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Fractional order PI𝜆D𝜇 controller with optimal
parameters using Modified Grey Wolf Optimizer

for AVR system

Santosh Kumar VERMA and Ramesh DEVARAPALLI

In this paper, an automatic voltage regulator (AVR) embedded with fractional order PID
(FOPID) is employed for the alternator terminal voltage control. A novel meta-heuristic tech-
nique, a modified version of grey wolf optimizer (mGWO) is proposed to design and optimize
the FOPID AVR system. The parameters of FOPID, namely, proportional gain (𝐾𝑃), the inte-
gral gain (𝐾𝐼 ), the derivative gain (𝐾𝐷), 𝜆 and 𝜇 have been optimally tuned with the proposed
mGWO technique using a novel fitness function. The initial values of the 𝐾𝑃 , 𝐾𝐼 , and 𝐾𝐷 of the
FOPID controller are obtained using Ziegler-Nichols (ZN) method, whereas the initial values of
𝜆 and 𝜇 have been chosen as arbitrary values.The proposed algorithm offers more benefits such
as easy implementation, fast convergence characteristics, and excellent computational ability
for the optimization of functions with more than three variables. Additionally, the hasty tuning
of FOPID controller parameters gives a high-quality result, and the proposed controller also
improves the robustness of the system during uncertainties in the parameters. The quality of the
simulated result of the proposed controller has been validatedby other state-of-the-art techniques
in the literature.

Key words: integer order PID controller, fractional order PID controller, automatic voltage
regulator, evolutionary optimization, Grey Wolf Optimizer

1. Introduction

The quantitative analysis helps us to understand any large scale systems.
The exact understanding of any system demands accurate mathematics, leading
the researchers towards fractional calculus. Hence fractional calculus has much
importance for an accurate and complete understanding of physical phenomena
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of any system [1]. Fractional calculus is around 300 years old, and the researches
on fractional calculus, fractional modelling and control are on its boom from the
past few decades [2]. Fractional calculus has been broadly used for modelling and
control purposes in different engineering fields and industrial applications [3,4].
CRONE (Commande Robust d’Order Non-Entier, meaning Non-integer-order
Robust Control) control was the first fractional controller proposed and applied
on many systems by Oustaloup [5]. Many toolbars are available for working
with fractional calculus and fractional order controller design, such as CRONE,
NINTEGER, and FOMCON, among others [6, 7]. The CRONE toolbar is the
most powerful tool for simulating fractional-order systems. The CRONE Toolbox
inspired the other toolbars, NINTEGER and FOMCON.
The fractional PID controller is one of the different forms of fractional con-

trollers that have been implemented to achieve fine control operation for practical
systems [8–13]. It provides two extra tuning knobs, the fractional power of integral
control (𝜆) and differential control (𝜇) [14]. These extra degrees of freedom assist
the researchers in designing an excellent controller for any system.A large number
of publications on fractional-order systems and fractional-order control have been
published. FOPIDcontrollers have also been used in real-time applications such as
servomotor velocity control [15], controlling of DC-motor with elastic shaft [16],
Non-minimum phase system [17], Magnetic levitation system [10, 18] and con-
trolling of the automatic voltage regulator (AVR) system [19–21].Many optimiza-
tion strategies have been employed in recent years to obtain the most significant
value for fractional control variables. Many optimization approaches for design-
ing the best controller are also included in the toolboxes. For determining the best
outcome for the FOPID controller, the Nelder’s-Mead optimization (NMO) algo-
rithm [21], Interior-point technique, Sequential quadratic programming (SQP),
and Active set based approach have been provided in the FOMCON toolbox [7].
Providing a constant input voltage has always been a very challenging task

