive control law, the constraints were applied
to the manipulated variable in order to reflect the technical limitations of insulin pumps and
the typical nonnegative nature of the insulin administration. Similarly, inequalities constraints
for the controlled variable were also assumed while anticipating suppression of hypoglycemia
states during the automated insulin treatment. However, the problem of control infeasibility
has emerged, especially if one uses too tight constraints of the manipulated and the controlled
variable concurrently. To this end, exploiting the Farkas lemma, it was possible to formulate the
helper linear programming problem based on the solution of which this infeasibility could be
identified and the optimality of the control could be restored by adapting the constraints. This
adaptation of constraints is asymmetrical, thus one can force to fully avoid hypoglycemia at the
expense of mild hyperglycemia. Finally, a series of comprehensive in-silico experiments were
carried out to validate the presented control algorithm and the proposed improvements. These
simulations also addressed the control robustness in terms of the intersubject variability and the
meal announcements uncertainty.
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1. Introduction

A technology capable of fully automatic control of blood glucose concentra-
tion in diabetic patients was a subject to intense scientific endeavor in the last
decades, and it still remains an active research interest nowadays [1–3]. However,
the artificial pancreas (abbr. AP) can be seen rather a general concept than a
particular device or apparatus. Thanks to the advent of novel rapid-acting insulin
forms [4, 5], the intrinsic delay in the insulin-glucose interaction, additionally
emphasized by turning to the fully subcutaneous route [6], appears to be partially
suppressed. Moreover, continuous glucose monitoring devices (abbr. CGM) are
capable of relatively accurate and dense readings of glycemia required by the
closed control loop of the artificial pancreas [7, 8]. The current major obstacle
to wider deployment and commercial availability of such a device is actually
the absence of an effective and safe control algorithm capable of operating in
demanding free-living conditions [9, 10].
The paper is organized as follows. In Section 2 the basic structure of the

discrete-time linear empirical model of type 1 diabetes is proposed. Section 3
comprises the derivation of the essential predictive equations. The constrained
predictive control algorithm together with the control feasibility problem for-
mulation and the proposed constraints adaptation algorithm are presented in
Section 4. Finally, in Section 5, the results of multiple different simulation-based
experiments are discussed.

1.1. State of the art

So far, the problem of glycemia control has been addressed in a respectable
number of papers, while exploiting various more or less sophisticated strategies
starting from simple PID controllers [11–13], adaptive approaches [14–16], ro-
bust control [17], and concluding with the predictive control as perhaps the most
promising one [18]. Some of the most significant and closely related works will
be briefly examined in this section.
In [19] the authors exploited a simple ARX model hand in hand with the

generalized predictive control algorithm. However, without involving the meal
announcements, so neither the crucial disturbance prediction or the feed-forward
disturbance compensation were featured at all. In addition, only the unconstrained
closed-form control law was applied, implying that the manipulated variable was
simply saturated, ultimately resulting in loss of the control optimality. It is worth
noting that although the carbohydrate counting itself and the subsequent strict
adherence to the meal schedule may be inconvenient or even annoying for the
patient, the actual qualitative benefits of doing so are indisputable.
A traditional model predictive control assuming the ARX model with dis-

turbance input, manipulated variable constraints, and state estimation using the
conventional Kalman filter was reported in [20]. Another typical application of
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the unconstrained model predictive control for the state-space model obtained by
transforming the nonparametric impulse-response model along with the state es-
timation based on the steady-state Kalman filter was presented in [21]. However,
due to the demand of control law in the closed form, the insulin administra-
tion rate constraints were implemented by clipping, and the output constraints
were treated by carefully tuning the penalty weights. The unconstrained saturated
MPC with meal announcing was compared to the PID control in [22], but due to
the input–output MPC scheme and the non-minimal state-space model, the state
estimator was not needed.
One of the few applications of the constrained MPC was presented in [23]

where the finite-horizon optimization problem was converted to the equivalent
quadratic programming problem and the artificial pancreas with the application
of combined pump, maximum input variation and ketone bodies constraints was
compared to the traditional saturated MPC, reporting significant performance
improvements. The authors also suggested possible future improvements by con-
straining the state of the system.
Interesting in-silico [24] and in-vivo [25] studies focused on using the AR-

MAX and ARIMAXmodels without disturbance submodel nor disturbance com-
pensation. The closed-loop control was performed only overnight when no meal
disturbance could occur, whereas the standard insulin bolus therapy was applied
during the daytime to compensate for meal intake. In both aforementioned papers,
the MPC algorithm was exploited while the hard constraints were assumed only
for the manipulated variable. Concerning the controlled variable, soft constraints
were implemented as a special penalty term using slack variables, so this MPC
formulation used an asymmetric objective function that penalized low glucose
levels more heavily.
The paper [26] presented algorithms based on neural and fuzzy models to-

gether with quadratic programming for the MPC problem. In detail, the single-
input single-output multi-layer perceptron neural model with one hidden layer
was used. Also in this case, slack variables were involved to implement the
asymmetric soft constraints of the controlled variable.
In [27], the nonlinear model predictive control using the individualized com-

plex simulation model was experimentally applied on real diabetic subjects. Such
an interesting feature was the Bayesian parameter estimation with online re-
estimation proposed primarily in order to adapt the model parameters due to
presence of intra-subject time-variability.
Another remarkable contribution to the state of the art in this field was made

in [28]. Firstly, the linear model predictive control with disturbance compensa-
tion for the two-input ARX model transformed to an equivalent non-minimal
state-space representation was performed as a part of the in-silico trial there.
The authors experimented with both unconstrained and constrained control, con-
cluding that involving the constraints did not show any significant performance
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improvement but recommended more detailed research on this problem. Sec-
ondly, fully nonlinear predictive control was applied exploiting the individualized
complex simulation model. But in general, the application of predictive control
based on complex nonlinear models may struggle with the problem of correct
model individualization or even with a priori identifiability and will increase the
computational load needed to solve the control optimization problem. Moreover,
non-linear optimization is likely to converge to a local minimum, so there is no
guarantee that the algorithm will find the global optimal solution.

