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Fuzzy state feedback with double integrator and
anti-windup for the Van de Vusse reaction

C.A. MÁRQUEZ-VERA, M.A. MÁRQUEZ-VERA, Z. YAKOUB, A. MA’ARIF,
A.J. CASTRO-MONTOYA and N.R. CÁZAREZ-CASTRO

Chemical processes use to be non-minimum phase systems. Thereby, they are a challenge
for control applications. In this paper, fuzzy state feedback is applied in the Van de Vusse
reaction that has an inverse response. The control design has an integrator to enhance the
control performance by eliminating the steady-state error when a step reference is applied.
An anti-windup action is used to reduce the undershoot in the system response. In practice,
it is not possible to have always access to all the state variables. Thus, a fuzzy state observer
is implemented via LMIs. Frequently, the papers that show similar applications present some
comments about disturbance rejection. To eliminate the steady-state error when a ramp reference
is used, in this work, a second integrator is aggregated. Now, the anti-windup also reduces the
overshoot generated due to the usage of two integrators in the final application.
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1. Introduction

Chemical reactors are often used as examples for non-minimum phase pro-
cesses. A classical reactor in chemical engineering is the continuous stirred tank
reactor (CSTR) that guarantees the same substratum concentration in all places
inside the reactor due to the mixer used in these kinds of reactors [1]. In the CSTR
the reactants are introduced and removed simultaneously.
There are some control designs developed for chemical reactors. The most

common control in the industry is the proportional, integral, and derivative (PID)
controller, evenwhen theCSTR shows a nonlinear dynamic. Interestingmodelling
of the CSTR using recursive least squares and tuning a PID to control the reactor
is presented in [2].
The Ziegler-Nichols tuning method is often used in literature. One alternative

to propose the PID gains is to apply swarm intelligence. A bio-inspired tuning
method was given in [3], where the artificial bee colony was used to find the
control gains that optimize some criteria focused on the closed-loop behaviour,
and their results were compared with the obtained using genetic algorithms to
tune a controller for the CSTR.
The swarm intelligence seems to be a good alternative to tune a PID. An

advantage is that the control design is model-free. However, a disadvantage
is to simulate the controlled systems many times until a determined criterion
is reached. This implementation can be made off-line, and when the desired
behavior is found, the control gains computed can be implemented into the inline
application [4]. Anyway, swarm intelligence is a good idea to propose the control
gains if the approached model is very similar to the actual behavior of the reactor.
The PID control was applied in the production of aluminium chloride and

some considerations for the simulation were mentioned in [5]. In [6] different
PID tuning methods were used to control a CSTR, and the best results were
obtained using a PI controller tuned by the Skogestad Internal Model Control
(SIMC). Particle Swarm Optimization (PSO) was used to find a PID capable to
control the inverse response shown by the Van de Vusse reaction in [7], where
the criterion IST3E was implemented to evaluate the PSO for having the smallest
undershoot.
Adaptive control is another technique that can be used to control a CSTR. For

example, in [8] a fuzzy model reference, adaptive control was used to approach a
linear system behavior as time grows up, in this way, the controlled concentration
was evolved in different set-points, reducing each time the error was computed
with respect to the linear model reference as its Fig. 3 showed.
The main contribution of [9] was a feedforward design by a stable system

inversion. Therefore, the transition problem from a minimum-phase behavior to
the non-minimumphase casewas solved in an algebraic way.Moreover, the CSTR
can be used with the Van de Vusse reaction.
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1.1. Controlling the Van de Vusse reaction

The Van de Vusse reaction is a nonlinear process with an inverse response
and works in an isothermal condition. Isothermal CSTR with the Van de Vusse
reaction was used as a challenging benchmark in [10] due to non-minimum phase
behavior. The inverse response occurs when initially the output signal in a system
responds in the opposite direction of the steady-state value [11].
To propose a PI controller, in [12] was used linear approximation regarding

the time-response. Authors used a second-order system with two real poles, and
an unstable zero. In Fig. 4 [12] authors showed the approached model that was
very similar to the nonlinear system. The process used in [12] was a CSTR with
theVan deVusse reaction, and also some robustness considerations were included
using concepts like the maximum sensitivity and the DS-d tuning method shown
in [13].
A state feedback controller with a nonlinear observer was presented in [14],

where it was also aggregated an integrator to improve the steady-state perfor-
mance, and the stability of the approach was investigated via an input-to-state
Lyapunov function. In Fig. 7 of [14], the simulation results showed an over-shoot
for certain conditions in the Van de Vusse reaction.
In [9] two nonlinear controls were presented in open-loop, without taking into

consideration if the system has minimum-phase or not to propose a controller.
The controller was of the feedforward type, and its difficulty followed to form the
system inversion necessity. One way to solve this issue is to implement a fuzzy or
neural model. In this way, soft computing is a good option to control nonlinear
systems with an inverse response.

1.2. Intelligent control for the Van de Vusse reaction

A control application of the Van de Vusse reactor comparing a PID against a
type-2 fuzzy controller can be found in [15]. As the first approach, a linearization
of the nonlinear process was made to obtain a transfer function. The PID was
proposed using the linear model approximation. The main contribution was a
fuzzy type-2 version of the PID that was more efficient, having less overshoot in
the time response.
In [16] two proposals were given: the internal model control (IMC) and

direct inverse control, both using artificial neural networks. One way to propose
a controller or even an approached model when the mathematical model of the
process is unknown is to implement an artificial neural network. The authors used
as a case of study the Van de Vusse reaction and commented on the nonlinearities
in the model. Pulses were used in [16] to validate the neural model using three
input nodes, four hidden neurons in one layer, and one neuron as output. The best
result was obtained using the direct inverse control, which was possible thanks
to the neural model inversion. Similarly to swarm intelligence, it was necessary
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to make 9478 iterations to train the neural network in [16]. The difference is
that they simulated the neural network many times, whereas in [3] the entire
control process was simulated to evaluate each PID performance for certain
gains.
Recently, a neural network controller was developed in [17] using reinforce-

ment learning. The main reason was the difficulty of nonlinear systems modelling
and its parameter uncertainty. Therefore, an initial neural network is trained using
the first experiment in simulation, and then the network is adapted using the new
data available from the process, in this case, the Van de Vusse reaction. The
control was tuned according to the current set-point in the process to have the
highest expected performance.
A similar application without the fuzzy logic implementation can be found

in [18], where a linear-quadratic regulator (LQR) plus an integrator, called LQI,
was presented (Fig. 5, [18]). The Van de Vusse reaction was controlled using
a PID, sliding modes control, and their LQI proposal (Sec. 3.2, [18]). This last
approach gave the best result showing the smallest undershoot.
In this article, the LQI is implemented using a fuzzymodel, and different LQIs

are obtained, its stability is determined via linear matrix inequalities (LMIs), and
a fuzzy observer is used to make the state feedback [19]. The undershoot obtained
depended principally on the placement of the poles.
A first approximation of the superiority of fuzzy control was shown in [20]

where P, PI, and PID linear controllers were tuned using the Ziegler-Nichols
first method and applied to the Van de Vusse reaction. The simulation results
were compared with a fuzzy-P controller, which presented a better performance
than the linear controllers. However, the fuzzy-P controller was designed to reach
a predefined set-point, having problems following different references. For this
reason, an integrator is proposed in this article as in [18] was proposed.
The Van de Vusse reaction was modeled in [21] using a fuzzy bilinear system.