in power system applications. The AVR system is used to stabilize the volt-
age value when suddenly change of load for power supply demand. Conventional
Proportional-Integral-Derivative (PID) [21], Proportional-Integral-Derivative-
Acceleration (PIDA) [22], Fraction Orders PID (FOPID) [23, 24] and Sugeno
Fuzzy Logic (SFL) [25] are some types of controllers that have already been im-
plemented onAVRsystem to control its terminal voltage.Most of the conventional
controllers succeed in solving stability-related issues, but they fail to rectify the
issues related to nonlinear loads, variable operating points, and time delay. In such
cases, optimization techniques can help by tuning the parameters of conventional
PID and FOPID controllers [26]. Artificial Intelligent (AI) based techniques such
as neural network and fuzzy logic have been successfully used to optimize the con-
troller parameters, but it requires complex analysis and also goes through a very
large convergence time. In recent years, Meta-heuristic optimization techniques
are used to tune the controller parameters [27,28]. These techniques are based on



FRACTIONAL ORDER PI𝜆D𝜇 CONTROLLER WITH OPTIMAL PARAMETERS
USING MODIFIED GREY WOLF OPTIMIZER FOR AVR SYSTEM 431

simple concepts and are very easy to implement. Moreover, they do not require
information gradient. Evolutionary algorithm, swarm-based algorithms, physics-
based algorithms and human behaviour based algorithms are the four major
classes of this group. Many optimization algorithms are in practice in these cate-
gories, but the most popular algorithms of Evolutionary algorithm, swarm-based
algorithm, physics-based algorithm and human behaviour based algorithm are
Genetic Algorithm (GA) [29], Particle SwarmOptimization (PSO) [24,30], Grav-
itational SearchAlgorithm (GSA) [31] andTeachingLearnedBasedOptimization
(TLBO) [32,33] respectively.As controlling the terminal voltage ofAVRsystem is
a concern, Panda, Sahu has used aMOL-based optimized PID controller, andMo-
hanty (2012), which produces better results than ABC, PSO, and DE [34]. A CS-
based PIDA controller has been implemented by Deacha (2012), which produces
a better response than TS andGA [35]. Several other optimization techniques have
also been presented for optimization of the parameters of conventional PID for
AVR systems [6,16,36–38]. Similarly, various optimization techniques have also
been used to optimize FOPID controller parameters for AVR systems [39, 40].
A modified form of GWO algorithm (mGWO) with a novel fitness function

has been presented in this work. The mGWO is implemented to locate the finest
controller parameters by minimizing the newly defined fitness function value.
Although the basic GWO algorithm proposed in [41] has been widely used for
tunning fuzzy control system [42], feature subset selection [43], automatic genera-
tion control of interconnected power system [44], evolutionary population dynam-
ics [42,45,46], optimizing the parameters of conventional PID controllers [47,48]
and many other applications but fails in providing the best solution in case of
function with more than three variables. This inspires the necessary modification
in the algorithm to find the optimum FOPID controller for AVR system. In the
proposed technique, ZNmethod is used for defining the approximate region of the
prey. Thewolves start their movement in searching of the food on the basis of these
parameters tuned using ZN method. Using Oustaloup’s approximation approach
and a frequency band of 𝜔 ∈ (10−3−10+3) rad/sec, the suggested controller’s
fractional-order terms are approximated into integer ones [49].
The remaining structure of this paper is as follows: Section 2 presents the

proposed modified form of the GWO algorithm. Section 3 describes the consid-
ered research problem and objective function. In Section 4, all the simulation and
mathematical results have been shown, and finally, Section 5 concludes this paper.

2. Proposed modified Grey Wolf Optimizer (mGWO)

Most of the Swarm Intelligence (SI) methods are motivated by a specific
species’ hunting and searching behaviour in nature. As the Grey wolves are very
famous for their hunting behaviour in packs and lies on the top of the food chain.
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Hence, the motivated algorithm should also generate the best result than the
others. Here, two different forms of GWO algorithm have been presented.