2. System model

In this paper, the two-input transfer function-based discrete-time empirical
model is proposed for the MPC synthesis. This model comprises three terms
representing the control submodel for the insulin administration effect, the mea-
surable disturbance submodel for the carbohydrate intake effect, and the un-
measurable disturbance submodel, respectively. The featured separate feedback
(autoregressive) dynamics for each of the submodels makes possible to capture
distinctly different dynamic responses of the control and the disturbance input.
It also reflects the actual physiological response of the human body, particularly
the delayed effect of insulin admission compared to the faster and shorter lasting
effect of carbohydrate intake. Hereby more realistic modeling of the glycemia
dynamics can be theoretically achieved, especially if compared to the ordinary
ARX model [29, 30]. In addition, the model is extended by the constant output
term due to which the basal state of the subject can be directly integrated into the
model structure.
The dynamic equation of the proposed model is presented below:

𝑦 (𝑘) =
𝐵𝑢 (𝑧)
𝐴𝑢 (𝑧)𝑢(𝑘) +

𝐵𝑑 (𝑧)
𝐴𝑑 (𝑧)

𝑑(𝑘) +
𝐶 (𝑧)
𝐷 (𝑧) 𝜖(𝑘) + 𝑦0 , (1)

where 𝑦(𝑡) [mmol/l] represents the controlled variable, that is, the blood glu-
cose concentration, 𝑢(𝑡) [U/min] denotes the manipulated variable i.e. the in-
sulin infusion rate, and 𝑑 (𝑡) [g/min] stands for the measurable disturbance i.e the
carbohydrate intake rate. The signal of an unmeasurable disturbance 𝜖 (𝑡) repre-
sents the combined effect of the measurement noise as the stochastic term and the
correlated plant-model mismatch. Since the real diabetic subject is generally con-
sidered a complex time-varying non-linear system, the presence of plant-model
mismatch is anticipated. Additionally, patients are likely to be affected by various
hard-to-quantify disturbances such as physical activity [31].
The polynomials of the model (1) are defined as

𝐴𝑢/𝑑 (𝑧) = 1 + 𝑎𝑢/𝑑1 𝑧−1 + 𝑎𝑢/𝑑2 𝑧−2 + . . . 𝑎𝑢/𝑑𝑛
𝐴𝑢/𝑑

𝑧−𝑛𝐴𝑢/𝑑 , (2a)
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𝐵𝑢/𝑑 (𝑧) = 𝑏
𝑢/𝑑
1 𝑧−1 + 𝑏𝑢/𝑑2 𝑧−2 + . . . 𝑏𝑢/𝑑𝑛

𝐵𝑢/𝑑
𝑧−𝑛𝐵𝑢/𝑑 , (2b)

𝐷 (𝑧) = 1 + 𝑑1𝑧−1 + 𝑑2𝑧−2 + . . . 𝑑𝑛𝐷 𝑧−𝑛𝐷 , (2c)
𝐶 (𝑧) = 1 + 𝑐1𝑧−1 + 𝑐2𝑧−2 + . . . 𝑐𝑛𝐶 𝑧−𝑛𝐶 , (2d)

where 𝑛𝐴𝑢 , 𝑛𝐴𝑑 , 𝑛𝐵𝑢 , 𝑛𝐵𝑑 , 𝑛𝐷 and 𝑛𝐶 denote the model orders.
The constant term 𝑦0 can be associated with the basal state of the subject as

follows:

𝑦0 = 𝐺𝑏 −
(
𝑣𝑏

∑
𝑏𝑢
𝑖∑

𝑎𝑢
𝑖

)
, (3)

where 𝐺𝑏 [mmol/l] is the basal glycemia and 𝑣𝑏 [U/min] is the basal insulin
administration rate.
We can also decompose the model output as the sum of its internal states 𝑥𝑢,

𝑥𝑑 and 𝑥𝜖 :
𝑦 (𝑘) = 𝑥𝑢(𝑘) + 𝑥

𝑑
(𝑘) + 𝑥

𝜖
(𝑘) + 𝑦0 . (4)

The single-step-ahead predictions of internal variables can be written as follows:

𝑥𝑢(𝑘 |𝑘−1) = (1 − 𝐴𝑢 (𝑧)) 𝑥𝑢(𝑘) + 𝐵
𝑢 (𝑧)𝑢(𝑘) , (5a)

𝑥𝑑(𝑘 |𝑘−1) =
(
1 − 𝐴𝑑 (𝑧)

)
𝑥𝑑(𝑘) + 𝐵

𝑑 (𝑧)𝑑(𝑘) , (5b)

𝑥𝜖(𝑘 |𝑘−1) = (1 − 𝐷 (𝑧)) 𝑥𝜖(𝑘) + (𝐶 (𝑧) − 1) 𝜖(𝑘) . (5c)

The output single-step-ahead prediction will be:

𝑦̂ (𝑘 |𝑘−1) = 𝑥𝑢(𝑘 |𝑘−1) + 𝑥
𝑑
(𝑘 |𝑘−1) + 𝑥

𝜖
(𝑘 |𝑘−1) + 𝑦0 . (6)

However the internal variables 𝑥𝑢, 𝑥𝑑 and 𝑥𝜖 are unmeasurable in practice,
so only their estimates are available. Since the model structure (1) postulates the
control 𝑥𝑢 and the disturbance term 𝑥𝑑 as theoretically undistorted by noise, the
pure simulation 𝑥𝑢 and 𝑥𝑑 can be considered equal to the actual signals. The
unmeasurable disturbance can be estimated as the error of the output single-step-
ahead prediction such that:

𝜖(𝑘 |𝑘) = 𝑦 (𝑘) − 𝑦̂ (𝑘 |𝑘−1) . (7)

In order to perform the measurement-compensated prediction, the single-step-
ahead prediction of 𝑥𝜖 should be corrected by the current estimate 𝜖(𝑘 |𝑘) according
to (7):

𝑥𝜖(𝑘 |𝑘) = 𝑥𝜖(𝑘 |𝑘−1) + 𝜖(𝑘 |𝑘) . (8)
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3. Predictive equations

The explicit predictive equations for the model (1) have to be introduced
before the control algorithm itself. The output prediction can be decomposed into
the free and the forced response:

𝑦̂ 𝑓 = 𝑦̂free𝑓 + 𝑦̂
forc
𝑓 . (9)

For the free response estimation, no future changes of the manipulated variable
are assumed. On the other hand, the forced response represents the effect of future
control changesΔ𝑢 𝑓 , while the vector 𝑦̂forc𝑓

[𝑛𝑒×1] gets the following linear form:

𝑦̂forc𝑓 = 𝐻 𝑓Δ𝑢 𝑓 , (10)

where 𝐻 𝑓 [𝑛𝑒 × 𝑛𝑢] is the step-response matrix. The prediction horizon repre-
senting the length of the 𝑦̂ 𝑓 vector is denoted 𝑛𝑒.
The vector of future control changes Δ𝑢 𝑓 [𝑛𝑢 × 1] is defined as:

Δ𝑢 𝑓 =
[
Δ𝑢(𝑘) Δ𝑢(𝑘+1) . . . Δ𝑢(𝑘+𝑛𝑢−1)