The LMIs [22] were also used to guarantee stability. The bilinear approximation
is similar to the Taylor linearization. If the linearization is made in several points,
the linear submodels obtained can be added in a fuzzy way.
Similar to the state-space submodels representation, this paper uses sector

nonlinearity to obtain the linear submodels to guarantee global stability [23]. The
fuzzy state feedback is obtained using LMIs with extended matrices to compute
the integrator gain. The fuzzy observer is also implemented by using LMIs. Thus,
the control is based on output feedback, and the placement of the poles uses the
observed state feedback.
Several control techniques such as PID, internal model control (IMC), and

state feedback, applied in different reactions, also the Van de Vusse reaction were
studied in [24]. An interesting topic is the implementation of anti-windup for a
conditional integrator. The anti-windup implemented in the present work uses the
fuzzy LQI to reduce the undershoot obtained due to the inverse response [18].
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The main contribution of this work is the computing of the state feedback
with two integrators for each linear submodel named fuzzy LQI2. To guarantee
stability, LMIs were used for the calculation of the gain. Tracking properties
maybe check if ramp references are used in the Van de Vusse reaction. An
anti-windup action is proposed to reduce the undershoot shown by the inverse
response system. In the same way, the anti-windup reduces the overshoot when
the reference is a step signal because using two integrators to follow a ramp
signal deteriorates the performance when a step reference is applied. The linear
submodels were obtained using the sector nonlinearity, and they are joint via
a fuzzy model. Furthermore, the control signal and the observer used in the
estimated state feedback are fuzzy systems.
This article is organized as follows: In Section 2 the Van de Vusse reaction is

described, where its mathematical model is shown. The fuzzy control proposed is
presented in Section 3, where the subsections describe the fuzzy state feedback,
the observer design, the use of two integrators, and the effect of the anti-windup
action. Subsequently, the results are presented in Section 4, and conclusions are
drawn in Section 5. TheAppendix shows the control and observer gains computed
using LMIs.

2. Van de Vusse reaction

The isothermal series/parallel Van de Vusse reaction is an example of an in-
verse response process. This process can be described as the non-minimum phase
nonlinear process. This reaction gives the desired product that is accompanied by
consecutive and parallel reactions that produce unwanted products. The reaction
is described by the following equations [14]:

d𝐶A (𝑡)
d𝑡

= 𝑑 (𝑡) (𝐶𝐴in − 𝐶A (𝑡)) − 𝑘1𝐶A (𝑡) − 𝑘3𝐶A (𝑡)2, (1)

d𝐶B (𝑡)
d𝑡

= −𝑑 (𝑡)𝐶B (𝑡) + 𝑘1𝐶A (𝑡) − 𝑘2𝐶B (𝑡), (2)

d𝐶C (𝑡)
d𝑡

= −𝑑 (𝑡)𝐶C (𝑡) + 𝑘2𝐶B (𝑡), (3)

d𝐶D (𝑡)
d𝑡

= −𝑑 (𝑡)𝐶D (𝑡) + 1
2
𝑘3𝐶A (𝑡)2. (4)

where A is the cyclopentadiene reagent, B is the cyclopentenyl taken as the
process output. Due to the strong reactivity of the reagentsA andB, an undesired
productD is obtained, it is the dicyclopentadiene, and also a consecutive product
C, the cyclopentanediol. The process input is the dilution rate 𝑑 (𝑡) which is the
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quotient 𝐹 (𝑡)/𝑉 (𝑡), being 𝐹 (𝑡) the inlet flow and 𝑉 (𝑡) the liquid volume inside
the reactor. The parameters 𝑘1, 𝑘2 and 𝑘3 are the reaction rate constants, they
determine if a product is generated or consumer into the chemical reaction and
the reaction rate obtained. Also, these parameters show the selectivity to have
certain product instead of the others. The parameters are not time dependent,
however, if the reactor is not isothermal, the parameters can be temperature
dependent [25].
The equations (1) and (2) do not depend on𝐶C (𝑡) and𝐶D (𝑡). Thus, the process

can be represented by using (1) and (2), the reaction scheme is described by:

A →𝑘1 B →𝑘2 C, (5)

2A →𝑘3 D . (6)

The process consists of the production of cyclopentenyl B from cyclopenta-
diene A by using acid-catalyzed electrophilic addition of water [26]. The other
subproducts are the dicyclopentadiene D is produced by a Diels-Alder reaction
as a subproduct of reactants A and B, and the cyclopentanediol C is generated
by adding another water molecule [20]. The reaction scheme using the molecules
used is:

C5H6 −→+H2O/H+ C5H7OH −→+H2O/H+ C5H8(OH)2,

2C5H6 −→ C10H12.

The nonlinear model described by (1) and (2) has some characteristics ac-
cording to [16] as:

• Input multiplicity, thus the process is not control affine.

• Gain sign change producing a non-minimum phase behavior.

• Asymmetric response due to nonlinearities.

• Time lag in measuring instruments often do not taken into account.

A CSTR with the Van de Vusse reaction is shown in Fig. 1, where the control
signal 𝑑 (𝑡) is the dilution rate. The reaction rates 𝑘1, 𝑘2 and 𝑘3 determines is a
product is obtained or consumed in the chemical reaction, also these parameters
determine the reactor type according to the relation 𝜃1 > 𝜃2, where 𝜃1 = 𝑘3𝐶A′/𝑘1
and 𝜃2 = 𝑘2/𝑘1, being 𝐶A′ the initial concentration ofA. In this way, the reactor
can be a Plug Flow Reactor (PFR) or a CSTR as in this case [27].
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Figure 1: Isothermal CSTR with van de Vusse reaction

3. Fuzzy control design

Fuzzy logic has emerged as an alternative to work with incomplete infor-
mation, parameters uncertainty, and to describe colloquial ideas to denote for
example a “big error”, or “low velocity” [28]. When a controller is designed,
an approached model of the system to control is often used. The direct control
uses the model parameters to tune the control gains [29]. An indirect control
can be built using the time or frequency response of the system [30]. Even
the control design is achieved by adapting some parameters [31] or taking into
consideration some limits for the unknown functions that describe the system
dynamics [32].
When the model is not well defined or has parametric uncertainty, fuzzy

logic can be used to approximate the model or propose the controller using
expert knowledge [33]. In this paper, an approached model is obtained using
the sector nonlinearity [23]. Thereby, some linear submodels are obtained, and
state feedback is designed for each state-space submodel. However, stability
of each closed-loop does not imply that the whole fuzzy system is also sta-
ble [34].
Linear matrix inequalities (LMIs) are used to guarantee stability when the

fuzzy control is applied. Thereby, state-space submodels are obtained from the
nonlinear process using the sector nonlinearity [23]. To build the membership
functions, some cotes for the concentrations 𝐶A (𝑡) and 𝐶B (𝑡) could be deter-
mined to have two membership functions to fuzzify some terms in the state-space
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representation. Hence, the submodels are represented by the following system:

©«
d𝐶A (𝑡)
d𝑡

d𝐶B (𝑡)
d𝑡

ª®®®¬ =

(
−𝑘1 − 𝑘3𝐶A (𝑡) 0

𝑘1 −𝑘2

) (
𝐶A (𝑡)
𝐶B (𝑡)

)
+

(
𝐶𝐴in − 𝐶A (𝑡)

−𝐶B (𝑡)

)
𝑑 (𝑡). (7)

Taking the elements 𝑧1(𝑡) = −𝑘1−𝑘3𝐶A (𝑡), 𝑧2(𝑡) = 𝐶𝐴𝑖𝑛−𝐶A (𝑡), and 𝑧3(𝑡) =
−𝐶B (𝑡), it is possible to have eight linear submodels using the two membership
functions that fuzzify each 𝑧𝑖 (𝑡) element. Thus, the state-space submodels can
have the following representation:

©«
d𝐶A (𝑡)
d𝑡

d𝐶B (𝑡)
d𝑡

ª®®®¬ =

(
𝑧1(𝑡) 0
𝑘1 −𝑘2

) (
𝐶A (𝑡)
𝐶B (𝑡)

)
+

(
𝑧2(𝑡)
𝑧3(𝑡)

)
𝑑 (𝑡). (8)

The fuzzy partition used to approach the elements 𝑧1(𝑡), 𝑧2(𝑡) and 𝑧3(𝑡) was
implemented with two fuzzy sets. Figure 2 shows the 𝑧3 fuzzy partition, for the

Figure 2: Fuzzy partition for 𝑧3
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other elements, similar fuzzy sets were defined with values between [2.5 3.4] for
𝑧1 and [6.6 7.5] for 𝑧2, these values were obtained regarding values near the limits
of the elements in the Van de Vusse simulation.

3.1. Fuzzy state feedback

To have a stable state feedback it is necessary to guarantee stability not only
for each individual fuzzy submodel. Thus, to investigate the global stability, the
following Lyapunov function is proposed

𝑉 (𝑡) = 1
2

(
𝐶A (𝑡) 𝐶B (𝑡)

)
𝑃

(
𝐶A (𝑡)
𝐶B (𝑡)

)
is defined. If it is possible to find positive definite matrix 𝑃, then the fuzzy state
feedback is stable in the Lyapunov sense [19].
The poles placement allows to locate eigenvalues of the closed-loop system

matrix (𝐴−𝐵𝐾) in arbitrary places by a proper choice of the controller gainmatrix
𝐾 . The inequalities that represent the state feedback are defined as follows:(

𝐴𝑖,𝑖 − 𝐵𝑖𝐾𝑖
)𝑇
𝑃 + 𝑃

(
𝐴𝑖,𝑖 − 𝐵𝑖𝐾𝑖

)
+ 2𝛼𝑃 < 0, (9)

and for the fuzzy intersection between two submodels is necessary to keep,( (
𝐴𝑖, 𝑗 − 𝐵𝑖𝐾 𝑗

)𝑇
𝑃 + 𝑃

(
𝐴 𝑗 ,𝑖 − 𝐵 𝑗𝐾𝑖

)
2

)𝑇
𝑃

+ 𝑃
( (
𝐴𝑖, 𝑗 − 𝐵𝑖𝐾 𝑗

)𝑇
𝑃 + 𝑃

(
𝐴 𝑗 ,𝑖 − 𝐵 𝑗𝐾𝑖

)
2

)
+ 2𝛼𝑃 ¬ 0, (10)

where 𝐵𝑖 is now the input matrix in the classical state-space representation, 𝐾𝑖 is
the state feedback gain, and 𝛼 > 0 is the decay rate.
Relations (9) and (10) are not jointly convex in 𝐾𝑖 and 𝑃 [23], thus to have the

LMIs the new variables 𝑋 = 𝑃−1 and 𝑀𝑖 = 𝐾𝑖𝑋 [35] are introduced. To eliminate
the steady-state error, an integrator is added in a similar way to the shown in [18],
thus the following extended matrices are used:

�̂� =

(
𝐴 0
−𝐶 0

)
, (11)

�̂� =

(
𝐵

0

)
, (12)

where 𝐶 =
(
0 1

)
because the concentration 𝐶B (𝑡) is the output of the system.
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Hence, the LMIs to be solved are:

𝑋 > 0, (13)
−𝑋 �̂�𝑇𝑖,𝑖 − �̂�𝑖,𝑖𝑋 + 𝑀𝑇

𝑖 �̂�
𝑇
𝑖 + �̂�𝑖𝑀𝑖 − 2𝛼𝑋 > 0, (14)

−𝑋 �̂�𝑇𝑖, 𝑗 − 𝑋 �̂�𝑇𝑗,𝑖 − �̂�𝑖, 𝑗𝑋 − �̂� 𝑗 ,𝑖𝑋 + 𝑀𝑇
𝑖 �̂�

𝑇
𝑗

+ 𝑀𝑇
𝑗 �̂�

𝑇
𝑖 + �̂�𝑖𝑀𝑖 + �̂� 𝑗𝑀 𝑗 − 4𝛼𝑋  0. (15)

Thus, the common matrix found is 𝑋 ∈ R3×3, the state feedback gain is
computed to be �̂�𝑖 = 𝑋−1𝑀𝑖 =

(
𝐾1 𝐾2 −𝐾𝐼1

)
, where 𝐾𝐼1 is the integrator gain.

3.2. Fuzzy observer

The estimation error 𝑒(𝑡) = 𝐶A (𝑡) − 𝐶A (𝑡) has its dynamic according to
the eigenvalues of (𝐴 − 𝐿𝐶), where 𝐿 the observer gain. The fuzzy observer is
computed using the following inequality:(

𝐴𝑖,𝑖 − 𝐿𝑖𝐶
)𝑇
𝑄 +𝑄

(
𝐴𝑖,𝑖 − 𝐿𝑖𝐶

)
+ 2𝛽𝑄 < 0, (16)

and for the intersection between fuzzy sets, it is necessary to maintain:( (
𝐴𝑖, 𝑗 − 𝐶𝐿 𝑗

)𝑇
𝑄 +𝑄

(
𝐴 𝑗 ,𝑖 − 𝐶𝐿𝑖

)
2

)𝑇
𝑄

+𝑄
( (
𝐴𝑖, 𝑗 − 𝐶𝐿 𝑗

)𝑇
𝑄 +𝑄

(
𝐴 𝑗 ,𝑖 − 𝐶𝐿𝑖

)
2

)
+ 2𝛽𝑄 ¬ 0, (17)

where 𝐿𝑖 is the observer gain, 𝛽 > 0 is the decay rate, and 𝑄 > 0.
In the sameway aforementioned, (16) and (17) are not jointly convex in 𝐿𝑖 and

𝑃, and to have the LMIs it is necessary to introduce the new variables 𝑋 = 𝑄−1

and 𝑁𝑖 = 𝑋𝐿𝑖.
Now, the LMIs to be solved are:

𝑋 > 0, (18)
−𝑋𝐴𝑇𝑖,𝑖 − 𝐴𝑖,𝑖𝑋 + 𝐶𝑇𝑁𝑇𝑖 + 𝑁𝑖𝐶 − 2𝛽𝑋 > 0, (19)

−𝑋𝐴𝑇𝑖, 𝑗 − 𝑋𝐴𝑇𝑗,𝑖 − 𝐴𝑖, 𝑗𝑋 − 𝐴 𝑗 ,𝑖𝑋 + 𝐶𝑇𝑁𝑇𝑖
+ 𝐶𝑇𝑁𝑇𝑗 + 𝑁𝑖𝐶 + 𝑁 𝑗𝐶 − 4𝛽𝑋  0. (20)

A scheme of the fuzzy state feedback and the fuzzy observer is shown in
Fig. 3. The application of the state feedback gains 𝐾𝑖, the integrator gains 𝐾𝐼 ,
and the fuzzy observer 𝐿𝑖 is used because the concentration 𝐶B (𝑡) is the only
measured variable.
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Figure 3: Fuzzy control scheme

3.3. Anti-windup proposal

To avoid the undershoot due to the inverse response, an anti-windup element
is added to the final scheme. This element used to be a signal saturation of
the integral action as shown in Fig. 3 of [36]. Authors of [36] emphasized the
difference between the original control signal and the saturated one. However, in
this paper, a derivative term is used to reduce the control action 𝑑 (𝑡) instead of
saturating the control signal. The derivative term works as a counterpart of the
integrator.
Instead of saturation only [37], the control signal derivative is used to emulate

limitation in the control signal variation. Its final value to be reached is reduced
as well because the control action increases slowly if its derivative is used to
compute the control action. The anti-windup as the saturation in the rate and
amplitude of the control action is presented in [38].
Thus, the control signal is formed by:

𝑑 (𝑡) = 𝐾𝐼1
∫

𝜀(𝑡)d𝑡 − 𝐾1𝐶A (𝑡) − 𝐾2𝐶B (𝑡) − 𝐾𝐷 ¤𝑑 (𝑡), (21)

where 𝐶 is an estimated concentration computed by the observer, and 𝐾𝐷 is a
derivative gain used for the anti-windup action, this gain is chosen to be small for
stability issues. The error is 𝜀(𝑡) = set-point − 𝐶B (𝑡).
The augmented subsystems are now third-order linear subsystems. Thus, the

derivative gain 𝐾𝐷 must be selected small for stability reasons. The anti-windup
term reduces the control signal if this signal increases quickly. For example, if
the output diverges from the reference, then its derivative is positive, and the
anti-windup action decreases the control signal by subtracting 𝐾𝐷 ¤𝑑 (𝑡).
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3.4. Double integrator

Finally, an integrator in the controller can be used to have a zero steady-state
error when a step reference is applied to a linear system, and a constant error is
obtained if the reference is a ramp [39].
Since the controller is computed using linear subsystems, the error constant

is different for different operation points. Thus, the steady-state error when the
ramp is applied to the closed-loop is not constant for the nonlinear system, this
error diverges from the reference.
Taking into consideration the notation 𝑘𝑖 for the model parameters, and 𝐾𝑖 for

the state feedback gain, the analysis is made using at first only the state feedback,
then the integrator is added. Finally, the anti-windup proposal is introduced.
Using the original system (8) given by matrices:

𝐴 =

(
𝑧1(𝑡) 0
𝑘1 −𝑘2

)
, 𝐵 =

(
𝑧2(𝑡)
𝑧3(𝑡)

)
,

and 𝐶 =
(
0 1

)
, where the fuzzy terms 𝑧𝑖 were used to linearize the process. The

final linear subsystem can be represented by transfer functions of the form:

𝐶B (𝑠)
𝐷 (𝑠) =

−𝑠 + 𝑏
𝑠2 + 𝑎1𝑠 + 𝑎2

, (22)

where 𝑏 = 𝑘1𝑧2− 𝑧2𝑧3, 𝑎1 = 𝑧1+ 𝑘2+𝐾1𝑧2−𝐾2𝑧3, 𝑎2 = 𝑘2𝑧1−𝐾2𝑧1𝑧3+ 𝑧2𝐾1𝑘2+
𝑧2𝑘1𝐾2 and 𝐷 (𝑠) is the control signal. Here the signs represent the term sign
according to the model (8). The state feedback gains 𝐾1 and 𝐾2 can be chosen
to have some locations in the Laplace plane. In this paper they are designed to
guarantee stability.
Adding the integrator gives open-loop subsystems expressed as:

𝐶B (𝑠)
𝐷 (𝑠) =

−𝑠 + 𝑏
(𝐾𝐼1𝑠)

(
𝑠2 + 𝑎1𝑠 + 𝑎2

) , (23)

as is well known the closed-loop is now:

𝐶B (𝑠)
𝑅(𝑠) =

−𝑠 + 𝑏
𝐾𝐼1𝑠3 + 𝐾𝐼1𝑎1𝑠2 + (𝐾𝐼1𝑎2 − 1) 𝑠 + 𝑎2𝑏

,

where 𝑅(𝑠) is the reference signal. Taking the limit when 𝑠 → 0, the rate constant
is 1/𝑎2, then the steady-state error is 𝜀𝑠𝑠 = 𝑎2. Thus, as 𝑎2 depends on fuzzy terms
𝑧1, the final error is not a constant for each submodel and as it can be appreciated
in Fig. 7, the error increases with time.
The undershoot can be reduced using the anti-windup, in this case, the control

signal derivative 𝐾𝐷𝑠𝐷 (𝑠). Now, the anti-windup is aggregated to the open-loop
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(23) that has the state feedback and one integrator. Regarding Fig. 3, the error
is sent directly to the system, and this signal is returned after its derivative
calculation

𝐷 (𝑠)
𝜀(𝑠) =

1
𝐾𝐷𝑠 + 1

.

The open-loop using the three parts, the integrator 𝐾𝐼1, the state feedback
𝐾 =

(
𝐾1 𝐾2

)
, and the anti-windup action 𝐾𝐷 , is given by:

𝐶B (𝑠)
𝐷 (𝑠) =

−𝑠 + 𝑏
(𝐾𝐷𝑠 + 1) (𝐾𝐼1𝑠)

(
𝑠2 + 𝑎1𝑠 + 𝑎2

) . (24)

The control action is defined by:

𝑑 (𝑡) = 𝐾𝐼1
∫

𝜀(𝑡)d𝑡 + 𝐾𝐼2
∬

𝜀(𝑡)d𝑡 − 𝐾1𝐶A (𝑡)

− 𝐾2𝐶B (𝑡) − 𝐾𝐷 ¤𝑑 (𝑡). (25)
Using two integrators the open-loop is now:

𝐶B (𝑠)
𝐷 (𝑠) =

−𝑠 + 𝑏
(𝐾𝐷𝑠 + 1) (𝐾𝐼1𝑠 + 𝐾𝐼2𝑠2)

(
𝑠2 + 𝑎1𝑠 + 𝑎2

) , (26)

the rate constant is infinity, then the final error, even with a ramp reference, is zero
in steady-state. Due to the fuzzy control, the over and undershoots are different
for each set-point, but the error converges in all cases to zero.
As mentioned above, now the subsystems with the anti-windup are fifth-order

linear subsystems, and the unstable zero affects the stability in the root-locus
sense. Furthermore, the gain 𝐾𝐷 is selected to be small for computing issues.