2.1. Basic Grey Wolf Optimizer

The basic GWO algorithm is a recent meta-heuristic algorithm inspired by the
Greywolves of the Canidae family. It was initially proposed [41]. The algorithm is
motivated by the behaviour of the social hierarchy of a wolf pack. The dominating
behaviour of the wolf claims the social hierarchy of wolves. The social hierarchy
of the wolves of GWO establishes four organization levels:

i) The most dominating level is the apex of the hierarchy, and the boss of this
level is known as alpha (𝛼). It gives the best population solution.

ii) The following level of the hierarchy (i.e., the second level) is known as beta
(𝛽), which aids in the hunting process and provides a second-best answer.

iii) The third best solutionis given by the third level of the hierarchy, which is
denoted as delta (𝛿) wolf. It performs as a subordinate. According to [41],
delta represents wolves such as scouts, sentinels, elders, hunters and care-
takers.

iv) The rest of the wolves in the hierarchy are denoted as omega (𝜔) and they
act as the camp followers. This is the last level of the hierarchy [50].

Only the movement of the first three higher-ranked wolves (𝛼, 𝛽, and 𝛿) mimic
the encirclement of prey by wolves. The Grey Wolves perform many steps like
Pursuing, encircling, and harassing the prey until it gets tiered and stops moving
and at last, they attack the prey. These steps have beenmodelledmathematically as:

2.1.1. Encircling the prey

The wolves’ actions necessitated the use of equations:

®𝐷 =

��� ®𝐶. ®𝑋𝑃 (𝑡) − ®𝑋 (𝑡)
��� , (1)

®𝑋 (𝑡 + 1) = ®𝑋𝑃 (𝑡) − ®𝐴 ®𝐷, (2)
®𝐴 = 2®𝑎®𝑟1 − ®𝑎, (3)
®𝐶 = 2.®𝑟2 , (4)

where ®𝐴 and ®𝐶 are coefficient vectors, ®𝑋𝑃 is the prey’s position vector, ®𝑋 is
the grey wolf’s position vector, 𝑡 is the current iteration, ®𝑟1 and ®𝑟2 are randomly
chosen variables in the range of [0, 1].
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2.1.2. Hunting behaviour

The positions of the remaining wolves are renewed and are regarded using the
best results 𝛼, 𝛽, and 𝛿 of the algorithm. The following expressions (5), (6), and
(7) are used to update the positions of all wolves:

®𝐷𝛼𝑖 =

��� ®𝐶1. ®𝑋𝛼𝑖 (𝑡) − ®𝑋𝑖 (𝑡)
���

®𝐷𝜂𝑖 =

��� ®𝐶2. ®𝑋𝜂𝑖 (𝑡) − ®𝑋𝑖 (𝑡)
���

®𝐷𝛿𝑖 =

��� ®𝐶3. ®𝑋𝛿𝑖 (𝑡) − ®𝑋𝑖 (𝑡)
���

, (5)

®𝑋𝑖1 = ®𝑋𝛼𝑖 (𝑡) − ®𝐴1. ®𝐷𝛼𝑖

®𝑋𝑖2 = ®𝑋𝜂𝑖 (𝑡) − ®𝐴2. ®𝐷𝜂𝑖

®𝑋𝑖3 = ®𝑋𝛿𝑖 (𝑡) − ®𝐴3. ®𝐷𝛿𝑖

 , (6)

®𝑋𝑖 (𝑡 + 1) =
®𝑋𝑖1 + ®𝑋𝑖2 + ®𝑋𝑖3

3
, (7)

where 𝑖 and ®𝑋𝑖 (𝑡 + 1) denotes the number of iterations and the top search agent
of 𝑖-th iteration, respectively.

2.1.3. Attacking prey

It is critical for the wolves to get closer to the prey in order to attack it. As a
result, the distance between the positions of wolves and prey must be narrowed.
Only by lowering the value of coefficient vector ®𝐴 can this be accomplished. The
vector ®𝐴 is shrunk by lowering the value of variable 𝑎 as much as possible:

𝑎 = 2 −
(
2

𝐽max𝑖

)
, (8)

where 𝑎 is reduced from 2 to and 𝐽max𝑖 is the maximum value of the objective
function in 𝑖-th iteration.