]𝑇
, (11)

where 𝑛𝑢 is the control horizon representing the number of assumed changes of
the manipulated variable.
The vectors of the past input signals 𝑢𝑝 [𝑛𝐵𝑢 − 1 × 1], 𝑑𝑝 [𝑛𝐵𝑑 − 1 × 1],

𝜖𝑝 [𝑛𝐶 − 1 × 1] and future input signals 𝑢 𝑓 [𝑛𝑒 × 1], 𝑑 𝑓 [𝑛𝑒 × 1], 𝜖 𝑓 [𝑛𝑒 + 1 × 1]
are defined as follows:

𝑢 𝑓 =
[
𝑢(𝑘) 𝑢(𝑘+1) . . . 𝑢(𝑘+𝑛𝑒−1)

]𝑇
, (12a)

𝑢𝑝 =
[
𝑢(𝑘−1) 𝑢(𝑘−2) . . . 𝑢(𝑘−𝑛𝐵𝑢+1)

]𝑇
, (12b)

𝑑 𝑓 =
[
𝑑(𝑘) 𝑑(𝑘+1) . . . 𝑑(𝑘+𝑛𝑒−1)

]𝑇
, (12c)

𝑑𝑝 =
[
𝑑(𝑘−1) 𝑑(𝑘−2) . . . 𝑑(𝑘−𝑛

𝐵𝑑+1)
]𝑇

, (12d)

𝜖 𝑓 =
[
𝜖(𝑘 |𝑘) 𝜖(𝑘+1|𝑘) . . . 𝜖(𝑘+𝑛𝑒 |𝑘)

]𝑇
, (12e)

𝜖𝑝 =
[
𝜖(𝑘−1) 𝜖(𝑘−2) . . . 𝜖(𝑘−𝑛𝐶+1)

]𝑇
. (12f)

Equation (12c) implies that not only the amount of carbohydrates just con-
sumed must be announced, but also their future values have to be provided to
with relatively high accuracy. In the context of the artificial pancreas, this feature
is also called meal announcing [18, 28]. However, it is worth noting that some
recent studies show no need of explicit meal announcing if the intraperitoneal
insulin delivery is applied [32] or even propose to use the meal size estimation
algorithm [33].
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Concerning the prediction of the 𝜖 term, the current estimate 𝜖(𝑘 |𝑘) is assumed
in the future while representing the best prediction of the integrated white noise:

𝜖 𝑓 =
[
1 1 . . . 1

]𝑇
𝜖(𝑘 |𝑘) . (13)

The vectors of the past 𝑥𝑢𝑝 [𝑛𝐴𝑢 × 1], 𝑥𝑑𝑝 [𝑛𝐴𝑑 × 1], 𝑥𝜖𝑝 [𝑛𝐷 × 1] and the future
𝑥𝑢
𝑓
[𝑛𝑒 × 1], 𝑥𝑑𝑓 [𝑛𝑒 × 1], 𝑥

𝜖
𝑓
[𝑛𝑒 × 1] estimates of the internal variables are

defined as:

𝑥
𝑢/𝑑
𝑝 =

[
𝑥
𝑢/𝑑
(𝑘) 𝑥

𝑢/𝑑
(𝑘−1) . . . 𝑥

𝑢/𝑑
(𝑘−𝑛

𝐴𝑢/𝑑+1)

]𝑇
, (14a)

𝑥
𝑢/𝑑
𝑓

=

[
𝑥
𝑢/𝑑
(𝑘+1) 𝑥

𝑢/𝑑
(𝑘+2) . . . 𝑥

𝑢/𝑑
(𝑘+𝑛𝑒)

]𝑇
, (14b)

𝑥𝜖𝑝 =
[
𝑥𝜖(𝑘) 𝑥𝜖(𝑘−1) . . . 𝑥𝜖(𝑘−𝑛𝐷+1)

]𝑇
, (14c)

𝑥𝜖𝑓 =
[
𝑥𝜖(𝑘+1) 𝑥𝜖(𝑘+2) . . . 𝑥𝜖(𝑘+𝑛𝑒)

]𝑇
. (14d)

To derive the predictive form of the model (1), the matrix calculations method
[34] was adopted and enhanced in this paper. The following matrix equation can
be formed for prediction of the control submodel:

𝑥𝑢𝑓 = 𝑀
𝑦

𝑓
(𝐴𝑢)−1

(
−𝑀 𝑦

𝑝 (𝐴𝑢)𝑥𝑢𝑝 + 𝑀𝑢
𝑓 (𝐵

𝑢)𝑢 𝑓 + 𝑀𝑢
𝑝 (𝐵𝑢)𝑢𝑝

)
. (15)

The corresponding matrices 𝑀 𝑦

𝑓
, 𝑀 𝑦

𝑝 , 𝑀𝑢
𝑓
and 𝑀𝑢

𝑝 are valid for a general transfer
function-based model.
For an arbitrary denominator polynomial 𝐴(𝑧), the matrices 𝑀 𝑦

𝑓
[𝑛𝑒×𝑛𝑒] and

𝑀
𝑦
𝑝 [𝑛𝑒 × 𝑛𝐴] hold:

𝑀
𝑦

𝑓
(𝐴) =

©­­­­­­­­«

1 0 · · · 0 · · · 0
𝑎1 1 · · · 0 · · · 0
...

...
. . .

...
. . .

...

𝑎𝑛𝐴 𝑎𝑛𝐴−1 · · · 1 · · · 0
...

...
. . .

...
. . .

...

0 0 · · · 𝑎𝑛𝐴 · · · 1

ª®®®®®®®®¬
, (16)

𝑀
𝑦
𝑝 (𝐴) =

©­­­­­­­­«

𝑎1 𝑎2 · · · 𝑎𝑛𝐴−1 𝑎𝑛𝐴
𝑎2 𝑎3 · · · 𝑎𝑛𝐴 0
...

...
. . .

...
...

𝑎𝑛𝐴 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

ª®®®®®®®®¬
. (17)
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The matrices 𝑀𝑢
𝑓
[𝑛𝑒 × 𝑛𝑒] and 𝑀𝑢

𝑝 [𝑛𝑒 × 𝑛𝐵 − 1] for a numerator polynomial
𝐵(𝑧) are defined as:

𝑀𝑢
𝑓 (𝐵) =

©­­­­­­­­«

𝑏1 0 · · · 0 · · · 0
𝑏2 𝑏1 · · · 0 · · · 0
...

...
. . .

...
. . .

...