4. Results

The Van de Vusse reaction is used as a case of study and conducts a nonlinear
process that shows an inverse response. The initial conditions and parameters
values are shown in Table 1.

Table 1: Initial conditions for simulation

Parameter Value Unit
𝐶𝐴in 3 mol/liter
𝐶A 1.117 mol/liter
𝐶B 10 mol/liter
𝑘1 5/6 min−1
𝑘2 5/3 min−1
𝑘3 1/6 mol/min
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4.1. Fuzzy model

The sector nonlinearity is used to meet the fuzzy model composed by state-
space submodels as the consequents of the rules using (8). Such the approached
model allows to compute the state feedback, and to aggregate integrators to
improve the control performance. An interesting point is how to propose the
limits to compute the functions 𝑧𝑖 (𝑡).
The chemical process has the inverse response, which can be observed in its

step response depicted in Fig. 4, where the comparison between the nonlinear
model response and the fuzzy model obtained is shown, both simulations use the
initial conditions presented in [12,13,20,21] and illustrated in Figs. (2a), (7), (3),
and (3) of these references respectively.

Figure 4: Comparison between the model (1)–(4) and fuzzy model using
subsystems of the form (8)

The best approximation to the nonlinear Van de Vusse reaction was presented
in [13], where a second-order non-minimum phase linear system was used to
approach the nonlinear one, a similar case to the report given by [12]. The
fuzzy bilinear system is shown in [21] which is also a good approximation. Five
submodels have been used with a common matrix 𝐵 from the classical notation
for state-space systems. Using our methodology, two matrices are obtained for
the transfer state matrix 𝐴 and four for the input matrix 𝐵 using the classical
representation ¤𝑥 = 𝐴𝑥 + 𝐵𝑢, and eight fuzzy rules were obtained.
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4.2. Fuzzy state feedback and observer

The inequalities (13), (14), and (15) were solved using the CVX tool [40]
by applying the extended matrices 𝐴 and 𝐵. Thereby, the state feedback with a
double integrator is globally stable. The parameter 𝛼 is proposed to be a positive
variable in [23], this parameter is used to change the decay rate. To modify the
speed response is used the largest Lyapunov exponent is obtained by maximizing
𝛼 subject to (14) and (15). Here, it was used 𝛼 = 0.02, and the matrix 𝑃 was
computed as:

𝑃 =
©«
129.9981 0.0009 −0.0006
−0.0009 33.2615 −55.0463
−0.0006 −55.0463 91.9725

ª®®¬ .
In the same way, the observer gains for each submodel were computed using

(18), (19), and (20). The decay rate is regulated using 𝛽 = 0.2 being also guaran-
teed the stability thanks to the possibility of finding a common positive definite
matrix 𝑄 which is:

𝑄 =

(
177.9480 −0.0005
−0.0005 200.0079

)
.

The reference is formed for steps of different magnitudes as was shown in
Fig. 3 of [14]. The control simulation can be observed in Fig. 5. Due to the

Figure 5: Response obtained with the fuzzy control in the nominal condition
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similarity to the control design shown in [18], this proposal is named fuzzy LQI.
The LQI is computed for each submodel, and a derivative term is used to limit
the control action.
The control proposal in this work is named fuzzy LQI2 due to the similarity

to the proposal shown in [18]. In this case, the control scheme has an anti-windup
action and a fuzzy observer as Fig. 3 shows.
The settling-time (𝑡𝑠) for linear models approximated to the Van de Vusse

reaction was shown in [7]. the result was obtained by tuning the PID controller
with PSO. Also the results reported in [41] and [42] show the 𝑡𝑠 obtained around
2.84, 4.96, and 10.43 minutes respectively in the best case.
Some papers with similar results showed the time-base in seconds when the

time must be given in minutes as Table 1 shows in the material balances 𝑘1, 𝑘2
and 𝑘3. Initially, the Van de Vusse benchmark described in [9] showed the time-
base in minutes (Fig. 3, [9]). In the same way, [12] and [13] showed approached
models Figs. 4 and 7 respectively, using minutes as the units for the 𝑥-axis.
Table 2 shows results concerning time-response and errors obtained with and

without the anti-windup proposal. These parameters were averaged because the
nonlinear system shows different behavior in each set-point presented in Fig. 5.

Table 2: Control performance

Control scheme 𝑡𝑠 Undershoot IAE ISE

Fuzzy LQI without anti-windup 2.24 39.12% 1.7697 0.8622

Fuzzy LQI with anti-windup 2.01 27.05% 1.7418 0.7704

One way to reduce the undershoot due to the inverse response is using a model
reference to have a smooth reference. For example, if a filter is applied to the
reference before closing the control loop.
The filter used as model reference was proposed to have a time constant of 30

seconds regarding Fig. 4 to have a similar behavior than the process in open-loop.
The sample time used to have a discrete time filter was 0.6 seconds, in this way we
have 50 samples before reach the time constant. The model reference in discrete
time is defined by:

𝑀ref (𝑧)
𝑅(𝑧) =

0.0198
𝑧 − 0.9802 . (27)

The control simulation is shown in Fig. 6, where it can be seen a delay due
to the inverse response but the undershoot is reduced because the smooth change
in the reference makes a small change in the control action instead of limiting
this action using the anti-windup proposed. However, Fig. 6 also shows both state
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feedback with and without anti-windup to see the difference. The undershoot
is reduced, and delay even with the model reference follows from the inverse
response. Nevertheless, the settling time is around 3minutes. The last step change
has an amplitude of 0.2 lower than the above reference. Thereby, the maximum
value reached by the output signal is 53.35% higher than the above reference and
46.65% using the anti-windup.

Figure 6: Response obtained using a model reference

A similar result is shown in [15]. Presented there equations (8) and (12)
gives the matrices used in the model and a similar open-loop transfer function
with numerator −1.117𝑠 + 3.129 after linearization. And a similar scheme for the
anti-windup can be found in [38] (as Fig. 5).
In contrast, the results shown in Fig. 5 present a settling time of 2 minutes

approximately, and the undershoots 77.9% without the anti-windup, and 60.4%
with the control signal derivative added to the control action.
Using an integrator is possible to eliminate the steady-state error if it is used

a step reference signal. A constant error can be expected if a ramp reference is
applied instead of the step signal. Applying a ramp signal the error diverges from
zero because we have linear submodels with different rate constants. Figure 7
shows a similar simulation to the presented in Fig. 5, but with a ramp reference
in the last part of the simulation.
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Figure 7: Response obtained using steps and ramp references