2.2. Modified Grey Wolf Optimizer (MGWO)

The proposed approach has been presented for updating the position ofwolves.
Encircling of the prey by wolves in MGWO requires the following equations.

®𝐷 =

��� ®𝐶. ®𝑋𝑝 (𝑡) − ®𝑋 (𝑡).𝑈 (−2𝑎, 2𝑎)
��� , (9)

®𝑋 (𝑡 + 1) = ®𝑋 (𝑡). ®𝐴.𝑈 (−2𝑎, 2𝑎). (10)
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Here, the term 𝑈 (−2𝑎, 2𝑎) gives a uniformly distributed random number in
the interval [−2, 2]. Where, exploitation occurs if 𝑈 (−2𝑎, 2𝑎) gives a number
closer to 1; otherwise, exploration occurs. Calculation of coefficients ‘A’ and ‘C’
is done in the same manner as in (3) and (4), respectively. The positions of the
wolves are updated according to the best fitness value computed, as shown below.

®𝑋 (𝑡 + 1) =
{
®𝑋 (𝑡). ®𝐴.𝑈 (−2𝑎, 2𝑎), fitness

{
®𝑋 (𝑡 + 1)

}
< fitness

{
®𝑋 (𝑡)

}
,

®𝑋 (𝑡) otherwise.
(11)

3. Application of proposed mGWO algorithm for FOPID- AVR system

3.1. Automatic voltage regulator (AVR) system

Power system network is mainly designed to work at a convinced frequency
and terminal voltages. Any disturbances raised by a swing in the turbine’s output,
load variation, high impedance of field winding or deviation in transmission
line parameters may lead to instability in the terminal voltage of the system.
These instabilities may lead to overall system collapse or, it may cause spoil
to any coupled equipment. The two independent control loops are designed to
focus on these parameters, namely the load frequency control and AVR. TheAVR
system is found cheaper and very effective for controlling the generator’s terminal
voltage [51,52]. It is a combination of four sub-systems, namely amplifier, exciter,
generator, and sensor. A linearized model of the AVR system has been taken here
for ease by considering the major time constants, and it has been assumed that
the system has no non-linearities such as saturation or other. Figure 1 depicts the
schematic block diagram of the AVR system. Each component’s (sub-systems)
transfer function has been shown in the corresponding block.

−

.  FOPID 
Controller

1 +

1 + 1 + 1 +

Amplifier Exciter Generator

Sensor

Figure 1: Block diagram of an AVR system

An effective objective or fitness function will be needed to optimize the values
of𝐾𝑃,𝐾𝐼 ,𝐾𝐷 , 𝜆 and 𝜇 for getting themost suitable controller. The objective func-
tion considered for this work is defined in terms of rise-time (RT), settling-time
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(ST), peak-overshoot (PO), Gain-Margin (G.M), Phase-Margin (P.M), integral
time-weighted absolute error (ITAE) and integral time-weighted square error
(ITSE). These considerable values of each parameter has been multiplied by
weight factors 𝑤𝑖 and then combined together as shown as:

𝐽 =
(ITAE + ITSE) ∗ 𝑤1 + (RT + ST + PO) ∗ 𝑤2

(G.M + P.M.) ∗ 𝑤3
, (12)

where 𝑤1, 𝑤2 and 𝑤3 are the weighting factors. Selection of 𝑤𝑖 is tricky and
designer has to try multiple times for getting suitable values of weighting factors.
The Idea of defining the fitness function in terms of RT, ST, PO, GM and

PM is to make the proper balance between time-domain and frequency-domain
characteristics of the system during each iteration of optimization. The weighting
factors are chosen according to their percentage of contribution for the desired
result. The ITAE and ITSE are defined as follows:

ITAE =

𝑇∫
0

𝑇 |𝑒(𝑡) | d𝑡, (13)

ITSE =

𝑇∫
0

𝑇𝑒2(𝑡)d𝑡, (14)

where 𝑒(𝑡) is the error, 𝑡 is the time period, and 𝑇 is total simulation time.
The error 𝑒(𝑡) at time 𝑡 is calculated as:

𝑒(𝑡) = 1 − step(𝐺𝐶)
��
𝑡
, (15)

where 𝐺𝐶 is the closed-loop transfer function of the system with controller.