𝑏𝑛𝐵 𝑏𝑛𝐵−1 · · · 𝑏1 · · · 0
...

...
. . .

...
. . .

...

0 0 · · · 𝑏𝑛𝐵 · · · 𝑏1

ª®®®®®®®®¬
, (18)

𝑀𝑢
𝑝 (𝐵) =

©­­­­­­­­«

𝑏2 𝑏3 · · · 𝑏𝑛𝐵−1 𝑏𝑛𝐵
𝑏3 𝑏4 · · · 𝑏𝑛𝐵 0
...

...
. . .

...
...

𝑏𝑛𝐵 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

ª®®®®®®®®¬
. (19)

The predictive equation (15) can be modified to analogously represent the pre-
dictions of the remaining terms of the model (1).
The forced response is equal to:

𝑦̂forc𝑓 = 𝐻 𝑓Δ𝑢 𝑓 = 𝑀
𝑦

𝑓
(𝐴𝑢)−1𝑀𝑢

𝑓 (𝐵
𝑢)𝑀ΣΔ𝑢 𝑓 (20)

and the free response gets the following form:

𝑦̂free𝑓 = 𝑀
𝑦

𝑓
(𝐴𝑢)−1

(
−𝑀 𝑦

𝑝 (𝐴𝑢)𝑥𝑢𝑝 + 𝑀𝑢
𝑓 (𝐵

𝑢)
[
1 1 . . . 1

]𝑇
𝑢(𝑘) + 𝑀𝑢

𝑝 (𝐵𝑢)𝑢𝑝

)
+ 𝑀

𝑦

𝑓
(𝐴𝑑)−1

(
−𝑀 𝑦

𝑝 (𝐴𝑑)𝑥𝑑𝑝 + 𝑀𝑢
𝑓 (𝐵

𝑑)𝑑 𝑓 + 𝑀𝑢
𝑝 (𝐵𝑑)𝑑𝑝

)
+ 𝑀

𝑦

𝑓
(𝐷)−1

(
−𝑀 𝑦

𝑝 (𝐷)𝑥𝜖𝑝 +
(
𝑀𝑢

𝑓 (𝐶)
[
𝐼 0

]
+
[
0 𝐼

] )
𝜖 𝑓 + 𝑀𝑢

𝑝 (𝐶)𝜖𝑝
)
(21)

whence 𝐼 [𝑛𝑒 × 𝑛𝑒] is the unit matrix, 0 [𝑛𝑒 × 1] is the zeros vector and matrix
𝑀Σ [𝑛𝑒 × 𝑛𝑢] is defined as lower triangular:

𝑀Σ =

©­­­­­­­­«

1 0 · · · 0
1 1 · · · 0
...

...
. . .

...

1 1 · · · 1
...

...
. . .

...

1 1 · · · 1

ª®®®®®®®®¬
. (22)
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The output prediction 𝑦̂ 𝑓 is finally calculated as:

𝑦̂ 𝑓 = 𝑥𝑢𝑓 + 𝑥
𝑑
𝑓 + 𝑥

𝜖
𝑓 +

[
1 1 . . . 1

]𝑇
𝑦0 , (23)

where 𝑦̂ 𝑓 [𝑛𝑒 × 1] can be unwind as:

𝑦̂ 𝑓 =
[
𝑦̂ (𝑘+1) 𝑦̂ (𝑘+2) . . . 𝑦̂ (𝑘+𝑛𝑒−1) 𝑦̂ (𝑘+𝑛𝑒)

]𝑇
. (24)

4. Control algorithm

The artificial pancreas is a quite complex problem in the general context,
but there are actually two particular issues that make the automatic control of
glycemia exceptionally difficult to master. The first is the presence of significant
lag (delay) in the insulin action dynamics, and the second is the nonnegative
nature of the insulin administration that limits the possible control actions of the
artificial pancreas [9, 10].
The rationale for using the predictive control is its potential for effective

rejection of meal disturbances, as insulin can be applied in the optimal time
advance. However, making a really powerful compensation of the disturbance
is kind of questionable because even if the meal is effectively compensated and
no hyperglycemia occurs, the relatively long-lasting effect of the administered
insulin may subsequently cause a severe hypoglycemic event. Therefore, a perfect
disturbance compensation is practically unachievable, so a reasonable trade-off
between mild hyper or hypoglycemia must always be made. The basic block
diagram of the closed loop of the artificial pancreas is depicted in Fig. 1.

Trajectory 
generator

Predictive 
controller T1DM 

subject

Various exogenous 
disturbances

Meal 
announcement

Figure 1: Closed loop of the artificial pancreas utilizing the predictive control

The predictive control algorithm minimizes the quadratic cost function of
the model-based predictions of the controlled variable through the appropriate
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changes in the manipulated variable. For the assumed incremental control law,
the decision vector of the future control changes Δ𝑢 𝑓 is related to the vector of
the future manipulated variable 𝑢 𝑓 using the 𝑀Σ matrix (22) as:

𝑢 𝑓 =
[
1 1 . . . 1

]𝑇
𝑢(𝑘−1) + 𝑀ΣΔ𝑢 𝑓 . (25)

The general cost function of the predictive control can be written as [35]:

𝐽 (Δ𝑢 𝑓 ) =
𝑛𝑒∑︁
𝑖=1

𝜆
𝑦

𝑖

[
𝑦̄ (𝑘+𝑖) − 𝑦̂ (𝑘+𝑖)

]2 + 𝑛𝑢∑︁
𝑗=1

𝜆𝑢𝑗Δ𝑢
2
(𝑘+ 𝑗−1) . (26)

The weighting vector 𝜆𝑢 [𝑛𝑢 × 1] for penalizing the squared changes of the
manipulated variable can be interpreted as the factor affecting the aggressiveness
of control:

𝜆𝑢 =
[
𝜆𝑢1 𝜆𝑢2 . . . 𝜆𝑢

𝑛𝑢−1 𝜆𝑢𝑛𝑢
]𝑇

. (27)
The vector 𝜆𝑦 [𝑛𝑒×1] is the counter-weighting vector for the control error penalty:

𝜆𝑦 =

[
0 𝜆

𝑦

𝑛★𝑒
𝜆
𝑦

𝑛★𝑒+1
. . . 𝜆

𝑦

𝑛𝑒−1 𝜆
𝑦
𝑛𝑒

]𝑇
, (28)

where 0 [1 × 𝑛★𝑒 ] is the zeros vector and the parameters 𝑛★𝑒 and 𝑛𝑒 represent the
beginning and the end of the optimized prediction horizon, respectively.
The elements of the future reference vector 𝑦̄ [𝑛𝑒 × 1] can be assumed to be

equal to constant 𝐺 𝑡 (representing the target glycemia) or can be dynamically
generated by the trajectory generator.