4.3. Results obtained using the LQI2

In some works where the Van de Vusse reaction is controlled, the effect
of disturbances is also shown. Here, a servo-system is implemented to follow
a higher-order reference, as shown in Fig. 7. It is possible to implement two
integrators as [43] explains in a state feedback design: the modification is to
augment the matrices used before computing the state feedback.
To follow a ramp reference is required to have two integrators, thus to compute

the state feedback with two integrators is necessary to use a extended matrix ˜̃
𝐴

by aggregating a matrix 𝐼ramp =
(
0 0
1 0

)
[43], now we have:

˜̃
𝐴 =

(
𝐴 0 0
−𝐶 0 0
0 𝐼ramp 0

)
, (28)

and ˜̃
𝐵 =

(
𝐵

0
0

)
. (29)

Now, the Ackermann formula gives 𝐾𝑖 = 𝑋−1𝑀𝑖 =
(
𝐾1 𝐾2 −𝐾𝐼1 −𝐾𝐼2

)
.
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Some previous and related works show comments about disturbance rejection
and use step references. In some cases, the set-point changes to evaluate the
time response. This paper shows the control performance using two integrators
when ramp references are applied to the Van de Vusse reaction. A disadvantage of
aggregating another integrator is the overshoot shown in the closed-loop response.
Thus, the anti-windup action helps to reduce the over and undershoot. Now, the
steady-state error converges to zero when a ramp reference is applied, as is shown
in Fig. 8.

Figure 8: Response obtained using a double integrator and a ramp reference

The state feedback and the integrators’ gains were obtained using LMI to
guarantee stability. This way is different than poles placement and quite similar
to the LQI shown in [18]. The control action is named fuzzy LQI2 due to the
double integrator.
The gain matrices 𝐾𝑖 and 𝐿𝑖 are shown in the appendix. In this case, 𝛼 = 0.002

to solve the LMIs for computing the state feedback with a double integrator.
Now, the common matrix 𝑃 ∈ R4×4 obtained using (15), (16) and (17) with

the extended matrices ˜̃𝐴 and ˜̃
𝐵 is:

𝑃 =

©«
124.9995 0.0001 −0.0002 0.0000
0.0001 33.2092 −55.0641 0.2406
−0.0002 −55.0641 91.9684 0.1930
0.0000 0.2406 0.1930 0.9907

ª®®®¬ .
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The gain 𝐾𝐷 can be selected greater than in single integrator case because a
faster change in the control signal is obtained using two integrators. Therefore,
the anti-windup action also reduces the overshoot. The 𝑡𝑠 is averaged for the same
reason mentioned above because, different set-points, different control gains and
linear submodels are used to control the chemical reaction. These results are
shown in Table 3.

Table 3: Control performance using two integrators

Control scheme 𝑡𝑠 Undershoot IAE ISE
Fuzzy LQI2 with anti-windup 2.26 21.04% 0.6098 0.1632

5. Conclusions

The benchmark known as the Van de Vusse reaction is used in this paper,
which serves as a nonlinear process that shows an inverse response. Some works
developed nonlinear and intelligent controllers, and compare their results against
the obtained by using a PID control. Also, some articles show how to eliminate
the steady-state error when a step reference is applied. Furthermore, some works
explain the disturbance rejection for this kind of process.
In the present work, we added two integrators to eliminate the steady-state

errorwhen a ramp reference is used. To eliminate the undershoot due to the inverse
response of the system, anti-windup action is proposed. It uses the control signal
derivativeiedzw to delimitate the control signal variation, which could be bigger
than using only one integrator.
An interesting result is that the anti-windup action reduces the undershoot

due to the inverse response and the overshoot caused by the double integrator in
the controller.
The usage of a filter to have a model reference was not sufficient because the

inverse response aggregates a delay, and the undershoot was not reduced in a
significant way as shown in Fig. 6.
The state feedback and integrator gains are computed using LMIs to guarantee

stability. The linear subsystems in the state-space representation are obtained us-
ing the sector nonlinearity to produce a fuzzy system, where each rule consequent
is a linear state-space.
An alternative is to compute the state feedback for the resulting state-space

fuzzy model, here the system is stable for each point, thereby the Ackermann
formula could be computed to obtain the state feedback, the observer, and the
integrators’ gains. But in other circumstances, if the resulting state-space model
is unstable, it is not possible to compute any gain.
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Although the state feedback is obtained using LMIs to guarantee stability,
some points need to be considered:

• The parameters 𝛼 and 𝛽 for the decay rate give a different performance.
Here the observer is proposed to be faster in convergence than the con-
trol dynamic. In [23] these parameters are considered as variables to be
maximized.

• The gain 𝐾𝐷 needs more clarification to be proposed because a small value
guarantees stability, and by increasing this parameter, the over and under-
shoot are reduced, but the main problem is the computational convergence.

The simulations show the closed-loop performance of the control scheme pro-
posed. It is planned to design a multivariable control to regulate the concentration
𝐶A (𝑡) as future work. Another topic is to show a design procedure to propose the
gain 𝐾𝐷 . Also, an adaptive fuzzy model can be developed instead to approach
the nonlinear process by sector nonlinearity.
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A. State feedback gains with one integrator

The state feedback and observer gains are shown in one matrix with delimiter
to denote each one of the fuzzy submodels’ parameters, being eight state feedback
gains. Using twomembership functions to get linear subsystems in three locations
gives eight fuzzy rules. The rows have the form 𝐾 =

(
𝐾1 𝐾2 𝐾𝐼1

)
.

𝐾 =

©«

4.582 0.285 −1.279
4.582 0.285 −1.279
4.582 0.285 −1.279
4.143 3.913 −1.279
4.143 3.913 −3.307
4.143 3.913 −3.308
4.582 0.285 −1.279
4.583 0.287 −1.299

ª®®®®®®®®®®®®®®®¬

.
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B. Observer gains

In the observer, only two gains 𝐿1 and 𝐿2 were computed, and they are the
following:

𝐿 =

(
0.8337 0.8332
8.9449 8.9435

)
.

C. State feedback gains with two integrator

Each gain obtained has four terms, and they are eight linear submodels, thus
the gains are shown into a 8 × 3 matrix where the last two columns represent the
integrator gains. The rows have the form 𝐾 =

(
𝐾1 𝐾2 𝐾𝐼1 𝐾𝐼2

)

𝐾 =

©«

1.282 −1.590 −2.121 −4.010
1.282 −1.590 −2.121 −4.010
1.285 −1.612 −2.126 −4.222
1.285 −1.612 −2.126 −4.222
1.205 −1.409 −2.011 −6.111
1.205 −1.409 −2.422 −6.154
1.287 −1.590 −2.121 −4.442
1.285 −1.595 −2.422 −4.255

ª®®®®®®®®®®®®®®®¬

.

References

[1] P. Skupin, M. Metzger, P. Laszczyk and M. Niedzwiedz: Experi-
mental and bifurcation analysis of a hybrid CSTR plant. Chemical En-
gineering Research and Design, 148 (2019), 191–201. DOI: 10.1016/
j.cherd.2019.06.010.

[2] A. Simorgh, A. Razminia and V. Shiryaev: System identification
and control design of a nonlinear continuously stirred tank reactor.
Mathematics and Computers in Simulation, 173 (2020), 16–31. DOI:
10.1016/j.matcom.2020.01.010.