3.2. A summary of fractional calculus

Around 300 years back in 1695 the two scientists Leibniz and L’Hˆopital
initially offer the fractional derivative in terms of thehalf-order derivative. This
was the first time when fractional calculus comes into the picture. They gave a
general representation for differentiation and integration both as 𝛼𝐷𝑟𝑡 , where 𝛼
and 𝑡 are limits of the operation. Different definitions integro-differential operator
and most significant properties of this non-integer order calculus are discussed
below.
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3.2.1. The definition of integro-differential operator

The integro-differential operator’s continuous domain definition is as follows:

𝛼𝐷
𝑟
𝑡 =


𝑑𝑟/𝑑𝑡𝑟 𝑅(𝑟) > 0,
1 𝑅(𝑟) = 0,
𝑡∫

𝛼

(d𝑡)𝑟 𝑅(𝑟) < 0.
(16)

where 𝑟 is the integration or differentiation order, 𝑟 might be either a real or a
complex number. Twodifferent definitions of differ-integral for fractional-order
systems are present in the literature. One is given Grunwald-Letnikov (GL), and
other is given by Riemann-Liouville (RL) [54, 56].
Before optimizing the FOPID settings, the fractional terms of the controller

must be approximated into an integer order transfer function. For the approxima-
tion of fractional order terms into integer order, there are numerous approximation
methods accessible in the literature. For this aim, the well-known Oustaloup’s
approximation algorithm is used.

3.2.2. Description of Fractional Order PID Controller:

The FOPID controller is a generalized version of the ordinary PID controller,
denoted by the letters PI D. It increases the system’s stability and robustness.
Furthermore, the fractional PID controller provides better dynamical system
control and is less susceptible to changes in control system parameters. The
FOPID controller’s standard transfer function is as follows:

𝐶FOPID(𝑠) = 𝐾𝑃 +
𝐾𝐼

𝑠𝜆
+ 𝐷𝑠𝜇𝑞𝑢𝑎𝑑 (𝜆, 𝜇 > 0), (17)

where for 𝜆 and 𝜇 are the fractional power of integral and differential terms
respectively.
FOPID controller can realize all classical controllers from a variety of values

of 𝜆, and 𝜇, i.e., 𝜆 = 1, 𝜇 = 1 delivers classical PID controller, 𝜆 = 1, 𝜇 = 0
delivers PI controller and 𝜆 = 0, 𝜇 = 1 delivers PD controller. This can also be
realized in a two-dimensional plan as given in Figure 2. The darken portion with
blue colour will represent the fractional controller.
It has been earlier mentioned that the optimization of control variables (𝐾𝑃,

𝐾𝐼 , 𝐾𝐷 , 𝜆, and 𝜇) have been done by GWO algorithm. A brief introduction of
this algorithm has been given in the next section.

3.3. Implementation of the algorithm

Implementation process of the algorithm for this works is shown with the
flowchart in Figure 3.
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Figure 2: The plane of FOPID controller

Figure 3: Flowchart of proposed algorithm



438 S.K. VERMA, R. DEVARAPALLI

4. Simulation results

4.1. AVR System Analysis without controller

𝐾𝐴 = 10, 𝜏𝐴 = 0.1, 𝐾𝐸 = 1, 𝜏𝐸 = 0.4, 𝐾𝐺 = 1, 𝜏𝐺 = 1, 𝐾𝑠 = 1, 𝜏𝑠 = 0.01,
are the parameter values used in this study from its typical ranges i.e. 𝐾𝐴 =