𝑦̄ =
[
𝑦̄ (𝑘+1) 𝑦̄ (𝑘+2) . . . 𝑦̄ (𝑘+𝑛𝑒−1) 𝑦̄ (𝑘+𝑛𝑒)

]𝑇
. (29)

The target glycemia 𝐺 𝑡 can be chosen according to the physician’s recommenda-
tion, from the relatively narrow interval 5.0 < 𝐺 𝑡 < 6.0 mmol/l.
The generic cost function (26) can be reshaped into the equivalent quadratic

form:
𝐽 (Δ𝑢 𝑓 ) =

(
𝑦̄ − 𝑦̂ 𝑓

)𝑇
Λ𝑦

(
𝑦̄ − 𝑦̂ 𝑓

)
+ Δ𝑢𝑇𝑓Λ

𝑢Δ𝑢 𝑓 , (30)

where Λ𝑢 [𝑛𝑢 × 𝑛𝑢] and Λ𝑦 [𝑛𝑒 × 𝑛𝑒] are positive definite diagonal matrices with
diagonal vectors 𝜆𝑢 (27) and 𝜆𝑦 (28), respectively [36].

Λ𝑢 = diag(𝜆𝑢), (31)
Λ𝑦 = diag(𝜆𝑦). (32)

Substituting the output prediction (9) and the forced response in the linear
form (10) into the cost function (30), the quadratic form with respect to the
decision variable Δ𝑢 𝑓 can be derived [37]:

𝐽 (Δ𝑢 𝑓 ) = Δ𝑢𝑇𝑓 AΔ𝑢 𝑓 + 2b𝑇Δ𝑢 𝑓 + 𝑐, (33)
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where matrix A [𝑛𝑢 × 𝑛𝑢], vector b [𝑛𝑢 × 1], and scalar 𝑐 are defined as:

A = 𝐻𝑇
𝑓Λ𝑦𝐻 𝑓 + Λ𝑢 , (34a)

b𝑇 = − ( 𝑦̄ − 𝑦̂free)𝑇 Λ𝑦𝐻 𝑓 , (34b)

𝑐 = ( 𝑦̄ − 𝑦̂free)𝑇 Λ𝑦 ( 𝑦̄ − 𝑦̂free) . (34c)

The above cost function can be minimized either analytically for the uncon-
strained case or using numerical methods of the quadratic programming if linear
inequalities constraints are assumed. The unconstrained optimal solution of the
predictive control problem (33), (34) can be derived assuming the optimality
condition ∇Δ𝑢 𝑓

𝐽 (Δ𝑢 𝑓 ) = 0 in the closed form as:

Δ𝑢 𝑓 = −A−1b . (35)

Using the receding-horizon strategy, only the first element of the solution Δ𝑢 𝑓 is
actually applied:

𝑢(𝑘) = 𝑢(𝑘−1) +
[
1 0 . . . 0

]
Δ𝑢 𝑓 . (36)

4.1. Constraining the manipulated variable

The greatest weakness of the traditional concept of the artificial pancreas is
the apparent non-negative nature of insulin administration. As a consequence, the
artificial pancreas is virtually unable to actively raise glycemia, so extra attention
must be paid to themanagement of hypoglycemia. It is alsoworth noting that some
studies focused on a promising strategy of using glucagon as an insulin antagonist
and counterregulatory hormone, thus the desired glycemia-raising effect could be
initiated by the artificial pancreas [38, 39]. However, in this paper, we will stick
to the conservative strategy of solely insulin application.
In addition to the lower bound, insulin pumps also have technological limits

for the maximal insulin delivery rate, so the manipulated variable lies within the
interval:

𝑢min ¬ 𝑢 ¬ 𝑢max . (37)

Theminimal infusion rate 𝑢min is zerowhile the typical value of 𝑢maxwas reported
in [27] or [21]:

𝑢min = 0 U/min, 𝑢max =
1
15
U/min . (38)

A simple but not optimal solution to involve these constraints in the predictive
control algorithm is to use the saturation operation, as reported in [21,22,28] and
[19]. For true constrained optimization, it is desired to express the manipulated
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value constraints (37) as an equivalent set of linear inequalities with respect to
the decision vector Δ𝑢 𝑓 using the 𝑀Σ matrix (22) as [36]:

−𝑀ΣΔ𝑢 𝑓 ¬ −
[
1 1 . . . 1

]𝑇 (
𝑢min − 𝑢(𝑘−1)

)
, (39)

+𝑀ΣΔ𝑢 𝑓 ¬ +
[
1 1 . . . 1

]𝑇 (
𝑢max − 𝑢(𝑘−1)

)
. (40)

4.2. Constraining the controlled variable

Constraining the controlled variable is especially fundamental for the artificial
pancreas, since it could be the clue to reduce the risk of hypo and hyperglycemia
during the automated insulin treatment.
Formally, the controlled variable is supposed to be within the interval:

𝑦min ¬ 𝑦 ¬ 𝑦max . (41)

The relatively safe interval of glycemia is roughly:

𝑦min = 4.5 mmol/l, 𝑦max = 9 mmol/l. (42)

In order to include the constraints (41) to the optimization problem, the corre-
sponding linear inequalities with respect to the decision vector Δ𝑢 𝑓 have to be
derived. Based on the output prediction decomposition theorem (9) and the linear
form of the forced response (10), one can write [36]:

−𝐻 𝑓Δ𝑢 𝑓 ¬ −
[
1 1 . . . 1

]𝑇
𝑦min + 𝑦̂free, (43)

+𝐻 𝑓Δ𝑢 𝑓 ¬ +
[
1 1 . . . 1

]𝑇
𝑦max − 𝑦̂free. (44)

Unfortunately, this approach has some practical limitations, as will be analyzed
in the next section.

4.3. Control feasibility

Concerning the a priori existence of the constrained solution of the predic-
tive control problem, one may suppose that the constraints of the manipulated
and the controlled variable have mutually contradictory effect on their feasibility.
Under some specific circumstances, particularly if applying too strict constraints
concurrently, it may happen that there is no feasible solution for all the as-
sumed inequalities (39), (40), (43), (44), whereas this phenomenon was already
marginally mentioned in [21] and [26]. In fact, the constraints of the manipulated
variable basically cannot be violated since these are physically grounded, so it is
the controlled variable, the constraints of which have to be corrupted after all.
Accordingly, the proposed strategy is to detect the infeasibility during the con-

trol, generate the corresponding alarm, and adapt the constraints of the controlled
variable (43), (44) in order to recover the feasibility and optimality of the control.
For a rigorous analysis of this problem, one can harness the Farkas lemma [40]:
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Theorem 1 (Farkas lemma) Either the linear inequalities system 𝐴𝑥 ¬ 𝑏 has
a solution with 𝑥 ∈ R𝑛, or the equalities system 𝐴𝑇 𝑦 = 0 subject to constraints
𝑦 ­ 0 has a solution such that 𝑏𝑇 𝑦 < 0

The following linear programming problem has to be solved, and the minimum
checked for meeting the feasibility condition defined by the Farkas lemma.

min 𝑏𝑇 𝑦
subj. to: 𝐴𝑇 𝑦 = 0 and 𝑦 ­ 0.