[3] W. Chang: Nonlinear cstr control system design using an artificial bee
colony algorithm. Simulation Modelling Practice and Theory, 31 (2013),
1–9. DOI: 10.1016/j.simpat.2012.11.002.

https://doi.org/10.1016/j.cherd.2019.06.010
https://doi.org/10.1016/j.cherd.2019.06.010
https://doi.org/10.1016/j.matcom.2020.01.010
https://doi.org/10.1016/j.simpat.2012.11.002


FUZZY STATE FEEDBACK WITH DOUBLE INTEGRATOR AND ANTI-WINDUP
FOR THE VAN DE VUSSE REACTION 405

[4] L. Chen, S. Du, Y. He, M. Liang and D. Xu: Robust model predic-
tive control for greenhouse temperature based on particle swarm opti-
mization. Information Processing in Agriculture, 5 (2018), 329–338. DOI:
10.1016/j.inpa.2018.04.003.

[5] A. Palencia-Díaz, J. Carpinteiro-Durangoand J. Fabregas-Villegas:
Modeling, simulation and control of a reactor for the production of
aluminum chloride. Prospectiva, 10 (2012), 31–36. DOI: 10.15665/
rp.v10i2.230.

[6] M. Kumarand R.S. Singh: Comparison of non-linear, linearized 2nd
order and reduced to FOPDT models of CSTR using different tun-
ing methods. Resource-Efficient Technologies, 2 (2016), S71–S75. DOI:
10.1016/j.reffit.2016.11.003.

[7] M. Irshad and A. Ali: Optimal tuning rules for PI/PID controllers for
inverse response processes. IFAC PapersOnLine, 51 (2018), 413–418. DOI:
10.1016/j.ifacol.2018.05.063.

[8] M. Bahita and K. Belarbi: Model reference neural-fuzzy adaptive control
of the concentration in a chemical reactor (CSTR). IFAC PapersOnLine, 49
(2016), 158–162. DOI: 10.1016/j.ifacol.2016.11.093.

[9] K.Hagenmeyer andM.Zeitz: Van deVusseCSTRas a benchmark problem
for nonlinear feedforward control design techniques. In: IFAC Nonlinear
Control Systems, Ed. Elsevier, Stuttgart, Germany, (2004), 1123–1128.

[10] H. Perez, B. Ogunnaike and S. Devasia: Output tracking between op-
erating points for nonlinear processes: Van de Vusse example. IEEE
Transactions on Control Systems Technology, 10 (2002), 611–617. DOI:
10.1109/TCST.2002.1014680.

[11] K. Vu: A model predictive controller for inverse response control sys-
tems. IFAC PapersOnLine, 48 (2015), 562–567. DOI: 10.1016/j.ifacol.
2015.09.02.

[12] C. Mesén, E. Vargas and J. Torres: Sintonización y análisis del fun-
cionamiento de un sistema CSTR. Proyecto Final: IE-0431 Sistems de Con-
trol, Diagnostic test, Universidad de Costa Rica, 2021.

[13] V. Alfaro, P. Balaguer and O. Arrieta: Robustness considerations on
pid tuning for regulatory control of inverse response processes. In: IFAC
Conference on Advanced PID Control, Ed. Elsevier, Bresia, Italy, (2012),
193–198. DOI: 10.3182/20120328-3-IT-3014.00033.

https://doi.org/10.1016/j.inpa.2018.04.003
https://doi.org/10.15665/rp.v10i2.230
https://doi.org/10.15665/rp.v10i2.230
https://doi.org/10.1016/j.reffit.2016.11.003
https://doi.org/10.1016/j.ifacol.2018.05.063
https://doi.org/10.1016/j.ifacol.2016.11.093
https://doi.org/10.1109/TCST.2002.1014680
https://doi.org/10.1016/j.ifacol.2015.09.02
https://doi.org/10.1016/j.ifacol.2015.09.02
https://doi.org/10.3182/20120328-3-IT-3014.00033


406
C.A. MÀRQUEZ-VERA, M.A. MÀRQUEZ-VERA, Z. YAKOUB, A. MA’ARIF,

A.J. CASTRO-MONTOYA, N.R. CÀZAREZ-CASTRO

[14] S. Kuntanapreeda and P. Marusak: Nonlinear extended output feedback
control for CSTRs with Van de Vusse reaction. Computers & Chemical En-
gineering, 41 (2012), 10–23. DOI: 10.1016/j.compchemeng.2012.02.010.

[15] A. Bertone, R. da M. Jafelice and B. Goes: Classic and fuzzy type-2
control for the Van de Vusse reactor: A comparative study. In: Proceeding
Series of the Brazilian Society of Computational and Applied Mathematics,
Ed. S. de Matemática Aplicada e Computacional. 6 Sao Carlos, Brazil,
(2018), 1–7. DOI: 10.5540/03.2018.006.02.0258.

[16] R. Malar and T. Thyagarajan: Artificial neural networks based mod-
eling and control of continuous stirred tank reactor. American Journal of
Engineering and Applied Sciences, 2 (2009), 229–235. DOI: 10.3844/aje-
assp.2009.229.235.

[17] G. Cassol, G. Campos, D. Thomaz, B. Capron and A. Secchi: Rein-
forcement learning applied to process control: A Van de Vusse reactor case
study. in: International Symposium on Process Systems Engineering–PSE,
Eds. M.I. Mario and R. Eden, San Diego, California, United States of Amer-
ica, (2018), 1123–1128. DOI: 10.1016/B978-0-444-64241-7.50087-2.

[18] W. Cargua, M. Gallegos, P. Leica, L. Guzmán-Beckmann and O. Ca-
macho: Control schemes comparison for CSTR chemical reactors. Ciencia
e Ingeniería, 39 (2018), 177–189.

[19] M.A. Márquez-Vera, L.E. Ramos-Velasco and B.D. Balderrama-
Hernández: Stable fuzzy control and observer via LMIs in a fermenta-
tion process. Journal of Computational Science, 27 (2018), 192–198. DOI:
10.1016/j.jocs.2018.06.002.

[20] H. Ojeda-Elizarras, R. Maya-Yescas, S. Hernández-Castro, J. Se-
govia-Hernández and A.J. Castro-Montoya: Fuzzy control of a non-
linear system with inverse responce: Van de Vusse reaction. International
Journal of Latest Research in Science and Technology, 2 (2013), 1–5. DOI:
10.1016/j.eswa.2010.09.158.

[21] S. Tsai: Robust H∞ control for Van de Vusse reactor via T-S fuzzy bilinear
scheme. Expert Systems with Applications, 38 (2011), 4935–4944. DOI:
10.1016/j.eswa.2010.09.158.