[10, 400], 𝜏𝐴 = [0.02, 0.1], 𝐾𝐸 = [1, , 400], 𝜏𝐸 = [0.4, 1.0], 𝐾𝐺 = [0.7, 1.0],
𝜏𝐺 = [1.0, 2.0], 𝐾𝑠 = [1.0, 2.0], 𝜏𝑠 = [0.001, 0.06]. As a result, the AVR
system’s closed-loop transfer function without a controller can be written as [21]:

𝐺AVR =
𝑉𝑡 (𝑠)
𝑉ref (𝑠)

=
0.1𝑠 + 10

0.0004𝑠4 + 0.045𝑠3 + 0.555𝑠2 + 1.51𝑠 + 11
. (18)

We can easily calculate the poles and zeros of the closed-loop transfer function
of the given AVR system. It has two real poles located at 𝑠1 = −99.9712 And
𝑠2 = −12.4892 and two complex poles at 𝑠3,4 = −0.5198 ± 4.6642𝑖 and one zero
at 𝑧 = −100. The step response of the AVR system shown in Figure 4(a), shows
the oscillating behavior which proves the under-damped nature of the system.
Moreover, thephase plot in Figure 4(b) shows very small gain margin (GM) and
phasemargin (PM). Therefore, we need a controller which can improve the overall
performance of the AVR system.

(a) (b)

Figure 4: (a) Closed-loop step response, (b) frequency plot of open-loop AVR system
without controller

4.2. Design of MGWO-FOPID controller for AVR system

In this section, An enhanced FOPID controller is designed to improve theAVR
system’s performance in both the time and frequency domains.Optimization of
controller parameter are done using proposed mGWO algorithm and the newly
defined fitness function. Numerical values of weights in the fitness function taken
for this work are 0.5, 15 and 10 respectively.The performance of the optimized
FOPID controller in both domains has been shown in the next subsection.
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4.2.1. The performance of MGWO-FOPID controller

The performance of theMGWO-FOPID controller is examined in this section.
Figure 5 depicts the performance of all twelve wolves in the time domain. Figure 6
depicts the step response of three of the best wolves, namely alpha, beta, and delta.
Table 1 shows the values of the parameters (i.e. 𝐾𝑃, 𝐾𝐼 , 𝐾𝐷 , 𝜆 and 𝜇), as well
as the time-domain and frequency-domain characteristics of each wolf. As we
can see in Figure 6(b) that the leader of the hierarchy i.e. alpha gives the most
excellent controller for the AVR system. The AVR system with this controller
gets settled in 0.0653 sec and also has zero percent of overshoot in the system.

Figure 5: Step response all the twelve wolves

(a) (b)

Figure 6: (a) Step response three best wolves of the hierarchy (i.e. alpha, beta, and
delta), (b) Step response AVR system with proposed FOPID controller (i.e. leader of the
hierarchy)
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Although, the FOPID controller given by other membersof the hierarchy like
delta and 𝑤1 are more master in terms of rise-time but the settling time of this
controller are much greater than the leader of the hierarchy.

Table 1: All specifications of FOPID controller using MGWO

Grey
wolf 𝐾𝑝 𝐾𝑖 𝐾𝑑 𝜆 𝜇

Rise-
time

Settling
time

Peak
overshoot G.M. P.M.