(45)

The solution of the joint linear inequalities system formed by (39), (40), (43),
(44) is feasible if the corresponding optimization problem (45) has a non-negative
optimum i.e. min 𝑏𝑇 𝑦 ­ 0. If there is no feasible solution, then the controlled
variable constraints (41) have to be adapted according to the Algorithm 1.

Algorithm 1 Controlled variable constraints adaptation
Assume tuning parameters 𝛽 and 𝛾:

𝛽 ∈ 〈0.01, 0.1〉
𝛾 ∈ 〈0.01, 0.1〉
𝐴 =

[
−𝑀Σ

𝑇 𝑀Σ
𝑇 −𝐻 𝑓

𝑇 𝐻 𝑓
𝑇
]𝑇

repeat

𝑏 =



−
[
1 1 . . . 1

]𝑇 (
𝑢min − 𝑢 (𝑘−1)

)
+
[
1 1 . . . 1

]𝑇 (
𝑢max − 𝑢 (𝑘−1)

)
−
[
1 1 . . . 1

]𝑇
𝑦min + 𝑦̂free

+
[
1 1 . . . 1

]𝑇
𝑦max − 𝑦̂free


𝐽 ← min 𝑏𝑇 𝑦 to constraints 𝐴𝑇 𝑦 = 0 and 𝑦 ­ 0
if 𝐽 < 0 then

𝑦max ← 𝑦max (1 + 𝛽)
𝑦min ← 𝑦min (1 − 𝛾)

end if
until 𝐽 ­ 0

This algorithm allows to choose either the upper or the lower bound of the
controlled variable has to be preserved via tuning the parameters 𝛽 and 𝛾. In
the case of glycemia control, due to the serious consequences of hypoglycemia,
the lower bound is much more important not to be violated, so we can choose
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𝛽 = 0.1 and 𝛾 = 0.01 to reflect this demand. Hence, restoring the feasibility and
correcting the constraints can be considered non-symmetrical.
It should be mentioned that checking the control feasibility is absolutely es-

sential to be carried out before solving the optimization problem, since otherwise
the numerical solution of the quadratic program would fail. We suppose that
this kind of selective adaptation of the hard constraints is a better alternative to
the pure symmetrical penalizing of the controlled variable deviations from the
reference value because the physiology-involved asymmetry of the span of the
controlled variable is taken into account this way. A comparable result could
potentially be achieved using the soft constraints implemented as the asymmetric
cost function with the slack variables representing the constraints violations, as
was presented in [24] and [25].

5. In-silico experiment

In order to evaluate the presented improvements and assess the actual effective-
ness of the proposed control algorithm, comprehensive in-silico, i.e. simulation-
based experiments, were carried out. Themain advantage of the in-silico approach
is the elimination of potential health risks that may occur during this early stage
of the artificial pancreas testing. In addition, the financial and time burden of this
kind of experiment is reduced compared to regular clinical trials.
As a virtual diabetic subject, the complex nonlinear simulation model orig-

inally presented in [41] and [42] was adopted. It should be mentioned that this
model was accepted by the Food and Drug Administration agency as a substi-
tute to animal trials for the preclinical testing of control strategies in artificial
pancreas studies [7]. However, the model needs to be correctly parameterized,
so the available mean-population parameters published in [42] were assumed.
Since this parameters set represents an average healthy subject, some modifica-
tions had to be made in order to make it compliant with type 1 diabetes [22, 43].
The basal state was adjusted according to the basal glycemia 𝐺𝑏 = 7 mmol/l
and the corresponding basal insulin delivery rate 𝑣𝑏 = 0.01 U/min. The virtual
CGMmeasurements were distorted by the additive white noise with the variance
𝜎2 = 0.01 mmol/l.

5.1. Meal plan

The experiment was designed to emulate the regular behavior of a subject with
type 1 diabetes during the two-day period. The applied meal plan included one
major meal for lunch, two minor meals for breakfast and dinner, and a few little
snack-like portions for each day. The overnight meal-free gap was also assumed
in order to address the potential risk of nocturnal hypoglycemia. Notice that there
are two slightly different scenarios present in Table 1.
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Table 1: Meal plans for the control experiments

Day 1 Day 2

Scenario
1

𝑡 [h:min] 5:00 10:00 13:20 15:00 18:20 20:00 7:30 9:10 10:50 16:40 19:10 21:40
CHO [g] 15 5 45 10 30 15 20 10 50 15 20 5

Scenario
2

𝑡 [h:min] 5:50 8:20 12:30 16:40 19:10 21:40 6:40 8:20 11:40 15:50 17:30 20:50
CHO [g] 25 10 60 20 50 5 20 15 65 25 30 10

5.2. Controller parameters

Since the controlled system model is an essential part of the proposed pre-
dictive controller, its accuracy and validity significantly affects the control per-
formance. Note that problems related to the estimation of physiology-compliant
model parameters from diabetic datasets are not in the scope of this paper, so for
more comprehensive details on this topic, see our recent work [44].
The orders of the empirical model (1) were chosen as 𝑛𝐴𝑢 = 𝑛𝐵𝑢 = 4, 𝑛𝐴𝑑 =

𝑛𝐵𝑑 =3 and 𝑛𝐶 =1, 𝑛𝐷 =2 and the model polynomial coefficients were estimated
as follows:

𝐴𝑢 (𝑧) = 1 − 3.4546𝑧−1 + 4.4641𝑧−2 − 2.5572𝑧−3 + 0.5479𝑧−4, (46a)
𝐵𝑢 (𝑧) = −0.0078𝑧−1 − 0.0133𝑧−2 − 0.0065𝑧−3 − 0.0008𝑧−4, (46b)
𝐴𝑑 (𝑧) = 1 − 2.3887𝑧−1 + 1.8778𝑧−2 − 0.4857𝑧−3, (46c)
𝐵𝑑 (𝑧) = 0.0439𝑧−1 + 0.0313𝑧−2 + 0.0048𝑧−3, (46d)
𝐷 (𝑧) = 1 − 0.5269𝑧−1 − 0.3574𝑧−2, (46e)
𝐶 (𝑧) = 1 − 0.3217𝑧−1. (46f)