[22] H. Lam, F. Leung and P. Tam: Fuzzy state feedback controller for nonlinear
systems: Stability analysis and design. In: Ninth IEEE International Confer-
ence on Fuzzy Systems, FUZZ- IEEE. Ed. IEEE, San Antonio, United States
of America, (2000), 677–681. DOI: 10.1109/FUZZY.2000.839102.

https://doi.org/10.1016/j.compchemeng.2012.02.010
https://doi.org/10.5540/03.2018.006.02.0258
https://doi.org/10.3844/ajeassp.2009.229.235
https://doi.org/10.3844/ajeassp.2009.229.235
https://doi.org/10.1016/B978-0-444-64241-7.50087-2
https://doi.org/10.1016/j.jocs.2018.06.002
https://doi.org/10.1016/j.eswa.2010.09.158
https://doi.org/10.1016/j.eswa.2010.09.158
https://doi.org/10.1109/FUZZY.2000.839102


FUZZY STATE FEEDBACK WITH DOUBLE INTEGRATOR AND ANTI-WINDUP
FOR THE VAN DE VUSSE REACTION 407

[23] K. Tanaka and H. O. Wang: Fuzzy control systems design and analysis: A
linear matrix inequality approach. Wiley-Intescience, New York, 2001.

[24] I. Carrera-Flores:Diseno de sistemas de control para procesos aplicados
a reactores continuos tipo tanque agitado (CSTR).Master’s thesis, Escuela
Politécnica Nacional, Quito, Ecuador, 2014.

[25] H. Chen, A. Kremling and F. Allgöwer: Nonlinear predictive control of
a benchmark CSTR. In: Proceedings of 3rd European Control Conference,
Rome, Italy, (1995), 3247–3252.

[26] S. Engell and K. Klatt: Nonlinear control of a nonminimum-phase
CSTR. In: Proceedings of the American Control Conference, (ed. IEEE),
San Francisco, United States of America, (1993), 2941–2945. DOI:
10.23919/acc.1993.4793439.

[27] J.G. van de Vusse: Plug-flow type reactor versus tank reactor. Chemi-
cal Engineering Science, 19(12), (1964), 994–996. DOI: 10.1016/0009-
2509(64)85109-5.

[28] T. Ross: Fuzzy Logic with Engineering Applications. John Wiley & Sons,
Ltd., West Sussex, 2008.

[29] P. Woolf: Chemical Process Dynamics and Controls. Open textbook li-
brary, University of Michigan Engineering Controls Group, 2009.

[30] J. Verhaegh, F. Kupper and F. Willem: Frequency response based
multivariable feedback control design for transient RCCI engine opera-
tion. IFAC PapersOnLine, 53 (2020), 14008–14015. DOI: 10.1016/j.ifacol.
2020.12.921.

[31] J. Koo,D. Park, S. Ryu,G.Kim andY. Lee: Design of a self-tuning adaptive
model predictive controller using recursive model parameter estimation for
real-time plasma variable control.Computers & Chemical Engineering, 123
(2019), 126–142. DOI: 10.1016/j.compchemeng.2019.01.002.

[32] E. J. Herrera-López, B. Castillo-Toledo, J. Ramírez-Córdova and
E. Ferreira: Takagi-Sugeno fuzzy observer for a switching bioprocess: Sec-
tor nonlinearity approach, In: New Developments in Robotics Automation
and Control. Ed. Alex Lazinica, Intech, Shangai, China, (2008) 155–180.

[33] E. Chavero-Navarrete, M. Trejo-Perea, J. Jáuregui-Correa, R. Car-
rillo-Serrano, and G. Ríos-Moreno: Expert control systems imple-
mented in a pitch control of wind turbine: A review. IEEE Access, 7 (2019),
13241–13259. DOI: 10.1109/ACCESS.2019.2892728.

https://doi.org/10.23919/acc.1993.4793439
https://doi.org/10.1016/0009-2509(64)85109-5
https://doi.org/10.1016/0009-2509(64)85109-5
https://doi.org/10.1016/j.ifacol.2020.12.921
https://doi.org/10.1016/j.ifacol.2020.12.921
https://doi.org/10.1016/j.compchemeng.2019.01.002
https://doi.org/10.1109/ACCESS.2019.2892728


408
C.A. MÀRQUEZ-VERA, M.A. MÀRQUEZ-VERA, Z. YAKOUB, A. MA’ARIF,

A.J. CASTRO-MONTOYA, N.R. CÀZAREZ-CASTRO

[34] Z. Lendek, T. Guerra, R. Babuška and B. De-Shutter: Stability Anal-
ysis and Nonlinear Observer Design Using Takagi-Sugeno Fuzzy Models.
Studies in Fuzziness and Soft Computing, 262 Springer, India, 2010.

[35] M. Chadli, H. Karimi and P. Shi: On stability and stabilization of singular
uncertain Takagi-Sugeno fuzzy systems. Journal of the Franklin Institute,
351 (2014), 1453–1463. DOI: 10.1016/j.jfranklin.2013.11.008.

[36] Purtojo and Wahyudi: Integral anti-windup scheme of full-state feed-
back control for point-to-point (PTP) positioning system. In: International
Conf. on Electronic Design, Ed. IEEE, Penang, Malaysia, (2008), 1–6. DOI:
10.1109/ICED.2008.4786777.

[37] W. Liu, Y. Zheng, Q. Chen and D. Geng: An adaptive CGPC based anti-
windup PI controller with stability constraints for the intermittent power
penetrated system. International Journal of Electrical Power & Energy
Systems, 130 (2021), 106922. DOI: 10.1016/j.ijepes.2021.106922.

[38] P. Bui, S. You, H. Kim and S. Lee: Dynamics modelling and motion control
for high-speed underwater vehicles using H-infinity synthesis with anti-
windup compensator. Journal of Ocean Engineering and Science, 2021,
Preprint. DOI: 10.1016/j.joes.2021.07.002.

[39] K. Ogata: Modern Control Engineering. 5th edition, Pearson Education,
Inc., Upper Saddle River, New Jersey, 2010.

[40] M. Grant and S. Boyd: CVX: Matlab software for disciplined convex
programming. Version 2.0 beta, 2013, Available from: http://cvxr.com/cvx/
download/.

[41] R. Sree andM. Chidambaram: Simple method of tuning PI controllers for
stable inverse response systems. Journal of the Indian Institute of Science,
83 (2003), 73–85.

[42] J. Jeng and S. Lin: Robust proportional-integral-derivative controller de-
sign for stable/integrating processes with inverse response and time delay.
Industrial & Engineering Chemistry Research, 51 (2012), 2652–2665. DOI:
10.1021/ie201449m.

[43] A. Ma’Arif, A. Cahyadi, S. Herdjunanto and O.Wahyunggoro: Track-
ing control of high order input reference using integrals state feedback and
coefficient diagrammethod tuning. IEEE Access, 8 (2020), 182731–182741.
DOI: 10.1109/ACCESS.2020.3029115.

https://doi.org/10.1016/j.jfranklin.2013.11.008
https://doi.org/10.1109/ICED.2008.4786777
https://doi.org/10.1016/j.ijepes.2021.106922
https://doi.org/10.1016/j.joes.2021.07.002
http://cvxr.com/cvx/download/
http://cvxr.com/cvx/download/
https://doi.org/10.1021/ie201449m
https://doi.org/10.1109/ACCESS.2020.3029115

	C.A. Màrquez-Vera, M.A. Màrquez-Vera, Z. Yakoub, A. Ma'arif, A.J. Castro-Montoya, N.R. Càzarez-Castro: Fuzzy state feedback with double integrator and anti-windup for the Van de Vusse reaction