𝛼 11.2902 1.1035 0.4155 0.8714 1.7281 0.0427 0.0653 0 29.8 71.0

𝛾 8.1816 1.3680 0.4084 1.0105 1.6914 0.0528 0.0821 0 30.2 71.7

𝛿 11.4158 1.7858 0.5779 0.9706 1.6790 0.0341 0.1073 5.1110 27.2 64.9

𝜔1 9.6182 1.4376 0.6895 1.0005 1.6208 0.0345 0.1245 8.9367 25.9 60.4

𝜔2 9.5074 1.6425 0.5848 0.8582 1.5980 0.0417 0.1401 9.1540 26.4 59.3

𝜔3 8.3947 1.1609 0.4944 1.0426 1.6442 0.0459 0.1204 3.2380 28.6 66.5

𝜔4 8.9042 0.8009 0.4851 0.9811 1.6747 0.0442 0.1060 2.3623 4.62 16.1

𝜔5 6.9650 1.4124 0.6547 0.9376 1.6140 0.0371 0.3083 7.1859 26.1 60.2

𝜔6 3.3762 0.7789 0.3910 1.1637 1.4305 0.0937 0.2538 5.5107 29.0 62.2

𝜔7 8.2377 1.6531 0.5014 0.9943 1.6551 0.0456 0.1238 3.3296 28.5 66.6

𝜔8 9.6430 2.4695 0.7658 1.0468 1.5776 0.0342 0.1284 12.5826 25.0 56.7

𝜔9 9.5857 1.2275 0.6429 0.9720 1.5759 0.0424 0.1693 11.7936 26.6 57.9

4.2.2. Comparison of proposed MGWO-FOPID Controller with other Controllers:

So far as many researchers had worked for designing the optimum controller
for the same AVR system. The performance of proposed controller is broadly
compared with other PID and FOPID controllers proposed in the literature. For
comparison with PID controller, results of GA based PID developed in [52],
PSO algorithm based PID developed in [37] and chaotic ant swarm (CAS) based
PID developed in [51] is taken. Similarly, for comparing with other FOPID
controllers results of GA based FOPID developed in [52], PSO algorithm based
FOPID developed in [55] and chaotic ant swarm (CAS) based FOPID developed
in [56] is taken.
All the controller’s parameters (i.e. 𝐾𝑃, 𝐾𝐼 , 𝐾𝐷 , 𝜆 and 𝜇) and performance

characteristics (time-domain as well as frequency domain) are compared in Ta-
ble 2 and Table 3 respectively. The proposed FOPID controller shows the better
performance than the other PID and FOPID controller. The proposed FOPID con-
troller can produce perfect gain margin and phase margin for the AVR system.
Moreover, the time-domain characteristics of proposed FOPID controller are far
better than the other controllers in the literature.
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Table 2: Comparison of parameters of controllers designed using different techniques

Controller 𝐾𝑃 𝐾𝐼 𝐾𝐷 𝜆 𝜇

𝛽 = 1
GA-PID 0.8861 0.7984 0.3158 – –
PSO-PID 0.0657 0.5389 0.2458 – –
CAS-PID 0.6746 0.6009 0.2618 – –
CAS-FOPID 1.0537 0.4418 0.2510 1.1122 1.0624
GA-FOPID 1.3227 0.5398 0.2443 1.2790 1.1849
PSO-FOPID 1.2623 0.5531 0.2382 1.2555 1.1827

𝛽 = 1.5
GA-PID 0.7717 0.5930 0.3507 – –
PSO-PID 06254 0.4577 0.2187 – –
CAS-PID 0.6202 0.4531 0.2152 – –
CAS-FOPID 0.9315 0.4776 0.2536 1.0838 1.0275
GA-FOPID 1.3715 0.5663 0.2395 1.2823 1.2892
PSO-FOPID 1.2623 0.5526 0.2381 1.2559 1.1832

MGWO-FOPID (Proposed) 11.2902 1.1035 0.4155 0.8714 1.7281

Table 3: Comparison of performance characteristics of controllers designed using
different techniques

Controller Rise time
𝑡𝑟 (S)

Settling time
𝑡𝑠 (S)

Maximum
overshoot
𝑀𝑃 (%)

Gain
margin

Phase
margin

No Controller 0.2607 6.9865 65.7226 4.62 16.1
𝛽 = 1

GA-PID 0.2019 0.5980 8.6644 23.5 59.2
PSO-PID 0.2767 0.4025 1.16 25.8 67.6
CAS-PID 0.2425 0.3550 1.7678 25.4 66.9
CAS-FOPID 0.2223 0.3037 0.1678 26.6 57.7
GA-FOPID 0.1402 0.561 0 29.8 62.8
PSO-FOPID 0.1604 0.2657 0.02 30.2 63.5