In order to assess the control performance obtained using the proposed model
(1) compared to the traditional approaches, the following parameters of the two-
input ARX model with orders 𝑛𝐴=𝑛𝐵𝑢 =𝑛𝐵𝑑 =4 were identified:

𝐴(𝑧) = 1 − 1.9515𝑧−1 + 0.3865𝑧−2 + 1.1245𝑧−3 − 0.5584𝑧−4, (47a)
𝐵𝑢 (𝑧) = −0.3617𝑧−1 + 0.1660𝑧−2 − 0.0254𝑧−3 + 0.0013𝑧−4, (47b)
𝐵𝑑 (𝑧) = 0.0943𝑧−1 + 0.1038𝑧−2 − 0.0746𝑧−3 − 0.0841𝑧−4 (47c)

and the following assumption holds for the polynomials of model (1) in this case:

𝐴𝑢 (𝑧) = 𝐴(𝑧), 𝐴𝑑 (𝑧) = 𝐴(𝑧), 𝐶 (𝑧) = 𝐷 (𝑧) = 1. (48)

The design of the predictive controller is primarily based on empirical tuning
rules. First, 𝑛★𝑒 and 𝑛𝑒 parameters have to be chosen, as they represent the begin-
ning and the end of the optimized horizon, respectively (see (28)). The parameter
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𝑛★𝑒 should be equal to the approximate input-output delay, so based on the impulse
response of the identified control submodel (refer to [44]), the effect of insulin
appears in about 50 minutes, implying that for the sample time 𝑇𝑠 = 10 min one
gets 𝑛★𝑒 = 5.
However, 𝑛𝑒 is actually the crucial one, as it defines the overall length of the

optimized prediction horizon. Extending this horizon can potentially lead to a
desired reduction in hypoglycemia risk because the controller can cut off insulin
dosing soon enough before hypoglycemia develops. On the other hand, increasing
𝑛𝑒 puts the demand for higher predictive performance of the identified empirical
model (1) and the patient’s burden to provide the correct announcement of meals
as well. Regarding both factors, the length of the prediction horizon was chosen
as 𝑛𝑒 =20. Finally, the control horizon was set as 𝑛𝑢 = 10.
The weighting vector of the manipulated variable changes penalty 𝜆𝑢 affects

the control aggressiveness as well as it makes the control more or less noise
prone. This vector was chosen as:

𝜆𝑢 =
[
1 1 . . . 1

]𝑇 25 1
𝑛𝑢

. (49)

The counter-weighting vector 𝜆𝑦 was designed as:

𝜆𝑦 =
[
1 1 . . . 1

]𝑇 1
𝑛𝑒 − 𝑛★𝑒

. (50)

5.3. Inter-subject variability

To assess the robustness of the artificial pancreas with respect to the inter-
subject variability, the so-called Control Variability Grid Analysis (abbr. CVGA)
is typically used [45]. The CVGA interprets the control performance on a single
subject as a point in the plane, while its coordinates represent the minimal and
maximal measured glycemia during a finite time period. By experimenting on a
group of diabetic subjects, the set of CVGA points can be obtained such that:

CVGA𝑖 = [min(𝐺𝑖 (𝑡)), max(𝐺𝑖 (𝑡))] . (51)

The CVGA plane can be divided into nine zones rated from the best control
performance (A) to the worst (E). Needless to say that to achieve truly unbiased
results, the disturbance conditions must be same for all the experimented subjects,
and for each of these virtual patients, individual identification of the empirical
model (1) has to be carried out first.
The virtual diabetic subjects populationwas randomly generated assuming the

normal distribution of all model parameters with the available mean-population
value 𝜇𝑖 and the standard deviation 𝜎𝑖 determined according to the strategy
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uniform coefficient of variation. The coefficient of variation 𝑐𝑣 is defined as the
fixed ratio for all the model parameters:

𝑐𝑣 =
𝜎𝑖

𝜇𝑖
= 0.15. (52)

5.4. Results

The results for several distinct control scenarios and controller setups are
discussed in this section. For each of the experiments, the control performance has
been quantified by the maximal 𝐺max and the minimal 𝐺min observed glycemia,
as well as by the basic quadratic criterion defined for the experiment with 𝑁

samples as:

𝑄 =

𝑁∑︁
𝑖=0

[
𝑦 (𝑖) − 𝐺 𝑡

]2
. (53)

The first experiment representing the unconstrained control according to the
closed-form solution (35) with simply saturated manipulated variable, as the
prevailing control strategy in the literature, is depicted in Fig. 2. Applying the
true constraints to the manipulated variable in the terms of (39), (40) with bounds
(38) noticeably improved the control performance, as can be observed in Fig. 3.

Figure 2: Predictive control in-silico experiment with unconstrained control – meal
scenario 1, 𝑄 = 99.04
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Figure 3: Predictive control in-silico experiment with constrained manipulated variable
– meal scenario 1, 𝑄 = 63.48

It is also quite important to assess the control performance under assumption
(48) of the ARX model simplification with the corresponding model parameters
(47). In Fig. 4, it can be seen a much worse management of glycemia concerning
itsmaximal andminimal value, aswell as a higher value of themetric𝑄 indicating
a poorer control performance compared to the control with the proposed model
(1) having separate feedback dynamics for the insulin administration submodel
and the carbohydrate intake submodel.
Another simulation concerns the control with no disturbance prediction, i.e.

only the current meal is announced. In this case, notable poor control performance
can be seen in Fig. 5, sincemeal-compensating insulin administration occurs after
the corresponding meal intake.
The next scenario represents the same controller setup as in Fig. 3 but for a

different meal scenario number 2 from Table 1. Due to more demanding distur-
bance conditions, one can observe slightly deteriorated control performance in
Fig. 6.
Now the constraints are also applied to the controlled variable according

to equations (43), (44) with bounds (42). In Fig. 7 one can notice improved
hypoglycemia management although it was apparently achieved at the expense of
higher maximal glycemia and worse performance metric 𝑄 than in the previous
case. However, constraining the controlled variable yields another degree of
freedom in the controller tuning procedure, primarily affecting the strategy of
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Figure 4: Predictive control in-silico experiment with the ARX model and constrained
manipulated variable – meal scenario 1, 𝑄 = 169.92

Figure 5: Predictive control in-silico experiment with constrained manipulated variable
and no meal announcing – meal scenario 1, 𝑄 = 371.53
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Figure 6: Predictive control in-silico experiment with constrained manipulated variable
– meal scenario 2, 𝑄 = 109.22

Figure 7: Predictive control in-silico experiment with constrained manipulated and con-
trolled variable – meal scenario 2, 𝑄 = 143.07
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hypoglycemia and hyperglycemia management and their trade-off. It is also worth
noting that the controlled variable may appear as it was not constrained since the
lower bound 4.5 mmol/l is actually never reached, but this bias was caused by
nothing but the presence of plant-model mismatch.
Another interesting experiment concerns the problem of control feasibility,

as was theoretically analyzed in Section 4.3. Choosing too strict constraints
on the controlled variable, for instance 𝑦min = 5.0 mmol/l, 𝑦max = 6.5 mmol/l,
caused the control to be infeasible, resulting in an inevitable violation of the
constraints. In order to avoid the more dangerous hypoglycemia state, the upper
constraint was adapted during the control to recover the control feasibility and
optimality. Thanks to the asymmetric constraints adaptation, the lower bound of
the controlled variable remained virtually untouched. This case is demonstrated
in Fig. 8, where the infeasibility alarm is also plotted (refer to equation (45) and
Algorithm 1).

Figure 8: Predictive control in-silico experiment with controlled variable constraints
infeasibility – meal scenario 2, 𝑄 = 212.20

In practice, the meal announcing will probably not be very reliable and ac-
curate, so the robustness of the artificial pancreas also needs to be addressed
from this perspective. One can expect to receive biased input from the patient,
including unannounced yet consumed meals, deviations in the amount and the
time of carbohydrate intake, and the false meal announcement as the most dan-
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gerous phenomenon. The announced but unconsumed meal can lead to a severe
and potentially unrecoverable hypoglycemia state, as the effect of predictively
administered insulin would be totally inadequate and irreversible in that case.
In order to involve this meal announcement mismatch to our experiments, two
distinct disturbance signals are assumed: the real one 𝑑𝑟 (𝑡), which is actually ap-
plied, and the announced one 𝑑 (𝑡), which is passed to the control algorithm (see
Table 2). An obvious deterioration of the control performance can be observed
in Fig. 9 as well as infeasibility of the original constraints of the controlled vari-
able if the meal-announcing mismatch is present, yet no severe hyperglycemia or
hypoglycemia occurred, so the controller was capable to maintain relatively safe
values of glycemia under the condition of disturbance uncertainty.

Table 2: Mismatch between the real and the announced carbohydrate intake

Day 1 Day 2

Anno-
unced

𝑡 [h:min] 5:00 10:00 13:20 15:00 18:20 20:00 7:30 8:50 10:50 16:40 19:10 21:40
CHO [g] 15 5 40 10 30 15 20 0 45 15 20 5

Real
𝑡 [h:min] 5:10 10:00 13:20 15:30 18:20 20:00 7:10 8:50 10:20 16:40 19:10 21:40
CHO [g] 12.5 3.5 60 10 25 10 20 10 60 25 22.5 0

Figure 9: Predictive control in-silico experiment – disturbancemismatch of meal scenario
from Table 2, 𝑄 = 417.40
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Finally, the CVGA evaluated for 25 virtual subjects assuming various con-
troller setups concludes this section. Simple unconstrained control with saturated
manipulated variable yields quite poor control performance as documented in
Fig. 10a. Moreover, unacceptable results were obtained using the traditional ARX
model, while severe hypoglycemia states can be observed in Fig. 10b, showing
the superiority of the proposed model (1). In Figs. 10c and 10d one can notice
a significant bias in minimum and maximum glycemia if hard constraints of the
controlled variable are applied, which implies that by their appropriate selection,
the risk of hypoglycemia can be significantly reduced and a reasonable trade-off
between the hypoglycemia and hyperglycemia can be tuned intuitively.

(a) Unconstrained (saturated) manipulated
variable and unconstrained controlled variable

(b) Constrained manipulated variable and un-
constrained controlled variable, ARX model

(c) Constrained manipulated variable and un-
constrained controlled variable

(d) Constrained manipulated variable and con-
strained controlled variable

Figure 10: Control Variability Grid Analysis for the meal scenario 2
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The overall performance comparison for all experiments carried out is sum-
marized in Table 3.

Table 3: Experiments control performance summary

Experiment 𝑄 𝐺max 𝐺min

unconstrained control and saturated 𝑢, sc. 1 99 7.2 4.6
constrained 𝑢, meal scenario 1 63 6.7 4.7
constrained 𝑢, ARX model, meal scenario 1 170 7.0 3.9
constrained 𝑢, no disturbance prediction, meal scenario 1 371 9.1 4.6
constrained 𝑢, meal scenario 2 109 7.3 4.4
constrained 𝑢 and 𝑦, meal scenario 2 143 7.7 4.7
constrained 𝑢 and 𝑦, strict constraints, meal scenario 2 212 4.9 8.3
constrained 𝑢 and 𝑦, disturbance mismatch 417 9.5 4.0

6. Conclusions

In this paper, the practical performance limits of the linear model predictive
control were tested in such a complex and demanding application as the artificial
pancreas that maintains normoglycemia in subjects with type 1 diabetes. An
empiricalmodel featuring separate feedback dynamics for control and disturbance
input turned out to be a better alternative to the traditional two-input ARX or
ARMAX models. In contrast to the traditional unconstrained predictive control
law, linear inequalities were assumed for the constraints of the manipulated and
controlled variable. The emerging problem of control infeasibility was rigorously
addressed by exploiting the properties of the Farkas lemma. In order to recover
the feasibility and optimality of the control, an iterative algorithm was proposed
to adapt the constraints of the controlled variable. However, this adaptation can
be asymmetrical, what allowed to force the suppression of hypoglycemia while
tolerating mild hyperglycemia.
At the end of this paper, a series of in-silico experiments were carried out

while analyzing various disturbance scenarios and different controller setups.
The proposed model and the control algorithm have been proven to be superior to
conventional solutions, while constraining the controlled variable turned out to
be an effective strategy for the suppression of hypoglycemia states. Additionally,
the control robustness was assessed with respect to the inter-subject variability
and the meal announcement mismatch, obtaining quite satisfying results. Even if
the observed good in-silico control performance may seem encouraging, it does
not guarantee the same results to be obtained in vivo, so the computer simulation
can not be considered as a full substitute to clinical trials, but is a prerequisite.
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The possible future enhancements should involve better unmeasurable distur-
bance prediction as well as design of the adaptive version of controller in order
to address the time-variability of subject physiology.
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