𝛽 = 1.5
GA-PID 0.2003 1.0517 3.6287 23.2 61.8
PSO-PID 0.2997 0.4156 0.4400 26.7 68.5
CAS-PID 0.3156 0.4212 0.4000 26.8 68.6
CAS-FOPID 0.2305 0.3187 0.0642 25.5 59
GA-FOPID 0.1444 0.4894 0.36 30.7 73.3
PSO-FOPID 0.1603 0.2655 0.01 30.2 63.6

MGWO-FOPID (Proposed) 0.0427 0.0653 0 29.8 71
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4.3. Robustness Analysis of the proposed Controller

For robustness analysis, it is considered that there may be three different types
of uncertainties in the AVR system. Hense we have analyzed the performance of
the proposed FOPID controller by considering all the three uncertainties in the
system one by one. Which are presented as:

4.3.1. Uncertainty in amplifier

Here, it is considered that the parameters of the amplifier may alter from
original value 𝐾𝐴 = 10, 𝜏𝐴 = 0.1 to 𝐾𝐴 = 14, 𝜏𝐴 = 0.007. The step response of
the closed-loop system with the altered value of amplifier constants is compared
with the original AVR system in Figure 7. It is very clear that the performance
of the proposed FOPID controller very similar in both the cases. Moreover, the
rise-time of AVR system with the altered value of amplifier constants is less than
the original system, i.e.; the overall system performs faster than the previous one.

Figure 7: Comparison of step response with uncertainty in amplifier

4.3.2. Uncertainty in Exciter

It is assumed that the Exciter’s settings will change from their original value of
𝐾𝐸 = 1, 𝜏𝐸 = 0.4 to 𝐾𝐸 = 1.2, 𝜏𝐸 = 0.5. Figure 8 compares the step response of
the closed-loop system with exciter uncertainty to the original AVR system. The
performance of the suggested FOPID controller is identical in both circumstances,
as can be seen here.

4.3.3. Uncertainty in Generator:

Here, it is considered that the parameters of the Generator may change from
original value 𝐾𝐺 = 1, 𝜏𝐺 = 1 to 𝐾𝐺 = 0.7, 𝜏𝐺 = 1.6. The step response of the
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Figure 8: Comparison of step response with uncertainty in exciter

closed-loop system with the generator uncertainty is compared with the original
AVR system in Figure 9. Here we can see that the performance of the proposed
FOPID controller is almost similar in both the cases.

Figure 9: Comparison of step response with uncertainty in generator

By observing all three cases, we derive that the proposed FOPID controller
performs well in all the three uncertainities in the system.
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5. Conclusions

The paper has successfully designed and optimized the parameters of FOPID
controller to control the terminal voltage of the AVR system. The FOPID con-
troller parameters were optimized using a modified version of the grey wolf
optimizer and a new fitness function. The algorithm is based on natural grey wolf
meta-heuristics, which have the effective potential of avoiding local minima and
suggesting the optimal global optimum parameter values in a pre-defined search
space. The settings of the practical FOPID controller were optimized using a new
fitness function that included the integral of time absolute error (ITAE), integral
of time square error (ITSE), raise-time, settling-time, and maximum-overshoot.
The step response of the closed-loop AVR system was used to determine the
values of all these parameters.
The suggested FOPID controller’s simulation results using a real-world

AVR system verified its superior control performance. Furthermore, the sug-
gested FOPID controller has greater control capability in the time-domain and
frequency-domain than existing PID and FOPID controllers found in the litera-
ture. Furthermore, the suggested FOPID controller operates admirably in the face
of all three externally induced uncertainties in the system. This demonstrates the
controller’s robustness. All of the simulation results were presented in the study
and compared to various Figures and Tables.
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